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ABSTRACT

In this note we explore the various causes of micro-burstifgCP

connections and also the behavior of several mitigatioashhve
been suggested in the literature along with extensions welale

herein. This note methodically sketches the behavior ofrtiiga-

tions and presents the tradeoffs of various schemes as aalata
in the ongoing discussion about preventing bursting inspant

protocols.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.6 Computer-Communication Networks]: Internetwork-

ing

General Terms
Algorithms, Performance

Keywords
Bursting, TCP

1. INTRODUCTION

In this note we investigate the Transmission Control Praltec
(TCP) [20] bursting behavidr. TCP’s bursting behavior can be
problematic in several ways (as sketched in more detailem#xt
section). First, bursting can stress queues in the netwaoitdead
to packet loss, which can in turn negatively impact both the-c
nection doing the bursting and traffic sharing the stresseter.
Second, bursting can cause scaling on short timescaleslbasve
increase queuing delays in routers. Over the years, sexeral
searchers have suggested mitigations to TCP’s burstivgssn-
vestigate and show the behavior of both these previouslygsed
mitigations and newly extended techniques.

TCP naturally sends two distinct kinds of segment burststime
network. First, each TCP acknowledgment (ACK) covering new
data that arrives at the TCP sender slides a sending winddw an
liberates a certain number of segments which are transhattthe
line-rate of the connected network. We will call bursts ajreents
sent in response to a single incoming A@kcro-bursts. TCP’s
congestion control algorithms cause the second kind oftingrs

*ACM Computer Communication Review, April 2005.

This note is cased in terms of TCP, but should naturally apply
transport protocols that use similar window-based comgyesbn-
trol algorithms (e.g., SCTP [21], DCCP [15] using CCID2 [9])
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behavior. While using the slow start algorithm, a TCP setlider
creases the amount of data transmitted into the network agtarf

of 1.5-2 during each subsequent round-trip time (RTT) (thece
factor depends on whether the receiver generates delayé&sds AC
[7, 4], whether the sender uses byte counting [2], and thearkt
dynamics of the path the ACKs traverse). An additional cafse
macro-bursting is ACK compression [23]. This phenomenon oc
curs when ACK packets get “bunched up” behind larger dat&-pac
ets in router queues and end up arriving at the end host mupiddyra
than they were transmitted by the peer. This “bunching upi ca
cause bursting. We term the bursts caused by slow start akd AC
compressiommacro-bursts since they occur over longer time peri-
ods than the micro-bursts sketched above.

TCP’s macro-burstiness has been the topic of several papers
the literature. [16] analyzes the impact of TCP’s macrosboess
on queueing requirements. [2] proposes an increase in theoma
burstiness of TCP in an attempt to mitigate some of the perfor
mance hit caused by delayed ACKs during slow start. [17] psep
using rate-based pacing during slow start to reduce thesiuguve-
quirement TCP’s macro-bursts place on routers in a netwatt. p
Additionally, [1] investigates a general pacing schemelioP.

We do not consider macro-bursts further here. Rather, we out
line the behavior of schemes to reduce micro-burstinessP’ST'C
“normal” level of micro-burstiness is to transmit 1-3 segisein
response to each ACK (assuming no ACK loss and nothing else
anomalous on the connection) [4]. Each ACK that acknowlsdge
new data causes TCP’s transmission window to slide. In the no
mal case, with delayed ACKs, the window slides by 2 segments
for each ACK. When TCP is increasing the size of the window, an
additional third segment may be sent due to this increasélwh
happens during slow start and congestion avoidance, arelift
intervals). As outlined ir§ 4 bursts of more than 3 segments can
happen naturally in TCP connections. We consider burstssefj3
ments or less to be acceptable (per the standards) and bloser
3 segments in length to be anomaldughat is not to say that the
bursts are caused by problematic TCP implementatidrsre we
concentrate on bursts caused by an interaction betweersTWoR-
gestion control algorithms and specific network dynamics.

2TCP specifically allows bursts of 4 segments at the beginafng
a connection or after a lengthy idle period [3]. However, vee d
not consider this one-time allowance to indicate that th® TGn-
gestion control specification tolerates such micro-buratso, [2]
allows for micro-bursts up to 4 segments in length as a requda
currence during TCP slow start. However, [2] is an experii@en
document and not standard.

