

IPv6 Technology Gaps in Comparison to the Aeronautical Telecommunications Network

Wesley M. Eddy
Verizon Federal Network Systems
weddy@grc.nasa.gov

Presentation Outline

- Assume familiarity with TCP/IP
- Introduce ATN
- Compare ATN to IPv6
 - Mobility, Policy Routing, Multihoming, Security
- **Identify work to be done on IPv6!**
 - Both research and standards development

Meet ATN

- Complete stack designed specifically for niche of aeronautical communications
 - Air Traffic Services (FAA/Eurocontrol/etc)
 - Airline Operations
 - Passenger Services
- Augment/Supplement/Subsume/Replace several systems
 - ACARS / FANS
 - ADS / CPDLC / VHF Voice

Based on ISO OSI (!)

- Complete 7-layer stack
- Key Modifications from OSI:
 - Security framework
 - Compression for air-ground links
 - Routing protocol additions for policy routing and mobility

ATN Subnetworks

- Ground-Ground: X.25, Ethernet, SONET, usual suspects
- Air-Ground: VHF Data Link (VDL), Mode S, HF, Gatelink
- Avionics: LANs, e.g. Ethernet, FDDI, AFDX (Deterministic Ethernet)
- Routing by domains and inter/intradomain routing protocols
- Just like TCP/IP ...

ATN Naming/Addressing

- Hierarchical scheme used for:
 - Network Layer Entities
 - Network/Transport/Session Users/Apps
 - Routing/Administrative Domains
 - App/Presentation Context
 - Managed Objects
 - Everything Else
- All in X.500 ... NOT AT ALL LIKE TCP/IP

TCP/IP Naming/Addressing

- **Mess** of:
 - DNS
 - IP addresses
 - IANA protocol numbers & port assignments
 - ASNs
 - SIP, email, URI, etc
 - `/etc/{hosts,protocols,services}`

QoS

- ATN defines 14 app categories with distinct transmission priorities
 - Used inside CLNP headers
 - Range from distress calls to passenger entertainment
- **Very similar to Diffserv**
 - Just more tightly defined

Security

- ATN has application and routing protocol security functions based on:
 - Elliptic Curve Diffie-Hellman (ECDH)
 - HMAC (keyed hash)
 - X.509
- IPsec and TLS provide these (and more)
 - Better algorithm agility
 - Eggs not all in one metaphorical basket
- Neither suite has jamming or identity protection countermeasures

Yet, IPv6 is **Needed**

- GAO / OMB advice
- DoD interoperability
- Cheaper total cost
 - Protocol maintenance
 - Personnel Training
 - Equipment manufacturing

IPv6 Policy Routing

- For Air-Ground links, desire to use cheap links first, never let passenger traffic onto ATC links, etc
- ATN integrates policy exchange along with the IDRP routing protocol messages between mobile router and access router
- There are no existing IPv6 protocol mechanisms for policy exchange
 - IETF monami6 efforts should help, although this will be mobile element to home agent

IPv6 vs ATN Mobility

- Mobile IPv6 (MIPv6) and NEMO are **tunnel-based**
- ATN mobility is **routing protocol-based**
 - Achieved through IDRPs routing protocol
 - Scope is limited to speed convergence (doesn't influence IS-IS for example)
 - Very similar to using OSPF for MANET in IP world

Mobility Differences

- The two mobility approaches are **fundamentally different**
 - Route optimization is end-node job in MIPv6
 - Not supported at all (yet) in NEMO (!)
 - Tunnel overhead in MIPv6 / NEMO
 - Both bit-bloat and latency
 - QoS marks – hidden in tunnel or inconsistent meaning
- ATN's approach avoids all such issues

Multihoming

- IPv6:
 - None
 - Addressing is not Provider Independent
 - IETF shim6 efforts will produce site-based solution
- In ATN, the AS structure is entirely different, so this is no problem for the routing protocol

Promising R & D Topics

- IPv6 policy exchange
 - Can monami6's solution do all that ATN can?
- IPv6 Network Mobility
 - Can adequate NEMO route optimization techniques be found?
- IPv6 multihoming
 - Is the shim6 solution preferable to Provider Independent addressing?
- More ... talk with or email me