Congestion Control for High-Bandwidth-Delay-Product Networks: XCP vs. HighSpeed TCP and QuickStart

Sally Floyd September 11, 2002 ICIR Wednesday Lunch

Outline:

- Description of the problem.
- Description of HighSpeed TCP and QuickStart.
- Description of XCP.
- Evaluation of differences (open discussion).

The Problem:

Congestion Control for High-Bandwidth-Delay-Product Networks

- Sustaining high congestion windows:
- A Standard TCP connection with:
 - 1500-byte packets;
 - a 100 ms round-trip time;
 - a steady-state throughput of 10 Gbps;

would require:

- an average congestion window of 83,333 segments;
- and at most one drop (or mark) every 5,000,000,000 packets (or equivalently, at most one drop every 1 2/3 hours).

This is not realistic.

The Problem, Part II:

- High throughput without parallel TCP connections?
- Starting up with high congestion windows?
- Making prompt use of newly-available bandwidth?
- Better ways of achieving high thoughput with low delay?

The Solution Space:

• At one end of the spectrum:

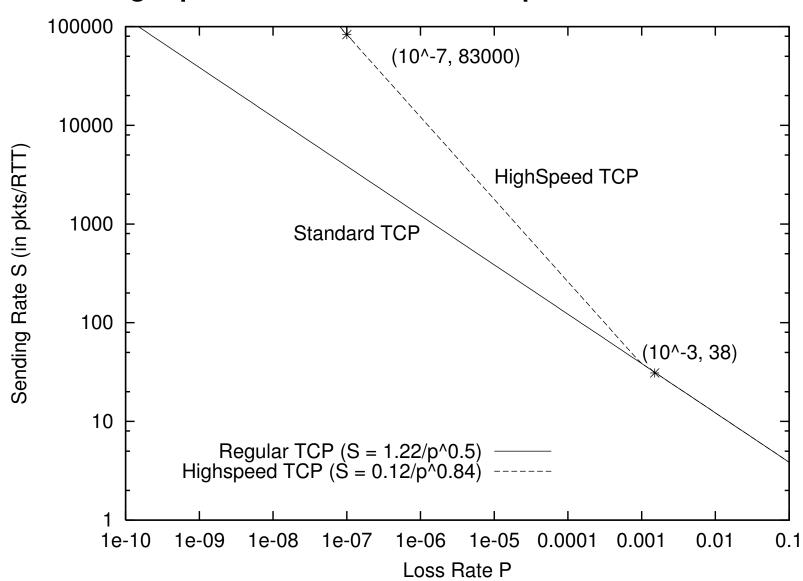
Simplier, more incremental, and more-easily-deployable changes to the current protocols:

- HighSpeed TCP (TCP with modified parameters);

- QuickStart (an IP option to allow high initial congestion windows.)

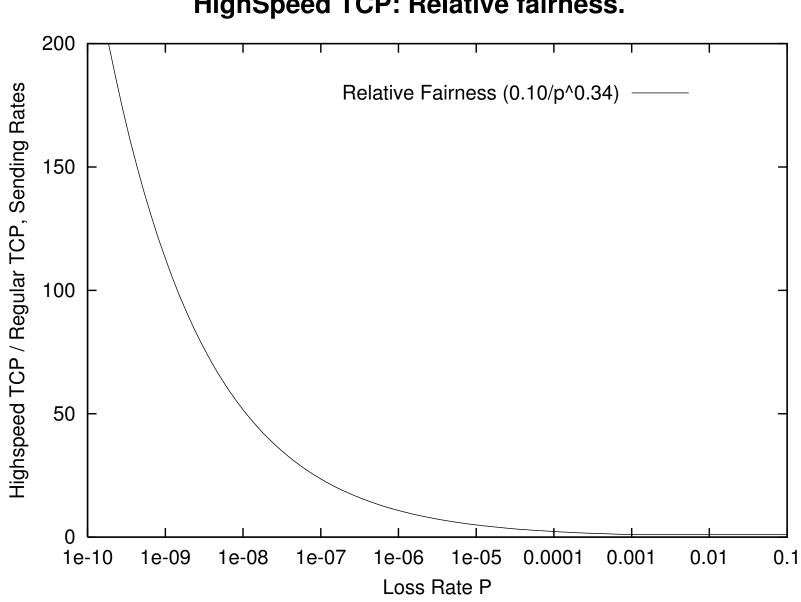
• At the other end of the spectrum:

More powerful changes with a new transport protocol, and more explicit feedback from the routers:


 $- \mathsf{XCP}$

• And other proposals along the simplicity/deployability/power spectrums.

What is HighSpeed TCP:


- Just like Standard TCP when cwnd is low.
- More aggressive than Standard TCP when cwnd is high.
 Uses a modified TCP response function.
- HighSpeed TCP can be thought of as behaving as an aggregate of N TCP connections at higher congestion windows.

Joint work with Sylvia Ratnasamy and Scott Shenker, additional contributions from Evandro de Souza, Deb Agarwal, Tom Dunigan.