3Burstsare caused by buggy TCP implementations, as well, of
course. For instance, stretch ACKs outlined in [18, 19] eaus
micro-bursts. [6] shows that such stretch ACKs are not umaom

in today’s Internet.



The goal of this note is to illustrate the causes of burstirdjtae
behavior of several mitigations that have been proposedeisas
extensions developed within. The purpose is not to make dard
clusions, but rather to offer a data point in the ongoing uis@n
about micro-bursting within transport protocblJ his note is orga-
nized as follows§ 2 details related worl§ 3 discusses a number of
mechanisms that reduce the size of bur$# presents simulations
illustrating TCP’s bursting behavior and the behavior @& turst
mitigation strategies. We conclude and sketch future wofks.

2. RELATED WORK

The literature contains several studies dealing with theaich
of micro-bursts and potential methods for mitigation ofjburst
sizes. [22] considers bursts caused by re-using HTTP ctionsc
after an idle period, and shows that rate-based pacing faluse
reducing burstiness and increasing performance. We distts
topic of using rate-based pacing as a general micro-butigation
strategy ing 3 andg§ 4.

[12] discusses micro-bursts in a more general way, corigigler
techniques for both detecting and reducing micro-burgtstio-
duces the Use It or Lose It algorithm discussed $

[11] discusses the behavior and performance impact of micro
bursts that occur after loss recovery in satellite netweark®ss a
range of TCP variants. [8] also illustrates micro-burstthia con-
text of loss recovery, and introduces the MaxBurst algorithis-
cussed irf§ 3.

[14] investigates the causes of bursts (both micro- and oracr
bursts) in the network and their impact on aggregate netivaffic.

It finds that bursts at sources create scaling on shortb tatesand
can cause increased queuing delays in intermediate nooleg al
network path.

[6] attempts to quantify micro-bursting in the Internetdasor-
relate micro-bursts with performance impact on individi&P
connections, and suggests that while micro-bursts of natelsize
are well-tolerated (in the context of individual TCP contiaas, in
contrast to the findings in [14] about aggregate trafficpeabursts
greatly increase the probability of packet drops.

We incorporate the techniques previously defined in thedlitee
and make several extensions to them in our analysis.

3. BURST MITIGATION ALGORITHMS

Several mitigation strategies have been proposed by \&ar&u
searchers to control micro-bursts. The two fundamentahoust
that have been proposed to deal with micro-bursts are) tinit
the number of segments sent in response to a given ACK af)to (
spread the transmission of the burst of segments out usteg ra
based pacing. With regards to the former, the two basic wagfs t
have been proposed for limiting the size of the bursts afepléc-
ing a simple limit, calledmaxburst, on the transmission of new
segments in response to any given ACK, aby écaling TCP’s
congestion windowdwnd) back to prevent a line-rate burst from
being transmitted. Both of these controls are enforced oera p
ACK basis. In this note we explore two variants of each basat-s
egy. In addition, we discuss the application of a rate-baseihg
scheme to the bursting scenarios studied.

MaxBurst (MB). This mechanism, introduced in [8], is a sim-
ple limit on the number of data segments that can be trareitt
in response to each incoming ACK. ThaxBur st () function in
figure 1 provides the pseudo-code for the MB strategy. The cod

“E.g., as discussed on the IETF’s transport area workingpgrou
mailing list in June, 2003. Archive at: http://www1.ietfggmail-
archive/web/tsvwg/current/.

def MaxBurst ():
i f ackno > highack:
count = 0
while (ownd < cwnd) && \
(count < MB_SI ZE):
send_packet ()
count += 1
ownd += 1

def AggressiveMaxBurst ():
count = 0
while (ownd < cwnd) && \
(count < MB_SI ZE):
send_packet ()
count += 1
ownd += 1
def UseltOrlLoselt ():
if cwnd > (ownd + MB_SI ZE) :
cwnd = ownd + MB_SI ZE
whil e ownd < cwnd:
send_packet ()
ownd += 1
def CongestionW ndowLimiting ():

if cwnd > (ownd + MB_SI ZE):
if ssthresh < cwnd:
ssthresh = cwnd
cwnd = ownd + MB_SI ZE
whi |l e ownd < cwnd:
send_packet ()
ownd += 1

Figure 1. Burst mitigation pseudo-code.

