Datagram Congestion Control
Protocol (DCCP): Overview

S B &

Eddie Kohler
International Computer Science Institute

IETF 57 APPAREA Meeting
July 14, 2003

* A congestion-controlled, unreliable flow of datagrams

 “UDP plus congestion control”

Target applications

* Long-lived flows that prefer timeliness to reliability

Streaming media, Internet telephony, on-line games, ...

« TCP inappropriate, UDP often inappropriate
TCP can introduce arbitrary retransmission delay

UDP not congestion controlled, apps must implement CC

* Apps want
Buffering control: don’t deliver old data
Different congestion control mechanisms (TCP vs. TFRC)
Middlebox traversal

Low per-packet byte overhead

Congestion control implementation

Experience shows CC is difficult to get right
Explicit connection setup and teardown (firewall-friendly)

Integrated acknowledgements, reliable feature negotiation

Access to ECN
ECN capable flows must be congestion controlled
UDP APIs would find this difficult to enforce

Partial checksums

Deliver corrupt data rather than drop it
DoS protection

Different congestion control mechanisms —

TCP-like vs. TFRC congestion control

« TCP-like: quickly get available B/W
Cost: sawtooth rate—halve rate on single congestion event
May be more appropriate for on-line games
More bandwidth means more precise location information; Ul cost
of whipsawing rates not so bad
« TFRC [RFC 3448]: respond gradually to congestion
Single congestion event does not halve rate
Cost: respond gradually to available B/W as well
May be more appropriate for telephony, streaming media

Ul cost of whipsawing rates catastrophic

« DCCP will provide access to other CC mechanisms as they are
standardized (TFRC-PS, ...)

DCCP’s problems for applications

* App loses control over exactly when packets may be sent
Inherent in congestion control

APIls should allow late decision of what to send

« Some overhead over UDP
At minimum, 4 bytes per packet

Analysis of RTP shows minimum is often achievable

* Not yet deployed (duh)

0.

4,

5.

1.

DCCP A
CLOSED
App opens
REQUEST —— DCCP-Request —>
OPEN <— DCCP-Response <—
OPEN — DCCP-Ack —>
Initial feature negotiation (CC mechanism,...)
OPEN < DCCP-Ack <
Data transfer
OPEN <— DCCP-Data, -Ack, <—
-DataAck
App closes
CLOSING —— DCCP-Close —>
TIME-WAIT <— DCCP-Reset <—

DCCP B
LISTEN
RESPOND
RESPOND
OPEN
OPEN
OPEN

CLOSED
CLOSED

A half-connection is data flowing in one direction, plus the
corresponding acknowledgements
A DCCP connection contains two half-connections

A —— B data plus B——= A acks

B —— A data plus A —— B acks

Can piggyback acks on data (DCCP-DataAck packet type)

Conceptually separate
May use different congestion control mechanisms

Will this be useful for apps?

Quiescence

Fewer acknowledgements for inactive half-connections

0 1 2 3

01234567890123456789012345678901
totototototototototototototot—totototot—tototot—t—t-tot-t—t-t-+-+

| Source Port | Dest Port |
tototototototatatototoatotototototototototatotatatatatatatattt-+
| Type | CCval | Sequence Number |
totmtott
| Data Offset | # NDP | Cslen | Checksum |
tototototototatatototoatotototototototototototatatatatatatattt-+
| Reserved | Acknowledgement Number |

tototototototototototototototototototot—tototot—t—totot-t—t-t-+-+

* Sequence Number measured in packets, not bytes

Changes on every packet, even pure acks

* Gray portion not on all packet types
Different headers for different packet types (unlike TCP)

Reduce byte overhead for unidirectional connections

0 1 2 3

01234567890123456789012345678901
—t—totototot ot ottt ot ototototot ot ottt ottt t—t -ttt -+-+

Source Port | Dest Port |
A M St S S A ot

+
|
+
| Type | CCval | Sequence Number |
LS S S TS TS TS S ST S S ST S NS
|
+
|
+

Data Offset | # NDP | Cslen | Checksum |
S S S R ST S SRS S RS S S S S RS

Reserved | Acknowledgement Number |
-+

* Cslen supports partial checksums
Errors in header result in packet drop

Errors in payload, outside Cslen coverage, ignored

» Data Offset (header size in 32-bit words) leaves lots of space for
options

10

Reliable feature negotiation

* Three options: Change, Prefer, Confirm
Change: “Please use this value for a feature”
Prefer: “l would rather use one of these values”
Confirm: “OK, | am using this value”

 Examples: agreeing on B’s congestion control mechanism

DCCP A DCCPB
CHANGING —— Change(CC,2) —> KNOWN

KNOWN <— Confirm(CC,2) <— KNOWN
CHANGING ——= Change(CC,2) ——= CONFIRMING
CHANGING <— Prefer(CC,3,1) <— CONFIRMING
CHANGING —— Change(CC,3) —> KNOWN

KNOWN <— Confirm(CC,3) <— KNOWN

11

* Run-length encoded history of data packets received

Cumulative ack not appropriate for an unreliable protocol
Steroidal SACK

tommm - tommm - S S S S States (SS)

|1001001??| Length |SSLLLLLL|SSLLLLLL|SSLLLLLL| ... 0 received non-marked
LCE T LT LCE LT LCEEEE T LCEEEE T LCEEE R LCEEE R R 1 received ECN marked
Type=37/38 \ Vector ... 3 not yet received

Up to 16192 data packets acknowledged per option

Includes ECN nonce

 Want APl to provide Ack Vector information to app

12

» Ack Vector says whether a packet’s header was processed

Not whether packet’s data will be delivered to application

Supports drop-from-head receive buffers, ...

» Data Dropped says whether a packet’s data was delivered

And if not, why not

Enables richer [non-]congestion response functions

e Fomm———- e e e Fomm -

|00100111| Length

Fome - it s Fomm -

01234567
Fet ettt —F-+
|0] Run Length |
S ST R S

Normal Block

Drop States
0 protocol constraints
1 receive buffer

| Block | Block | Block
+ + +
\ Vector
012345617
totototatatt-t-t
or |1|Dr St|Run Len|

tototototot-t-t-+

Drop Block

13

2 corrupted
3 delivered corrupt
4 app not listening

APIs

« Amenable to a more-or-less conventional socket API

Socket options induce feature negotiations, report CC state

* High-performance send API

Goals: high throughput, late decision on what to send, ack
information

Currently investigating ring buffer model (Junwen Lai)
App allocates ring buffer from kernel, writes packets into buffer

Kernel reads from buffer asynchronously, writes information about
sent and acknowledged packets

App can remove old packets from ring buffer if it gets too far ahead

Receive analogue?

14

Conclusion

* http://www.icir.org/kohler/dccp/
draft-ietf-dccp-problem-01.txt: Problem Statement
draft-ietf-dccp-spec-04.txt: main specification
draft-ietf-dccp-ccid{2,3}-03.txt: CCID specs

* Design review Wednesday

* Appreciate comments from app community

15

