
Notes on Burst Mitigation for Transport Protocols∗

Mark Allman
ICSI / ICIR

mallman@icir.org

Ethan Blanton
Purdue University

eblanton@cs.purdue.edu

ABSTRACT
In this note we explore the various causes of micro-burstingin TCP
connections and also the behavior of several mitigations that have
been suggested in the literature along with extensions we develop
herein. This note methodically sketches the behavior of themitiga-
tions and presents the tradeoffs of various schemes as a datapoint
in the ongoing discussion about preventing bursting in transport
protocols.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.6 [Computer-Communication Networks]: Internetwork-
ing

General Terms
Algorithms, Performance

Keywords
Bursting, TCP

1. INTRODUCTION
In this note we investigate the Transmission Control Protocol’s

(TCP) [20] bursting behavior.1 TCP’s bursting behavior can be
problematic in several ways (as sketched in more detail in the next
section). First, bursting can stress queues in the network and lead
to packet loss, which can in turn negatively impact both the con-
nection doing the bursting and traffic sharing the stressed router.
Second, bursting can cause scaling on short timescales as well as
increase queuing delays in routers. Over the years, severalre-
searchers have suggested mitigations to TCP’s burstiness.We in-
vestigate and show the behavior of both these previously proposed
mitigations and newly extended techniques.

TCP naturally sends two distinct kinds of segment bursts into the
network. First, each TCP acknowledgment (ACK) covering new
data that arrives at the TCP sender slides a sending window and
liberates a certain number of segments which are transmitted at the
line-rate of the connected network. We will call bursts of segments
sent in response to a single incoming ACKmicro-bursts. TCP’s
congestion control algorithms cause the second kind of bursting

∗ACM Computer Communication Review, April 2005.
1This note is cased in terms of TCP, but should naturally applyto
transport protocols that use similar window-based congestion con-
trol algorithms (e.g., SCTP [21], DCCP [15] using CCID2 [9]).

behavior. While using the slow start algorithm, a TCP senderin-
creases the amount of data transmitted into the network by a factor
of 1.5–2 during each subsequent round-trip time (RTT) (the exact
factor depends on whether the receiver generates delayed ACKs
[7, 4], whether the sender uses byte counting [2], and the network
dynamics of the path the ACKs traverse). An additional causeof
macro-bursting is ACK compression [23]. This phenomenon oc-
curs when ACK packets get “bunched up” behind larger data pack-
ets in router queues and end up arriving at the end host more rapidly
than they were transmitted by the peer. This “bunching up” can
cause bursting. We term the bursts caused by slow start and ACK
compressionmacro-bursts since they occur over longer time peri-
ods than the micro-bursts sketched above.

TCP’s macro-burstiness has been the topic of several papersin
the literature. [16] analyzes the impact of TCP’s macro-burstiness
on queueing requirements. [2] proposes an increase in the macro-
burstiness of TCP in an attempt to mitigate some of the perfor-
mance hit caused by delayed ACKs during slow start. [17] proposes
using rate-based pacing during slow start to reduce the queueing re-
quirement TCP’s macro-bursts place on routers in a network path.
Additionally, [1] investigates a general pacing scheme forTCP.

We do not consider macro-bursts further here. Rather, we out-
line the behavior of schemes to reduce micro-burstiness. TCP’s
“normal” level of micro-burstiness is to transmit 1–3 segments in
response to each ACK (assuming no ACK loss and nothing else
anomalous on the connection) [4]. Each ACK that acknowledges
new data causes TCP’s transmission window to slide. In the nor-
mal case, with delayed ACKs, the window slides by 2 segments
for each ACK. When TCP is increasing the size of the window, an
additional third segment may be sent due to this increase (which
happens during slow start and congestion avoidance, at different
intervals). As outlined in§ 4 bursts of more than 3 segments can
happen naturally in TCP connections. We consider bursts of 3seg-
ments or less to be acceptable (per the standards) and burstsof over
3 segments in length to be anomalous2. That is not to say that the
bursts are caused by problematic TCP implementations3. Here we
concentrate on bursts caused by an interaction between TCP’s con-
gestion control algorithms and specific network dynamics.