includes a check to ensure that the most recent ACK thateatriv
is valid (i.e., the cumulative acknowledgment number in dne
riving segment is not below the current cumulative ACK ppint
After passing this check the sender’s transmission of datmn-
strained by{), ensuring that the amount of outstanding datend)
does not exceedwnd®, and i), by ensuring that at most a con-
stant number of segment¥B_SI| ZE) are transmitted. This method
lends itself to controlling the acceptable bursting by wifg a di-
rect control B_SI ZE) of the allowable burst size on each ACK.
Aggressive Maxburst (AMB). We introduce this mechanism,
given in theAggr essi veMaxBur st () function in figure 1 and
is similar to MB. The AMB scheme calls for the removal of the
validity check on the incoming ACK used in the MB scheme. This
may seem odd as [20] declares ACKs with acknowledgment num-
bers less than the connection’s current cumulative ACKtgoibe
“invalid”. However, as shown in the next section these ACKds ¢
be useful (at least in some cases) for clocking out new seggmen

5We ignore the limit imposed by the receiver’s advertiseddeim
from our discussions (and code) in this section for simplisince
the advertised window limit applies to all of the burst ntiipn
strategies.



during a burst mitigation phase (which was not considergdai). sults presented in this note. As will be shown, all the situest
Uselt or Loselt (UI/LI). This mechanism, introduced in [12], discussed in this section can occur naturally. The sinaratare

calls for the TCP sender to monitor the size of the burst thihber presented to show the stock T®Bhavior and that of the mitiga-
transmitted in the response to an ACK arrival and redwaad ac- tions in theoretical terms and are not a complete study of\well
cordingly if a large line-rate burst will be transmitted. efpseudo- the mitigations work (which will be highly dependent on sfiec
code for the UI/LI scheme is given in thdsel t Or Losel t () network dynamics and their prevalence).

function of figure 1. This function first compares tbend and
the cwnd to gauge whether a burst of more than a certain size 4.1 ACK Loss

(MB_SI ZE) will be transmitted. If so, thewnd is scaled back to First, we explore bursts caused by ACK loss. During these sim
limit the burst to no more thaVB_SI ZE segments. Under this  yjations, all ACKs between 3.3 and 3.4 seconds of simulatee t
scheme the actual sending of data is only constrained byvthe, are dropped. Figure 2(a) shows a time-sequence plot of the be
in contrast with the two controls used in MB and AMB (in which  pavior of stock TCP in the face of ACK loss. As shown in the
transmission is controlled by both tM8_SI ZE and thecwnd). figure, each of the missed ACKs represents a missed oppiyrtuni

Congestion Window & Slow Start Threshold Limiting(CWL).  for the sender to transmit new data. When an ACK (finally) ar-
We extend UI/LI with this mechanism in order to mitigate theg-p rives at nearly 3.45 seconds the sender transmits a burstighty
formance penalty imposed by a potentially large decreagbdn 20 segments.
cwnd when using UI/LI. The&Congest i onW ndowLi mi ting() The second two plots in figure 2 ((b) and (c)) show the behav-
function in figure 1 shows the pseudo-code for CWL. Like UI/LI jor of MB and AMB for allowable burst sizedvB_SI ZE) of 3 and
the CWL technique compareswnd to theownd to detect bursts. 5 segments respectively. In this simulation there is n@cffice in
If a burst would otherwise be sent and the value of the slovt sta the pehavior of MB and AMB since no ACKs arrive out-of-order.
threshold ¢sthresh) is less than the curremwnd then ssthresh is As shown themaxburst limit on sending reduces the size of the
set. to thecwnd before thecwnd is reduced to mltlgate the burst.  pyrst just before 3.45 seconds to 3 (or 5) segments and cestin
This causes TCP to use slow start (exponemtiaid increase), as g [imit the sending of segments to no more than 3 (or 5) seggnen

opposed to congestion avoidance (lineand increase) to buildthe  ner ACK until theownd reaches the size awnd. The time re-
cwnd back to the point it was at when the burst was detected. In guired to buildownd to cwnd is directly related to the choice of

effect, CWL usessthresh as a history mechanism. This contrasts the MB_S| ZE parameter used. When using BB_S| ZE of 3 seg-

to chance by leavingsthresh untouched. MB_SI ZE is 5 segments in the sample case.
Rate-Based Pacing (RBP). While the above schemes take ef-  Figyre 2(d) shows the behavior of UI/LI (with avB_SI ZE of
forts to limit the number of segments transmitted in respdosan 3) in the face of ACK loss. When the burst is detected just be-

