A *First* Look at Modern Enterprise Traffic

Ruoming Pang, Princeton University Mark Allman (ICSI), Mike Bennett (LBNL), Jason Lee (LBNL), Vern Paxson (ICSI/LBNL), and Brian Tierney (LBNL)

The Question

"What does the traffic look like in today's enterprise networks?"

- Previous work
 - LAN traffic [Gusella 1990, Fowler et.al. 1991]
 - More recent work on individual aspects:
 - Role classification [Tan et.al. 2003],
 - Community of interest [Aiello et.al. 2005]
- Wide area Internet traffic measurements
 - First study: [Cáceres 1989]
 - ... when the size of Internet was $\sim 130,000$ hosts
 - ... about the size of a large enterprise network today

Our First Look

- Which applications account for most traffic?
- Who is talking to whom?
- What's going on inside application traffic?
 - Esp. ones that are heavily used but not well studied: Netware Core Protocol (NCP), Windows CIFS and RPC, etc.
- How often is the network overloaded?

For all above, compare internal vs. wide area

Trace Collection

- Where: Lawrence Berkeley National Lab (LBNL)
 - A research institute with a medium-sized enterprise network
- Caveat: one-enterprise study
 - "The traffic **might** look like ..."
- How: tapping links from subnets to the main routers
- Caveat: only traffic *between* subnets

	D0	D1	D2	D3	D4	
Date	Oct 4, 04	Dec 15, 04	Dec 16, 04	Jan 6, 05	Jan 7, 05	
Duration	10min	1 hour	1 hour	1 hour	1 hour	
Subnets	22	22	22	18	18	
Traced Hosts	2,531	2,102	2,088	1,561	1,558	
Packets	18M	65M	28M	22M	28M	
Snaplen	1500	68	68	1500	1500	

- Five data sets
- Over three months: Oct 2004 -- Jan 2005

	D0	D1	D2	D3	D4	
Date	Oct 4, 04	Dec 15, 04	Dec 16, 04	Jan 6, 05	Jan 7, 05	
Duration	10min	1 hour	1 hour	1 hour	1 hour	
Subnets	22	22	22	18	18	
Traced Hosts	2,531	2,102	2,088	1,561	1,558	
Packets	18M	65M	28M	22M	28M	
Snaplen	1500	68	68	1500	1500	

- Each trace covers a subnet
- Lasts ten minutes or one hour

	D0	D1	D2	D3	D4	
Date	Oct 4, 04	Dec 15, 04	Dec 16, 04	Jan 6, 05	Jan 7, 05	
Duration	10min	1 hour	1 hour	1 hour	1 hour	
Subnets	22	22	22	18	18	
Traced Hosts	2,531	2,102	2,088	1,561	1,558	
Packets	18M	65M	28M	22M	28M	
Snaplen	1500	68	68	1500	1500	

- Two sets of subnets
- 2,000 hosts traced per data set

	D0	D1	D2	D3	D4	
Date	Oct 4, 04	Dec 15, 04	Dec 16, 04	Jan 6, 05	Jan 7, 05	
Duration	10min	1 hour	1 hour	1 hour	1 hour	
Subnets	22	22	22	18	18	
Traced Hosts	2,531	2,102	2,088	1,561	1,558	
Packets	18M	65M	28M	22M	28M	
Snaplen	1500	68	68	1500	1500	

• Subnets are traced two at a time

– With four NIC's on the tracing machine

	D0	D1	D2	D3	D4	
Date	Oct 4, 04	Dec 15, 04	Dec 16, 04	Jan 6, 05	Jan 7, 05	
Duration	10min	1 hour	1 hour	1 hour	1 hour	
Subnets	22	22	22	18	18	
Traced Hosts	2,531	2,102	2,088	1,561	1,558	
Packets	18M	65M	28M	22M	28M	
Snaplen	1500	68	68	1500	1500	

• Packets with **full payloads** allow application-level analysis

Outline of This Talk

- Traffic breakdown
 - Which applications are dominant?
- Origins and locality
- Individual application characteristics

Network Layer: Is IP dominant?

- Yes, most packets (96-99%) are over IP
 Caveat: inter-subnet traffic only
- Aside from IP: ARP, IPX (broadcast), etc.

Transport Layer

- Protocols seen:
 - TCP, UDP, ICMP
 - *Multicast*: IGMP, PIM
 - *Encapsulation*: IP-SEC/ESP, GRE
 - IP protocol 224 (?)
- Is UDP used more frequently inside enterprise than over wide area Internet?

80% (or more) payloads are sent within the enterprise.

Yes, UDP is used more frequently inside the enterprise.

Breakdown by Flows

Bars for each data set add up to 100%

WAN \approx web + email

WAN Heavy-Weights

Summary of Traffic Breakdown

- Internal traffic (vs. wide area)
 - Higher volume (80% of overall traffic)
 - A richer set of applications
- Traffic heavy-weights
 - Internal: network file systems and backup
 - WAN: web and email

Outline

- Traffic breakdown
- Origins and locality
 - Fan-in/out distribution
- Individual application characteristics

Half of hosts have no wide-area fan-out (in one hour).

Internal fan-out has a fat tail.

Most hosts have fan-in of no more than 10.

Outline

- Traffic breakdown
- Origins and locality – Fan-in/out distribution
- Individual application characteristics

Example Questions

- Is there a big difference between *internal* and *wide area* HTTP traffic?
- How different are *DNS* and *WINS* (*netbios/ns*)?
- What does *Windows* traffic do?

Internal HTTP traffic

Automated clients vs. the rest:

	Requests			Bytes		
	D0	D3	D4	D0	D3	D4
Internal Scanners	20%	49%	19%	0.1%	0.9%	1%
Google Devices	37%	8%	5%	96%	69%	48%
Netware iFolder	1%	0.2%	10%	0.0%	0.0%	9%
All other clients	42%	43%	66%	4%	30%	41%

Automated clients dominate the traffic.

DNS vs. WINS

- Where do queries come from?
 - **DNS**: both local and remote; most queries come from two mail servers
 - WINS: local clients only; queries are more evenly distributed among clients
- Failure rate (excluding repeated queries)
 - **DNS**: 11-21%
 - WINS: 36-50% (!)

Windows Traffic

Port numbers don't tell much...

Windows Traffic

Application level analysis: Bro + binpac

Windows Traffic Breakdown

- Majority of CIFS/SMB traffic is for DCE/RPC services
 - Rather than file sharing
- Majority of RPC traffic
 - By request: user authentication (netlogon), security policy (lsarpc) and printing (spoolss)
 - By size: printing (spoolss)

Not Covered in This Talk ...

- Characteristics of more applications
 - Email
 - Network file systems: NFS and NCP
 - Backup
 - Further details about HTTP, DNS/WINS, and Windows traffic
- Network congestion

Conclusion

- A lot is happening inside enterprise
 - More packets sent internally than cross border
 - A number of applications seen only within the enterprise
- Caveats
 - One enterprise only
 - Inter-subnet traffic
 - Hour-long traces
 - Subnets not traced all at once
- Header traces released for download!
 - To come: traces with payloads (HTTP, DNS, ...)

To download traces:

http://www.icir.org/enterprise-tracing

(or search for "LBNL tracing")