2TCP specifically allows bursts of 4 segments at the beginningof
a connection or after a lengthy idle period [3]. However, we do
not consider this one-time allowance to indicate that the TCP con-
gestion control specification tolerates such micro-bursts. Also, [2]
allows for micro-bursts up to 4 segments in length as a regular oc-
currence during TCP slow start. However, [2] is an experimental
document and not standard.
3Bursts are caused by buggy TCP implementations, as well, of
course. For instance, stretch ACKs outlined in [18, 19] cause
micro-bursts. [6] shows that such stretch ACKs are not uncommon
in today’s Internet.

The goal of this note is to illustrate the causes of bursting and the
behavior of several mitigations that have been proposed, aswell as
extensions developed within. The purpose is not to make hardcon-
clusions, but rather to offer a data point in the ongoing discussion
about micro-bursting within transport protocols4. This note is orga-
nized as follows.§ 2 details related work.§ 3 discusses a number of
mechanisms that reduce the size of bursts.§ 4 presents simulations
illustrating TCP’s bursting behavior and the behavior of the burst
mitigation strategies. We conclude and sketch future work in § 5.

2. RELATED WORK
The literature contains several studies dealing with the impact

of micro-bursts and potential methods for mitigation of large burst
sizes. [22] considers bursts caused by re-using HTTP connections
after an idle period, and shows that rate-based pacing is useful in
reducing burstiness and increasing performance. We discuss the
topic of using rate-based pacing as a general micro-burst mitigation
strategy in§ 3 and§ 4.

[12] discusses micro-bursts in a more general way, considering
techniques for both detecting and reducing micro-bursts. It intro-
duces the Use It or Lose It algorithm discussed in§ 3.

[11] discusses the behavior and performance impact of micro-
bursts that occur after loss recovery in satellite networksacross a
range of TCP variants. [8] also illustrates micro-bursts inthe con-
text of loss recovery, and introduces the MaxBurst algorithm dis-
cussed in§ 3.

[14] investigates the causes of bursts (both micro- and macro-
bursts) in the network and their impact on aggregate networktraffic.
It finds that bursts at sources create scaling on shortb timescales and
can cause increased queuing delays in intermediate nodes along a
network path.

[6] attempts to quantify micro-bursting in the Internet, and cor-
relate micro-bursts with performance impact on individualTCP
connections, and suggests that while micro-bursts of moderate size
are well-tolerated (in the context of individual TCP connections, in
contrast to the findings in [14] about aggregate traffic), larger bursts
greatly increase the probability of packet drops.

We incorporate the techniques previously defined in the literature
and make several extensions to them in our analysis.

3. BURST MITIGATION ALGORITHMS
Several mitigation strategies have been proposed by various re-

searchers to control micro-bursts. The two fundamental methods
that have been proposed to deal with micro-bursts are to (i) limit
the number of segments sent in response to a given ACK or to (ii)
spread the transmission of the burst of segments out using rate-
based pacing. With regards to the former, the two basic ways that
have been proposed for limiting the size of the bursts are: (a) plac-
ing a simple limit, calledmaxburst, on the transmission of new
segments in response to any given ACK, and (b), scaling TCP’s
congestion window (cwnd) back to prevent a line-rate burst from
being transmitted. Both of these controls are enforced on a per
ACK basis. In this note we explore two variants of each basic strat-
egy. In addition, we discuss the application of a rate-basedpacing
scheme to the bursting scenarios studied.

MaxBurst (MB). This mechanism, introduced in [8], is a sim-
ple limit on the number of data segments that can be transmitted
in response to each incoming ACK. TheMaxBurst() function in
figure 1 provides the pseudo-code for the MB strategy. The code

4E.g., as discussed on the IETF’s transport area working group
mailing list in June, 2003. Archive at: http://www1.ietf.org/mail-
archive/web/tsvwg/current/.

def MaxBurst ():
 if ackno > highack:
 count = 0
 while (ownd < cwnd) && \
 (count < MB_SIZE):
 send_packet ()
 count += 1
 ownd += 1

def AggressiveMaxBurst ():
 count = 0
 while (ownd < cwnd) && \
 (count < MB_SIZE):
 send_packet ()
 count += 1
 ownd += 1

def UseItOrLoseIt ():
 if cwnd > (ownd + MB_SIZE):
 cwnd = ownd + MB_SIZE
 while ownd < cwnd:
 send_packet ()
 ownd += 1

def CongestionWindowLimiting ():
 if cwnd > (ownd + MB_SIZE):
 if ssthresh < cwnd:
 ssthresh = cwnd
 cwnd = ownd + MB_SIZE
 while ownd < cwnd:
 send_packet ()
 ownd += 1