ACK, Using RBP |ImItS the rate the SegmentS are em|tted fm] t fore 3.45 Seconds\Nnd is reducedl fo“owed by roughly 1 sec-
sender. The benefit of RBP is that — unlike the above schemes —qnd of slow start. The amount of slow start (if any) used after
there is no reduction in the amount of data sent. However,ilis W pyrst mitigation under UI/LI is arbitrary and depends on akie
be observed in the next section, sometimes there are ngapalin of ssthresh before the burst is detected. If tioand is less than
the connection after a burst that a TCP could fill with a radedul ssthresh after U|/|_|’ then slow start will be used untivnd reaches
smoothing of a burst. However, at other times there is notta na gsthresh. However, ifownd is not reduced to belowssthresh, then
ural gap in which to send a rate-based volley of segmentso If N the Jinear increase of congestion avoidance will be used.

natural pause in the transmission occurs then TCP eitheohe Figure 2(e) shows the behavior of CWL when faced with ACK
something different from RBP or discontinue the use of tiadal loss. As with UI/LI, cwnd is reduced just before 3.45 seconds.
ACK clocking (even if temporarily) or RBP will not offer anyubst However, as discussed §13, CWL setsssthresh to cwnd (assum-
mitigation. ing the connection is using congestion avoidance) befoaéngg
backcwnd to prevent the burst. This provides a sort-of history that

4, SIMULATIONS helps the connection return to its pre-burst state and gesvinore

In this section we use thes simulator to illustrate four different ~ determinism in thewnd growth after burst mitigation than UI/LI.
situations that cause bursts to naturally occur in TCP ottioTes. As shown, CWL utilizes slow start to increase tvend for almost
We then illustrate how the four mitigations outlined in figdrcope 2 Seconds yielding a largewnd when compared to UI/LI.
with the burstiness. Our simulations involve a simple 4 noee We also note that subfigures (b) and (e) are exactly the same

work with two endpoints connected by two intermediate route N this situation. That is, MB, AMB and CWL provide the same
The endpoints connect to the routers using 10 Mbps links with effective response to the burst in terms of data sent intaehgork
one-way delays of 1 ms. The routers are connected to each othe WhenMB_SI ZE is 3 segments, even though the methodology is
using a 1.5 Mbps link with a one-way delay of 25 ms (except for different. ) _ o

the simulations involving ACK reordering given §.4 which use Finally, we note that in the case of the burst depicted insttis

a one-way delay of 75 ms on the link between the routers). The uation (and sent in figure 2(a)), a rate-based pacing schevakelw
router employs drop-tail queueing with a maximum queue fdept have no natural lull over which to spread the burst of segment

of 20 packets. Each endpoint uses #aekl variant [8] of TCP -~ . .

included inns and delayed acknowledgments [7, 4]. Unless oth- 4.2 Limited Advertised Window

erwise noted the advertised window used in these simulii®n In the next scenario we explore bursting as caused by the-adve
500 segments (enough to never be a limit on sending). Alllsimu  tised window during loss recovery. For this set of simulagiove
tions involve a single TCP connection. set the advertised window to 32 segments. Figure 3(a) shuosvs t
In addition, each simulation involves some manipulatioene time-sequence plot of standard TCP’s behavior. The TCPesesd
sure that bursting occurs (as will be described in the sulzsgq able to fill the advertised window and then takes a single IBast
subsections). We note that the exact setup of the simutatod retransmit [13, 4] is used to retransmit the segment. Fastvezy

the manipulations performed are not terribly importanttte te- should then take over and clock out new segments during the se
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Figure 3: Advertised window induced bursting behavior.

ond half of the loss recovery period. However, because théese
has filled the advertised window no new data can be sent. There
fore, when the retransmitted segment is ACKed (along wighrést

of the outstanding data — in this case) a burst of data isrtrétesl

into the network. In the situation shown in figure 3(a) thesbis

in this scenario. CWV calls for TCP to use only “valid” window
sizes — i.e., windows that have been fully utilized and tferee
are known to be reasonable, but windows that are not fullyl ase
not known to be appropriate for the current network condgiand
therefore the window will be reduced.

nearly 20 segments. This phenomena has been observed and de- Figure 4(b) shows the behavior of all mitigations given iufigl

tailed elsewhere for different strategies of TCP loss regpand
different network environments [8, 11].

