A Congestion-Controlled Unreliable Datagram API

Junwen Lai*

*Princeton University

Eddie Kohlerf

fUniversity of California, Los Angeles

lai@cs.princeton.edu, kohler@cs.ucla.edu

We've built an efficient, flexible kernel API for sending un-
reliable datagrams with DCCP [2], a congestion-controlled
protocol. Our API achieves high throughput, kernel-enforced
congestion control, and late data choice, where the applica-
tion commits to sending a particular piece of data very late in
the sending process. An application using our API can achieve
lower-latency transmissions than TCP, since DCCP doesn't
retransmit or delay data to enforce ordering constraints, while
remaining friendly to the network. Congestion-unaware UDP
senders can cause indiscriminate high loss on a slow link,
where packets are dropped with the same probability no mat-
ter how “important” they are. A DCCP sender using our API
can get a much higher fraction of important datagrams, such
as MPEG I-frames, through the network, while staying net-
work-friendly.

Applications like streaming and interactive media and on-
line games prefer timeliness to reliability: information has a
useful lifetime, after which it’s better to send newer informa-
tion instead. These applications prefer not to use TCD, since
the retransmissions needed for reliable bytestream semantics
can delay data past its useful lifetime. Unfortunately for the
network, the alternative, UDDP, is not congestion-controlled
except by the application, and TCP-friendly congestion con-
trol is tough to implement. In the worst case, congestion-un-
aware UDP senders could cause congestion collapse.

The Datagram Congestion Control Protocol, or DCCP, isa
new protocol that combines TCP-friendly congestion control
with unreliable datagram semantics. DCCP presents the user
with a clean, UDP-like datagram abstraction. But a sendmsg()-
like API wouldn’t work well for DCCP, where the kernel might
delay sending packets due to congestion. What’s needed is
a lightweight API that combines kernel-enforced congestion
control, high throughput (suggesting a transmission buffer to
smooth out burstiness), and late data choice (suggesting ap-
plication control over the buffer).

Our solution is a packet ring data structure, used for send
control and synchronization, stored in memory shared be-
tween the application and the kernel. The packet ring, like
memory-mapped streams [1], resembles the DMA rings used
for kernel communication with network devices. The appli-
cation enqueues packets for transmission by putting them on
the end of the packet ring, without bothering the kernel. When
the kernel gets control, it can send as many packets as have
been enqueued. Keeping several packets on the queue is good

Based in part upon work done at the ICSI Center for Internet Research and
supported by the National Science Foundation under Grant No. 0205519.

for throughput; it smooths out bumps in transmission rates,
and allows packets to be rate-paced out even while other ap-
plications are running. Unlike memory-mapped streams, ap-
plications using packet rings can modify enqueued packets up
until the kernel sends them, thus achieving late data choice.
See Figure 1.

The shared-memory zero-copy design improves send per-
formance by reducing data copies. Because it reduces con-
trol transfers, the packet ring also sends zero-length packets
through the kernel faster than conventional UDP. And on a
congested network, some packets sent using congestion-con-
trolled DCCP can arrive at the receiver faster than packets
sent using constant-bit-rate UDP, and an MPEG-like applica-
tion using our DCCP API can deliver more than twice as many
important “I-frames” than a UDP sender in the same network
conditions. See Figure 2.

devi kern.i umod.i user_i

y y v ,
R Esn ¢ [5[e6 [7[s]9 [w]u] [N

Figure 1—A packet ring. The “X_i” pointers are packet ring indices. The user
updates umod-i and user-i, while the kernel updates kern_i and dev_i and
checks all four for correctness. The kernel has sent packets o—1, and 2—3 are
ready to be sent. The user previously enqueued packets 4—6 for sending, but is
now modifying those packets; they won’t be sent untilumod_i moves forward.

CBR uDP TCP DCCP

rate Loss Imp’t | Loss Imp’t | Loss Imp't
150 KB/s || 62% 10.1% | 1.2% 10.0% | 0.7% 23.8%
75 KB/s 37% 10.1% | 0.5% 10.0% | 0.5% 12.8%
60 KB/s 11% 10.1% | 0.6% 10.0% | 0.6% 10.1%

Figure 2—A CBR application using UDP, TCP, and DCCP over a link limited
to 50 KB/s with a token bucket filter. There is some TCP cross traffic. “Loss”
measures end-to-end loss rate. “Imp’t” is the fraction of packets delivered
that were “important”: 10% of packets sent were important, but the applica-
tion would prefer that unimportant packets be dropped when the CBR rate
is higher than the network can sustain. DCCP combines a low loss rate with
good delivery rate for important packets.

REFERENCES

[1] R. Govindan and D. P. Anderson. Scheduling and IPC
mechanisms for continuous media. In Proc. 13th ACM
Symposium on Operating Systems Principles (SOSP), pages
68—80, Oct. 1991.

[2] E.Kohler, M. Handley, S. Floyd, and J. Padhye. Datagram
Congestion Control Protocol (DCCP). Internet-Draft
draft-ietf-dccp-spec-os5, Internet Engineering Task Force, Oct.
2003. Work in progress.

