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Topics:

� First, the intro about end-to-end congestion control.

� Active Queue Management.

� Explicit Congestion Notification.

� Controlling misbehaving or high-bandwidth flows.

� Controlling congestion from flash crowds or Denial-of-Service attacks.
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Why do we need end-to-end cong estion contr ol?

� As a tool for the application to better achieve its own goals:
E.g., minimizing loss and delay, maximizing throughput.

� To avoid congestion collapse.
– Congestion collapse occurs when the network is increasingly busy,

but little useful work is getting done.
– E.g., congested links could be busy sending packets that will be

dropped before reaching their destination.
– Tragedy of the commons is avoided in part because the “players” are

not individual users, but vendors of operating systems and other software
packages.

� Fairness (in the absence of per-flow scheduling).
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TCP cong estion contr ol:

� Packet drops as the indications of congestion (so far).

� TCP uses Additive Increase Multiplicative Decrease (AIMD) [Jacobson
1988].

– Halve congestion window after a loss event.
– Otherwise, increase congestion window each RTT by one packet.

� In heavy congestion, when a retransmitted packet is itself dropped, use
exponential backoff of the retransmit timer.

� Slow-start: start by doubling the congestion window every roundtrip time.
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The “stead y-state model” of TCP:

� The model: Fixed packet size
�

in bytes.
– Fixed roundtrip time � in seconds, no queue.
– A packet is dropped each time the window reaches � packets.
– TCP’s congestion window: � ,
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� The maximum sending rate in packets per roundtrip time: �
– The maximum sending rate in byes per second: � �  �
– The average sending rate � : � � ��� ���� � �  �

� The packet drop rate � : � � ��������! � "
� The average sending rate � in bytes/sec: � � # �%$'&�() # *
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Verifying the “stead y-state model” of TCP:

(1460-byte packets, 0.06 second roundtrip time)
Drop Rate (PerCent of Arriving Packets Dropped)
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Solid line: the simple equation characterizing TCP
Numbered lines: simulation results
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Topics:

,
, Active Queue Management.

,
,
,
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Goals of Active Queue Management:

- The primary goal: Controlling average queueing delay,
while still maintaining high link utilization.

Secondary goals:

- Improving fairness
(e.g., by reducing biases against bursty low-bandwidth flows).

- Reducing unnecessary packet drops.

- Reducing global synchronization
(i.e., for environments with small-scale statistical multiplexing).

- Accommodating transient congestion
(lasting less than a round-trip time).
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Non-goals of Active Queue Management:

. Preventing oscillations in the queue size, or in the average queue size.

. Eliminating buffer overflow.

. Providing max-min fairness between flows, or any other precise control
over fairness.
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RED queue management, roughl y:

for each packet arrival

calculate the new average queue size /1032
if 4 5�687:9 ; /1032 < 4 />=?7:9

calculate probability @BA
with probability @CA :

mark/drop the arriving packet

else if 4 />=?7:9 < /1032
drop the arriving packet

Variab les:
/1032 : average queue size

@BA : packet marking/dropping probability

Parameter s:
4 5�6D7E9 : minimum threshold for queue

4 /F= 7E9 : maximum threshold for queue
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The argument for using the *average* queue size in AQM:

G To be robust against transient bursts:

– When there is a transient burst, to drop just enough packets for end-
to-end congestion control to come into play.

– To avoid biases against bursty low-bandwidth flows.

– To avoid unnecessary packet drops from the transient burst of a TCP
connection slow-starting.
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Topics:

H
H
H Explicit Congestion Notification.

H
H
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I The old document:
A Proposal to add Explicit Congestion Notification (ECN) to IP,
Ramakrishnan, K.K., and Floyd, S., RFC 2481, Experimental, January
1999.

I The new document:
The Addition of Explicit Congestion Notification (ECN) to IP,
draft-ietf-tsvwg-ecn-03.txt
K. K. Ramakrishnan, Sally Floyd, and David Black

This has finished its second IESG Last Call, and should be considered
by the IESG on Thursday for Proposed Standard.
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The most recent chang e in the ECN draft:
defining the fourth codepoint in the IP header:

+-----+-----+

| ECN FIELD |

+-----+-----+

ECT CE The ECT and CE bits defined in RFC 2481.

