
Towards Automated “Zero Day”
Application Characterization:
(Can we do better?)

Kostas G. Anagnostakis
I2R, Singapore
http://s3g.i2r.a-star.edu.sg/

Joint work with:
Asia Slowinska, VU Amsterdam, NL
Kirk Jon Khu, I2R, Singapore
Jonathan M. Smith, UPenn, USA

22

Problem Statement & Goals

• Pressing need for application characterization
- Maintain performance, control bandwidth usage
- Protect against misbehaving or undesirable applications
- Support networking research, or simply satisfy curiosity

• Application characterization becoming complex
- New applications, application versions, new protocols
- Obfuscation techniques: Skype, Joost, eMule, BitTorrent, etc.

• Need for automation
- Tools to (semi-)automate characterization
- Capability to rapidly develop+test characterization techniques

• Our take on the problem
– Build upon techniques from zero-day attack sig generation
– Strategic game between obscuring and revealing party

33

CUB4: Architecture Overview

44

Application content fingerprinting
• Inspired by zero-day worm fingerprinting work

– [Akritidis2005,Earlybird2004, Autograph2005]
– Use of rabin fingerprints over sliding window,

with careful max-hit/max-size scoring threshold

A R B I T R A R Y S E N B E L U T E K T E N C EA R B I T R A R Y S E N B E L U T E K T E N C E

A R B I T R A R Y S E N B E L U T E K T E N C EA R A N D O M B E L U T E K S T R I N G A B C D
Fingerprint = 11001001

Fingerprint = 11001001

55

Signature Validation approach

• Main idea: test candidate signatures against known traffic of other apps
• In a nutshell:

– Lots of data: for FPs in the order of 10^-6, need >> 10^6 samples (1-100 GB)
– Assume 1-100 signatures to test, need search time < 1 second
– Approach: record packet trace, maintain carefully designed index for fast lookups

• Trade-off: need around 6x space to perform efficient lookups

Search time: 88% < 0.01 sec, 99% < 0.1sec, 99.99% < 1sec,
known “bad” strings up to 2 seconds

Comparison: testing of PPLive signatures against 100GB
trace took 5 hours
Space: for N-byte elements, 28N bitmap + 6x trace size

66

Example signatures: PPLive

77

Application signature generation: can we go live?

“As we know, there are known knowns. There are things we know we know.

We also know there are known unknowns. That is to say we know there are
some things we do not know.

But there are also unknown unknowns, the ones we don't know we don't know.”

Donald Rumsfeld. Feb. 12, 2002,
Department of Defense news briefing

•Reformulating the problem:
–So far, feeding our tool with “clean” offline traces
–Can we apply the same method to “live” traffic?

88

Application signature generation: can we go live?

• Approach:
– Split traces per host, and by time
– Determine joint fingerprints: flows of same host/ among hosts
– Compute likely set of applications based on the above data

• High startup cost:
– If new applications pop up one at a time, we may have a chance
– If we’re looking at a link with 30-40% unclassified traffic from >20

applications, problem is somewhat more challenging

Host 1

Host 2

App X v2?New apps X,Y? New app Z?

99

Beyond content: packet size

11:02:39.249981 IP 4.71.174.175.4166 > 58.185.58.82.49335: UDP, length 941
11:02:39.256917 IP 4.71.174.189.4166 > 58.185.58.82.49335: UDP, length 940
11:02:40.017697 IP 4.71.174.150.4166 > 58.185.58.82.49335: UDP, length 11
11:02:40.026990 IP 4.71.174.175.4166 > 58.185.58.82.49335: UDP, length 11
11:02:40.034641 IP 4.71.174.158.4166 > 58.185.58.82.49335: UDP, length 11
11:02:40.047234 IP 4.71.174.175.4166 > 58.185.58.82.49335: UDP, length 1057
11:02:40.291110 IP 4.71.174.158.4166 > 58.185.58.82.49335: UDP, length 1057
11:02:40.297065 IP 4.71.174.175.4166 > 58.185.58.82.49335: UDP, length 1058
11:02:40.312826 IP 4.71.174.150.4166 > 58.185.58.82.49335: UDP, length 1058
11:02:40.322903 IP 4.71.174.158.4166 > 58.185.58.82.49335: UDP, length 1058