While algorithmically different, all the burst mitigatiostrate-
gies perform identically in this situation (with a commiB_SI ZE
of 3), as shown in figure 3(b). Since tlevnd is collapsed to
zero by the large cumulative ACK that arrives just before & se
onds, all of the schemes start from the same place. Furtligr, w
an MB_SI ZE of 3 segments thenaxburst-based schemes exactly
mimic slow start with delayed ACKs and no ACK loss (where each
ACK clocks out 3 data segments). Finally, the non-detersnini
shown in UI/L1in the last subsection is not present becastbeesh
is set to a known point at the time of the fast retransmit.

Unlike the ACK loss case explored in the last section, the ad-
vertised window limit shown in this section offers a readapa
straightforward situation in which to use rate-based pacin this
case, all the data has drained from the network and so therelis
in activity after the burst is transmitted that lasts royghhe RTT
(from just before 5 seconds to around 5.05 seconds). Therefo
RBP scheme could easily space out the segments evenly @ver th
course of the RTT following the burst detection.

4.3 Application Limiting

The next case of bursting we examine is caused by the applica-
tion layer protocol’s sending pattern. Figure 4(a) shovestime-
sequence plot of a TCP transfer where the application ddesend
data from just after 0.65 seconds until 0.8 seconds. Thesplows
that no data is sent in this interval even as ACKs arrive. Hawe
when the application begins sending again at 0.8 secondsnthe
derlying TCP transmits a burst of roughly 20 segments. Thistbu
caused by such an idle period can be mitigated by using an idle
timer (as introduced in [13] and discussed in [12]). Aftes ttlle
timer fires the TCP connection must start sending with a sonaidl
(per RFC 3390 [3]) and use slow start to increased. In addition,
Congestion Window Validation (CWV) [10] can come into play

in the face of the application sending pattern sketchedeabés in
the last subsection MB, AMB, Ul/LI and CWL perform the same in
this simulation (with a commoNB_S| ZE of 3 segments). MB and
AMB perform the same because there are not out-of-order ACKs
in this simulation. Thenaxburst schemes perform the same as the
strategies based on limiting tleeind because botimaxburst and
slow start call for transmitting 3 segments on each ACK remki

In this simulation UI/LI and CWL perform the same. Howeves, a
discussed above the non-determinism of UI/LI does not guieea
that these two schemes will behave the same. In particul&lt, C
could use slow start longer than UI/LI (as showr§i.1), yielding

a largercwnd.

Application limited situations sometimes present a shiiag-
ward opportunity for using RBP, while at other times offeria
more muddled situation. For instance, if all data on a commec
has drained from the network and is acknowledged and then the
application produces more data the TCP sender can easgygoéc
the congestion window over its estimate of the RTT. The flgesi
is shown in figure 4(a), whereby there is a period where noidata
available for transmission, but not all the data drains ftbmnet-
work. Therefore, when the burst occurs there is still an AGiCk
and there is not a natural gap in the data transmission ovieshwh
the burst can be smoothed.

4.4 ACK Reordering

The last bursting situation we examine in detail involveskAC
reordering. [5] finds that packet reordering is not a rare occurrence
over the MAE-East exchange, suggesting that ACK reorderniag
not be an uncommon phenomenon on at least some network paths.
Figure 5(a) shows the behavior of stock TCP in the face of ACK
reordering. In the simulation we changed the delay imposed o

5This is not to say that bursting does not occur in additioital s
ations. However, we believe the four we sketch in this noteeco
the space of general types of bursting scenarios.
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Figure 4: Bursting caused by application layer sending patterns.

the link between the routers that carries the ACKs from 75ans t hand, if the root cause was known to be dropped ACKs then there
1 ms at 6.32 seconds and then back to 75 ms at 6.33 seconds. Thiso clear way to utilize RBP. Without knowledge about the eaafs
caused a single ACK to “pass” a number of previously sent ACKs a larger than expected cumulative ACK it is difficult to mabkeisd

in the trip from the receiver to the sender. When this ACKvasi

the TCP window slides and a burst of segments is sent, as shown
around 6.33 seconds in figure 5(a). Following the burst, abmrm

of ACKs arrive that are not used to clock out data segmenisitsec

(a) the ACKs convey no new information ant) the cwnd is full.

