Internet Research Needs a Critical Perspective Towards Models

- Sally Floyd
- IMA Workshop, January 2004

"Computer System Performance Modeling and Durable Nonsense"

• "A disconcertingly large portion of the literature on modeling the performance of complex systems, such as computer networks, satisfies Rosanoff's definition of durable nonsense."

• "THE FIRST PRINCIPLE OF NONSENSE:

For every durable item of nonsense, there exists an irrelevant frame of reference in which the item is sensible."

"THE SECOND PRINCIPLE OF NONSENSE:

Rigorous argument from inapplicable assumptions produces the world's most durable nonsense."

• "THE THIRD PRINCIPLE OF NONSENSE:

The roots of most nonsense are found in the fact that people are more specialized than problems"

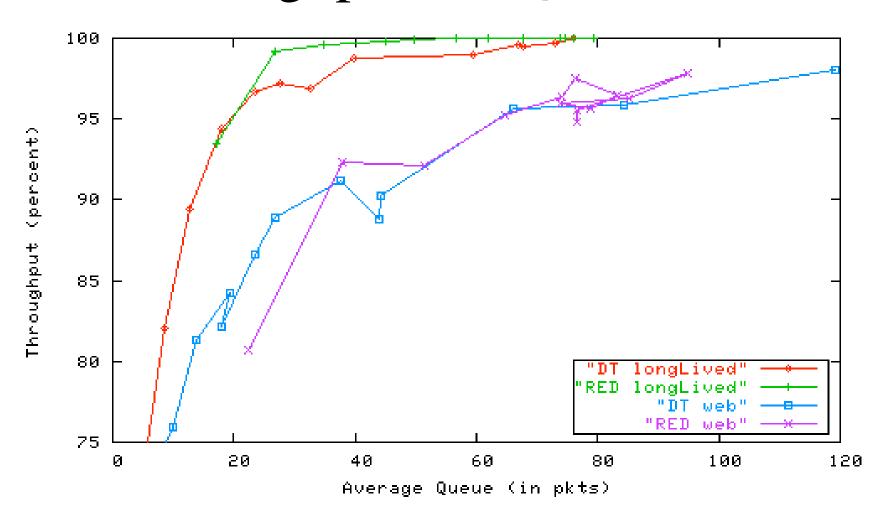
The quote is 25 years old!

• John Spragins, "Computer System Performance Modeling and Durable Nonsense", January 1979.

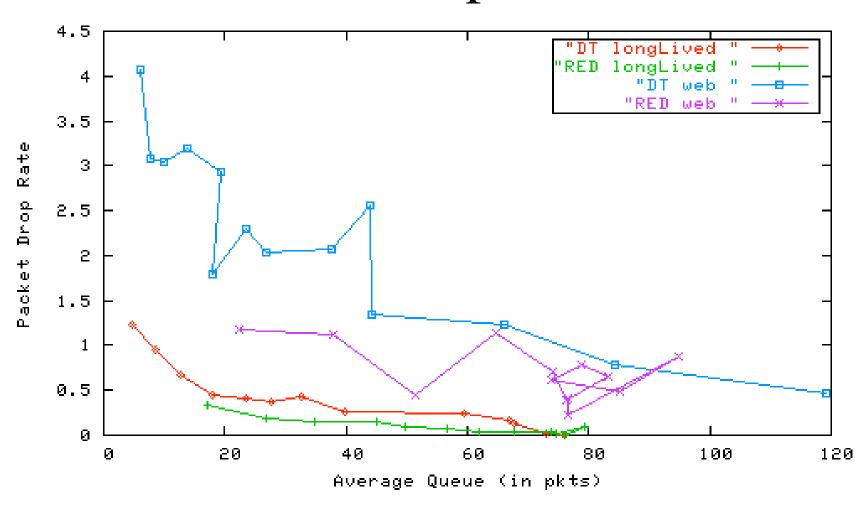
• R. A. Rosanoff, "A Survey of Modern Nonsense as Applied to Matrix Computations", April 1969.

The questions of this talk:

- Do we understand how our modeling assumptions affect our results?
- Do we know how our modeling assumptions affect the relevance of our results for the (current or future) Internet?
- What kind of tools do we need to help improve our understanding of models?

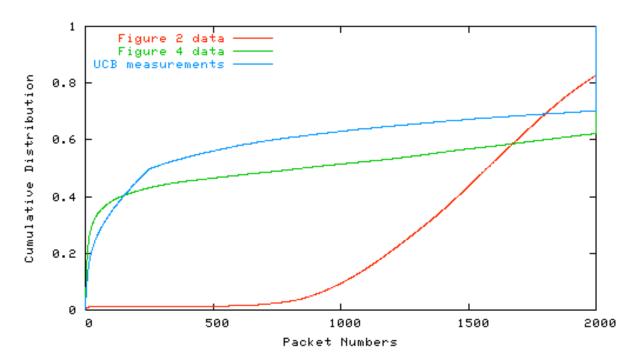

Assumptions:

- For each research topic, we want a model that is as simple as possible, but no simpler.
- Models underlie simulations, experiments, analysis, and pure thought experiments.
- For the fast-changing and heterogeneous Internet, determining the relevant model for a particular research question can be 95% of the work!