0 0 Not-ECT

0 1 ECT(1) * THIS IS THE NEW CODEPOINT *

1 0 ECT(0)

1 1 CE

The ECN Field in the IP Header.

ECT: ECN-Capable Transport

CE: Congestion Experienced.
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The current deplo yment problem:
(broken) web servers that bloc k ECN-capab le TCP connections

J The problem is that some Internet hosts are not reachable from an ECN-
Capable TCP client.

J For more information:

– The ECN web page:
http://www.aciri.org/floyd/ecn.html

– The ECN-under-Linux Unofficial Vendor Support Page:
http://gtf.org/garzik/ecn/

– The TBIT (TCP Behavior Inference Tool) web page:
http://www.aciri.org/tbit/
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Topics:

K
K
K
K Controlling misbehaving or high-bandwidth flows.

K
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Questions about cong estion in the Internet:

L How often do routers have periods of unusually-high packet drop rates?

L Which routers? (E.g., access routers? last-mile routers? routers for
transoceanic links?)

L For periods of high packet drop rates, how often is it due to:
– A few flows not using end-to-end congestion control?
– Legitimate flash crowds?
– DOS attacks?
– Network problems (e.g., routing failures)?
– Diffuse general congestion?
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Misbeha ving or high-band width flo ws:

M Flow: defined by source/destination IP addresses and port numbers.
– Example: a single TCP connection.

M Problem: Preventing congestion collapse from congested links carrying
undelivered packets.

M The answer: Either end-to-end congestion control, or a guarantee that
packets that enter the network will be delivered to the receiver.

M The concrete incentive to users: Provide mechanisms in routers that, in
times of high congestion, police high-bandwidth flows contributing to that
congestion.
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Contr olling High-Band width Flows at the Cong ested Router

N Max-min fairness is an acceptable policy for flows.
– Per-flow scheduling gives max-min fairness.

A B C D A B C D

Bandwidth for flows A−D. Bandwidth for flows A−D.

Target flow
bandwidth T

Target flow
bandwidth T

N Implementation issues:
– detecting high-bandwidth flows;
– deciding the bandwidth limit for rate-limiting those flows.
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Contr olling High-Band width Flows: RED-PD
RED with Preferential Dropping

O Use the packet drop history at the router to detect high-bandwidth flows.

O The target bandwidth in pkts/sec from the TCP throughput equation isP QSR'TUVP W , for:
R: a configured round-trip time
p: the current packet drop rate

.O Monitored flows are rate-limited before the output queue.

O Monitored flows could be misbehaving flows (e.g., not using end-to-end
congestion control) or conformant flows with small round-trip times.

O Identifying which monitored flows are misbehaving would be a separate
step.

– Mahajan and Floyd, Controlling High-Bandwidth Flows at the Con-
gested Router, November, 2000.
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Architecture of RED-PD
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Topics:

X
X
X
X
X Controlling congestion from flash crowds or Denial-of-Service attacks.
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Aggregate-based Cong estion Contr ol:
Cong estion from Flash Crowds

Y Example: The Starr Report, September 11, 1998:
“Nothing in recent times has caused a spike quite like that: not the Olympics
(Nagano or Atlanta); not the beginning or end of the World Cup.”

Y Example: The Victoria’s Secret Internet fashion show, May 18, 2000.

Y Example: The Slashdot Effect:
– “The spontaneous high hit rate upon a web server due to an an-

nouncement on a high volume news web site.”

Y Problem: Protecting other traffic on congested links.
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Aggregate-based Cong estion Contr ol:
Denial of Service Attac ks

Z Example: Denial of Service attacks, February 7 and 8, 2000:

– Attacks on a large number of web sites across the U.S.

– “It’s completely clear that the entire Internet had higher packet loss
and far lower reachability for several hours.” - John Quarterman.

Z Problem: Limiting the damage to the legitimate traffic at the site.

Z Problem: Protecting the rest of the Internet.
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The Mechanisms of Aggregate-based Cong estion Contr ol:

[ Detect sustained congestion, as characterized by a persistent, high
packet drop rate.

[ Look at the packet drop history:
– See if some aggregate is heavily represented in the packet drop his-

tory.
– An aggregate is defined by destination address prefix, source address

prefix, etc.

[ If an aggregate is found:
– Preferentially drop packets from the aggregate before they are put in

the output queue, to rate-limit aggregate to some specified bandwidth limit.