HighSpeed TCP: the modified response function.

7

HighSpeed TCP: Relative fairness.

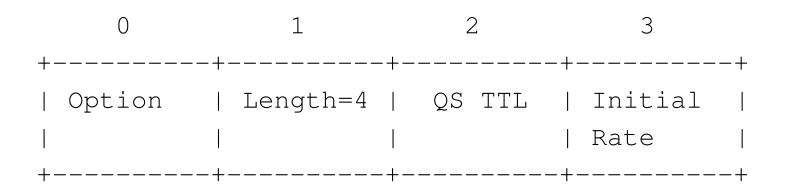
HighSpeed TCP: The Gory Details:

W	a(w)	b(w)
38	1	0.50
118	2	0.44
221	3	0.41
347	4	0.38
495	5	0.37
663	6	0.35
851	7	0.34
1058	8	0.33
1284	9	0.32
1529	10	0.31
1793	11	0.30
2076	12	0.29
2378	13	0.28

HighSpeed TCP requires Limited Slow-Start:

- Limited Slow-Start for TCP with Large Congestion Windows:
 - Agent/TCP set max_ssthresh_ N

- During the initial slow-start, increase the congestion window by at most N packets in one RTT.


```
For each arriving ACK in slow-start:
 If (cwnd <= max_ssthresh)
     cwnd += MSS;
 else
     K = 2 * cwnd/max_ssthresh ;
     cwnd += MSS/K ;</pre>
```

What is QuickStart?

- In an IP option in the SYN packet, the sender's desired sending rate:
 - Routers on the path decrement a TTL counter,
 - and decrease the allowed initial sending rate, if necessary.
- The receiver sends feedback to the sender in the SYN/ACK packet:
 - The sender knows if all routers on the path participated.
 - The sender has an RTT measurement.
 - The sender can set the initial congestion window.
 - The TCP sender continues with AIMD using normal methods.

From an initial proposal by Amit Jain

The Quick-Start Request Option for IPv4

- Explicit feedback from all of the routers along the path would be required.
- This option will only be approved by routers that are significantly underutilized.
- No per-flow state is kept at the router.

Questions:

- Would the benefits of Quick-Start be worth the added complexity?
 SYN and SYN/ACK packets would not take the fast path in routers.
- Is there a compelling need to add some form of congestion-related feedback from routers such as this (in addition to ECN)?
- Is there a compelling need for more fine-grained or more frequent feedback than Quick-Start?
- If so, are there other mechanisms that would be preferable to Quick-Start?

What is XCP?

Congestion Control for High Bandwidth-Delay Product Networks
 – by Dina Katabi, Mark Handley, and Charlie Rohrs.

• XCP (eXplicit Control Protocol) has the goals of stability, fair bandwidth allocation, high utilization, small standing queue size, and near-zero packet drops.

- Specific goals:
 - Minimizing oscillations.
 - High delay-bandwidth-product connections.
 - Minimizing the transfer delay of short flows.
 - Fairness between flows with different RTTs.
- No per-flow-state is maintained in routers.

XCP: the End Nodes

- The packet header contains:
 - current cwnd,
 - rtt estimate,
 - feedback

(Initialized to the desired increase in bytes in the cwnd, per ACK.)

- Routers modify the feedback field.
- At the sender, for each ACK:

cwnd < -max (cwnd + feedback, packet size)

XCP: the Routers

• Routers deal with efficiency and fairness separately.

• The efficiency controller computes the desired change in the number of arriving bytes in a control interval (i.e., an average RTT), based on the spare bandwidth and persistent queue.

• The fairness controller uses AIMD to allocate the increase or decrease to individual packets.

- This requires a few additions and three multiplications per packet.
- Policing agents can be used at the edge of the network for security.

The Relative Evaluation?

• HighSpeed TCP should be done whether or not XCP is done also.

• What about QuickStart?

Would QuickStart delay the deployment of something stronger like XCP? Is something stronger like XCP needed?

• If HighSpeed TCP and QuickStart were deployed, how pressing would it be to deploy something stronger?

Architectural sub-themes favoring incremental deployment:

- A goal of incremental deployment in the current Internet.
- Steps must go in the fundamantally correct, long-term direction, not be short-term hacks.
- Robustness in heterogeneous environments valued over efficiency of performance in well-defined environments.
- A preference for simple mechanisms, but a skepticism towards simple traffic and topology models.
- Learning from actual deployment is an invaluable step.
- The Internet will continue to be decentralized and fast-changing.

Architectural sub-themes favoring bolder actions?

• We can't make changes all that often, so why don't we just get it right?

• High-delay-bandwidth environments shouldn't require a delay-bandwidthproduct of buffering (or even a fraction of a delay-bandwidth-product of buffering) at the routers. References:

- HighSpeed TCP: http://www.icir.org/floyd/hstcp.html
- QuickStart: http://www.icir.org/floyd/papers/draft-amit-quick-start-01.txt

• XCP:

http://www.acm.org/sigcomm/sigcomm2002/papers/xcp.html