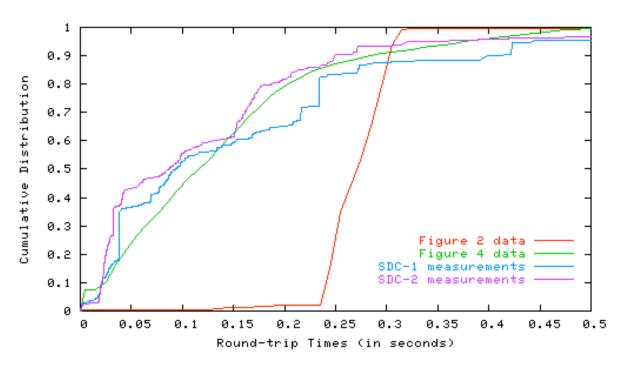

Topic: Active Queue Management Performance

- Research question: tradeoffs between throughput and delay.
- Model #1: Mostly one-way traffic, small range of RTTs, long-lived and small flows but few medium-sized flows.
 - Result: High throughput and low delay is possible.
- Model #2: Two-way traffic, wide range of RTTs, wide range of flow sizes.
 - Result Bursty traffic, throughput/delay tradeoffs.

Throughput vs. Queue Size


Packet Drop Rates

Topic: AQM Performance


- Question: What do we know about the actual characteristics of aggregate traffic at congested links in the Internet?
 - Distribution of flow sizes?
 - Extensively studied.
 - Distribution of round-trip times?
 - Some measurements available.

Distribution of Flow Sizes

• Distributions of packet numbers on the congested link over the second half of two simulations, with data measured on the Internet for comparison.

Distribution of RTTs:

• Distributions of packet round-trip times on the congested link of two simulations, with data measured on the Internet for comparison.

Topic: AQM Performance

- Characteristics of aggregate traffic at congested links that we don't understand very well:
 - Typical levels and patterns of congestion?
 - Congestion at access links, moderate levels of congestion?
 - Tools for measuring from TCP traces.
 - Reverse-path congestion?
 - Little is known.
 - How many flows are limited by end nodes or by other access links?
 - Some measurements.

Topic: Dynamics of HighSpeed TCP, Scalable TCP

- Research topic: convergence times (for new TCP flows competing against existing flows).
- Model #1: DropTail queues, global synchronization when packets are dropped.
- Model #2: DropTail queues, some synchronization, depending on traffic mix.
- Model #3: RED queues, some synchronization.
- Model #4: RED queues, no synchronization.
- Which model is the best fit for the current Internet? For the future Internet?

Topic: Transport Protocol Performance over Wireless Links

- Characteristics of wireless links that affect transport protocol performance:
 - Packet loss due to corruption.
 - Delay variation due to link-layer error recovery, handovers, and scheduling.
 - Asymmetric and/or variable bandwidth (e.g., satellite).
 - Shared bandwidth (e.g., WLANs).
 - Complex link-level buffering (e.g., cellular links).
 - Mobility.

Topic: Transport Protocol Performance over Wireless Links

- Tools: The NS simulator has tools for modeling wireless links; we (Andrei Gurtov) has added to them.
- There is an interplay between wireless link mechanisms and transport protocols, with both changing and adapting to the other.
 - E.g., corruption is often repaired at the link layer.
- It is challenging to try to characterize relevant models for the current and future Internet.

Topic: The Evolvability of the Internet Infrastructure

- Research topics:
 - How do we understand the current limits to evolvability of the Internet infrastructure?
 - Evolvability for applications, qualities of service, forms of group communications, transport protocols, etc.
 - What would be the impact of different architectural changes on the evolvability of the Internet infrastructure?
 - E.g., security vs. evolvability
 - Communication between layers vs. evolvability.
 - Fragility & complexity & robustness spirals.

Topic: The Evolvability of the Internet Infractructure

- What conceptual models do we use to help understand this?
- Standard models of complex systems have contributions, but also limitations:
 - Game theory;
 - Physics models;
 - Biological models of evolution;
 - Control theory and dynamical systems;

Topic: The Evolvability of the Internet Infrastructure

- Key aspects of conceptual models for this topic:
 - The layered IP architecture;
 - Feedback loops (e.g., TCP);
 - Change over time (e.g., overprovisioning);
 - Tussles: a decentralized system with many players (companies, ISPs, standards bodies, etc.);
 - Economic and political factors (e.g., pricing);
 - Chicken-and-egg deployment problems (e.g., ECN, IPv6, multicast, diffserv).

Conclusions: Questions

- How do our models affect our results?
- How do our models affect the relevance of our results to the current or future Internet?
- What kinds of tools do we need to improve our understanding of models?

Papers and talks:

- S. Floyd and V. Paxson, "Difficulties in Simulating the Internet", Transactions on Networking, August 2001.
- S. Floyd and E. Kohler, "Internet Research Needs Better Models", HotNets-I, October 2002.
- A. Gurtov and S. Floyd, "Modeling Wireless Links for Transport Protocols", November 2003. To appear in CCR.

Papers and talks, cont.

• S. Floyd, "Modeling the Internet as a Complex System", viewgraphs, End-to-End Research Group, January 2003.