Figure 5(b) shows the behavior of the MB technique (with an
MB_SI ZE of 3 segments). The burst limit does not allow the full
use ofcwnd until just after 6.5 seconds. Figure 5(c) shows the be-
havior of AMB, which uses each “invalid” ACK to clock out an
MB_SI ZE burst of segments. While these ACKs convey no new in-
formation for the connection, from a reliability standppithey can
be used to clock out new segments because, unlike stock REP, t
TCP is not utilizing the entire window due to the burst mitiga.

As shown in the figure, the last two ACKs are, in fact, not used
to clock new data into the network. This is explained by thé’TC
sending 3 segments on each of the previous invalid ACKserath
than 2 segments as TCP would normally transmit during cenges
tion avoidance. Therefore, tloand is filled using less ACKs than
normal and so the last two “invalid” ACKs are ignored.

Figure 5(d) shows the behavior of the UI/LI technique. Ttgs fi
ure shows that when the burst is detected (just after 6.4nslsgo
the cwnd is clamped to mitigate the burst and congestion avoid-
ance (lineacwnd increase) ensues. Finally, figure 5(e) shows the
behavior of CWL. In contrast to the UI/LI scheme, CWL utikize
slow start to increasewnd to the value it had prior to the burst
detection. As in the previous sections, MB and CWL show iden-
tical on-the-wire behavior in our simulations, even thotigé two
schemes use different methods for obtaining their behavior

ACK reordering presents a tricky situation for RBP. As shamn
figure 5(a), there is a natural lull in the connection after biurst
is transmitted. At first glance, it may seem natural to attetap
smooth the burst over this pause. However, the receptioheof t
ACK that causes the burst could indicate either ACK reordg(as
is the case in figure 5) or simply a case of dropped ACKs (as dis-
cussed previously). If the sender could know that ACK reonde
was the root cause then conceivably RBP could be used over an
interval that depends on the length of the reordering. Orother

decisions as to what course of action to take.

5. CONCLUSIONS

This note’s contribution is inif the methodical analysis of the

behavior of several burst mitigation schemes aiiytlie extension
of several previously defined burst mitigation strategiesdoing
so, several high-level points have surfaced:

e The behavior and performance of UI/LI is dependent on the
congestion control state when UI/LI is invoked. We intro-
duced the notion of usinsgthresh as a history mechanism to
avoid this non-determinism in CWL.

If faster than slow-start transmission rate increase igefs
after a burst is detected then MB or AMB are needed because
cwnd-based schemes can increase the transmission rate no
faster than slow start. The flip side of this issue is the ques-
tion of whether it is safe to increase faster than slow start
would. We suspect that the answer is that it is indeed safe,
given that the connection is increasing only to a previously
(and recently) known appropriate operating point.

CW.L provides asingle control for the amount of data a TCP
connection can transmit into the network at any given point.
This is arguably a clean approach to controlling the load im-
posed on the network. On the other hand, MB provides for
separation of concerns. In other words, limiting the sizes of
micro-bursts is, in some sense, a different task than lgiti
the overall transmission rate to control network congestio
Therefore, using two different mechanisms may make sense.
As noted above, the MB scheme is more flexible than the
CWL scheme. However, an additional drawback is that MB
adds a second control and brings with it the possibility ef th
two transmission controllers interacting poorly and cagsi
problems.

The simulations ir§ 4.4 shows that there are times when tra-
ditionally discarded “invalid” ACKs could be useful in keep
ing the ACK clock going. Of course, these ACKs have been
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Figure5: Bursting caused by ACK reordering.



traditionally disregarded for a reason and these ACKs could [10] Mark Handley, Jitendra Padhye, and Sally Floyd. TCP-Con

be bogus for any number of reasons (network duplicates, old

segments from previous connections, etc.). Therefore-car
ful thought is required before using such ACKs to trigger
further data transmission.

There are pros and cons to all of the strategies studied $n thi
note. Therefore, we do not concretely find any one “best” mech
anism. Rather, we hope that this note provides useful irdition
for researchers and implementers to use when reasoning tigou
various possibilities.
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