06:48:13.610291 IP 131.111.218.93.64692 > 221.134.2.109.4662: S 687196497:687196497(0) >

06:48:14.536485 IP 221.134.2.109.4662 > 131.111.218.93.64692: S 1994439214:1994439214(0) >

06:48:14.539900 IP 131.111.218.93.64692 > 221.134.2.109.4662: P 1:121(120)

06:48:15.896222 IP 221.134.2.109.4662 > 131.111.218.93.64692: P 1:107(106)

06:48:16.117231 IP 131.111.218.93.64692 > 221.134.2.109.4662: P 121:230(109)

06:48:16.716196 IP 221.134.2.109.4662 > 131.111.218.93.64692: P 107:215(108)

06:48:16.776250 IP 131.111.218.93.64692 > 221.134.2.109.4662: P 230:271(41)

06:48:17.256531 IP 221.134.2.109.4662 > 131.111.218.93.64692: P 215:336(121)

06:48:17.339697 IP 131.111.218.93.64692 > 221.134.2.109.4662: P 271:293(22)

06:48:18.006485 IP 221.134.2.109.4662 > 131.111.218.93.64692: P 336:342(6)

06:48:18.038964 IP 131.111.218.93.64692 > 221.134.2.109.4662: P 293:339(46)

06:48:18.527099 IP 221.134.2.109.4662 > 131.111.218.93.64692: . 342:1802(1460)

06:48:18.596903 IP 221.134.2.109.4662 > 131.111.218.93.64692: P 1802:2942(1140)

Joost

Obfuscated

eMule

1010

Behavioral analysis: packet size distributions

• Experiment: Packet size histogram over sliding window
– Various goodness-of-fit tests
– Fingerprinted Joost

– Other heuristics with more
structure are more accurate

Packet length

P
ro

b
a
b
ili

ty

Obtained signatures.

We can see a few
representative probability

density functions
describing packet length.

1111

Increasing accuracy through taint propagation
• Basic Idea:

– If a flow <src, srcP, dstIP, dstP> previously identified to belong to app X,
then any flow <*,*,dstIP,dstP> is very likely to belong to app X

• Widely applicable:
– Any application that operates over TCP and advertises “server”-side

ports is relevant
– Performance gains likely to be higher at aggregation points
– Reminiscent of blacklisting, but this is not IP based: port # is the key!

• Implications for heuristic design:
– Tainting can compensate for low detection rates as long as the

<dstIP,dstPort> pair handles multiple connections
– But need to be careful with false positive amplification
– On the other hand, we might tune down sensitivity to avoid FPs, as

tainting will compensate for that in terms of detection rate

1212

Some ongoing work
• Incorporating structural features in packet size heuristics

– Much richer than simple packet size distribution analysis
– Good preliminary results for obfuscated eMule and encrypted BitTorrent

• Instrumenting endpoint software
– Current focus: use of Argos processor emulator, may need more lightweight
– Looking for constants in memory that make it into packets
– One step closer to fully automated fingerprinting
– This would include cases where an application is updated, etc.

• Detecting deep architectural properties of applications
– Adaptive applications through FEC-blowup or codec-switching
– P2P through their incentive mechanisms
– Much more labor-intensive to fingerprint, but also harder to circumvent

• Active fingerprinting of likely “server” endpoints
– Even sending junk sometimes results in well-formed responses

1313

Going adversarial
• Two party model:

– Obscuring party (app dev) vs. revealing party: (researchers, DPI vendors)

• This is already happening -- strategies we have seen:
– Avoid well known ports (too many to list)
– Encrypt/obfuscate content (Skype, BitTorrent, eMule)
– Anti-debugging techniques (Skype)

• Other strategies we’re likely to see:
– Content signatures ! embedding of other application signatures
– Packet size heuristics ! proper padding
– Binary instrumentation ! more anti-debugging/anti-VM/anti-…
– Active fingerprinting ! only responding to conn requests from “trusted” sources
– Connection graph/volume analysis ! more cover traffic, dummy connections

– … at the limit, there’s stego and Tor-like approaches

… but for the time being, security through obscurity might have value (?)

Towards Automated “Zero Day”
Application Characterization:
(Can we do better?)

Kostas G. Anagnostakis
I2R, Singapore
http://s3g.i2r.a-star.edu.sg/

Joint work with:
Asia Slowinska, VU Amsterdam, NL
Kirk Jon Khu, I2R, Singapore
Jonathan M. Smith, UPenn, USA