– Mahajan, Bellovin, Floyd, Ioannidis, Paxson, and Shenker, Controlling
High Bandwidth Aggregates in the Network, February 2001.
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Traffic Aggregates are Diff erent from Flows:

\ Similarities between the mechanisms for controlling aggregates and
flows:

– Both use the packet drop history for identification.
– Both use rate-limiting before the output queue.

\ Differences:
– Per-flow scheduling does not control aggregates.
– There is no simple fairness goal for aggregates, as for flows.
– Control of aggregates is heavily affected by policy, customer relation-

ships, differentiated services, etc.
– A single flow could be in several different aggregates:

– E.g., destination 192.0.0.0/12, or source www.victoriasecret.com.
– Aggregate-based congestion control (ACC) should only be invoked for

extreme congestion.
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A Thought Experiment of Aggregate-based Cong estion Contr ol (ACC):

] Under normal conditions, with no flash crowd:
– N aggregates ^ _ - ^ ` share link with background traffic.
– Packet drop rate a (e.g., a b c�decgf ).

] During flash crowd h from aggregate ^ i , with no ACC at the router:
– The drop rate is aji (e.g., aCikb cldnm ).
– The throughput for ^po , for q rb h , is roughly

_s tvuxwyt of its value without

the flash crowd (e.g., 1/5-th of its old value).

] During flash crowd h , with ACC at the router:
– Assume that during the flash crowd, ^ i is restricted to at most half the

link bandwidth:
– ^ i ’s throughput is at worst halved, compared to the flash crowd with

no ACC.
– All other traffic has its throughput at worst halved, compared to times

with no flash crowd (and its packet drop rate at most quadrupled).
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Now consider a Denial of Service (DOS) Attac k:

z If an aggregate causing congestion is from a DOS attack, then the ag-
gregate will contain both malicious traffic and legitimate, “good” traffic.

z We can not necessarily trust the IP source addresses.

z “Pushing-back” some of the rate-limiting of the aggregate to neighbor-
ing, upstream routers:

– Limits the damage from the DoS attack, reducing wasted bandwidth
upstream.

– In some cases, allows rate-limiting to be concentrated more on the
malicious traffic, and less on the good traffic within the aggregate.

– Does not assume valid IP source addresses.
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Illustration of pushbac k.
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Questions about Aggregate-based Cong estion Contr ol?

{ ACC helps traffic not in the aggregate, but why should we restrict the
bandwidth given to a single aggregate in the first place?

{ When does ACC with Pushback help an attacker to deny service to
legitimate traffic within the aggregate?

{
{
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Extra viewgraphs:
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Pushbac k, Tracebac k, and Source Filtering:

| With Pushback, a router rate-limiting packets from aggregate } might
ask upstream routers to rate-limit that aggregate on the upstream link.

| Pushback is orthogonal to ”traceback”, which tries to trace back an at-
tack to the source.

– Traceback allows legal steps to be taken against the attacker.
– Traceback by itself does not protect the other traffic in the network.

| Pushback is orthogonal to source filtering, which limits the ability to spoof
IP source addresses.

– Source filtering is important in any case.
– Pushback can be useful even when source addresses can be trusted.
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The “stead y-state model” of TCP: an impr oved version.

~ � �� ~ ~ ���� � ��� � ~ ~ � ��� � �� ��� �S� � �8� � � � (1)

~
: sending rate in bytes/sec

� : packet size in bytes�
: packet drop rate

– J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling TCP Through-
put: A Simple Model and its Empirical Validation Proceedings of SIG-
COMM’98
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Section 5.3 on Fragmentation:

� “All ECN-capable packets SHOULD have the DF (Don’t Fragment) bit
set.”

� “Reassembly of a fragmented packet MUST NOT lose indications of
congestion.”
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The ECN field with Diff erentiated Services:

� “The above discussion of when CE may be set instead of dropping a
packet applies by default to all Differentiated Services Per-Hop Behaviors
(PHBs) [RFC 2475].”

� “Specifications for PHBs MAY provide more specifics on how a compliant
implementation is to choose between setting CE and dropping a packet,
but this is NOT REQUIRED.”

� “A router MUST NOT set CE instead of dropping a packet when the drop
that would occur is caused by reasons other than congestion or the desire
to indicate incipient congestion to end nodes.”

- In Section 5.
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