Figure 1: Burst mitigation pseudo-code.

includes a check to ensure that the most recent ACK that arrived
is valid (i.e., the cumulative acknowledgment number in thear-
riving segment is not below the current cumulative ACK point).
After passing this check the sender’s transmission of data is con-
strained by (i), ensuring that the amount of outstanding data (ownd)
does not exceedcwnd5, and (ii), by ensuring that at most a con-
stant number of segments (MB SIZE) are transmitted. This method
lends itself to controlling the acceptable bursting by offering a di-
rect control (MB SIZE) of the allowable burst size on each ACK.

Aggressive Maxburst (AMB). We introduce this mechanism,
given in theAggressiveMaxBurst() function in figure 1 and
is similar to MB. The AMB scheme calls for the removal of the
validity check on the incoming ACK used in the MB scheme. This
may seem odd as [20] declares ACKs with acknowledgment num-
bers less than the connection’s current cumulative ACK point to be
“invalid”. However, as shown in the next section these ACKs can
be useful (at least in some cases) for clocking out new segments

5We ignore the limit imposed by the receiver’s advertised window
from our discussions (and code) in this section for simplicity since
the advertised window limit applies to all of the burst mitigation
strategies.

during a burst mitigation phase (which was not considered in[20]).
Use It or Lose It (UI/LI). This mechanism, introduced in [12],

calls for the TCP sender to monitor the size of the burst that will be
transmitted in the response to an ACK arrival and reducecwnd ac-
cordingly if a large line-rate burst will be transmitted. The pseudo-
code for the UI/LI scheme is given in theUseItOrLoseIt()
function of figure 1. This function first compares theownd and
the cwnd to gauge whether a burst of more than a certain size
(MB SIZE) will be transmitted. If so, thecwnd is scaled back to
limit the burst to no more thanMB SIZE segments. Under this
scheme the actual sending of data is only constrained by thecwnd,
in contrast with the two controls used in MB and AMB (in which
transmission is controlled by both theMB SIZE and thecwnd).

Congestion Window & Slow Start Threshold Limiting (CWL).
We extend UI/LI with this mechanism in order to mitigate the per-
formance penalty imposed by a potentially large decrease inthe
cwnd when using UI/LI. TheCongestionWindowLimiting()
function in figure 1 shows the pseudo-code for CWL. Like UI/LI
the CWL technique comparescwnd to theownd to detect bursts.
If a burst would otherwise be sent and the value of the slow start
threshold (ssthresh) is less than the currentcwnd then ssthresh is
set to thecwnd before thecwnd is reduced to mitigate the burst.
This causes TCP to use slow start (exponentialcwnd increase), as
opposed to congestion avoidance (linearcwnd increase) to build the
cwnd back to the point it was at when the burst was detected. In
effect, CWL usesssthresh as a history mechanism. This contrasts
with the UI/LI scheme which leaves the method forcwnd increase
to chance by leavingssthresh untouched.

Rate-Based Pacing (RBP). While the above schemes take ef-
forts to limit the number of segments transmitted in response to an
ACK, using RBP limits the rate the segments are emitted from the
sender. The benefit of RBP is that — unlike the above schemes —
there is no reduction in the amount of data sent. However, as will
be observed in the next section, sometimes there are naturalgaps in
the connection after a burst that a TCP could fill with a rate-based
smoothing of a burst. However, at other times there is not a nat-
ural gap in which to send a rate-based volley of segments. If no
natural pause in the transmission occurs then TCP either hasto use
something different from RBP or discontinue the use of traditional
ACK clocking (even if temporarily) or RBP will not offer any burst
mitigation.

4. SIMULATIONS
In this section we use thens simulator to illustrate four different

situations that cause bursts to naturally occur in TCP connections.
We then illustrate how the four mitigations outlined in figure 1 cope
with the burstiness. Our simulations involve a simple 4 nodenet-
work with two endpoints connected by two intermediate routers.
The endpoints connect to the routers using 10 Mbps links witha
one-way delays of 1 ms. The routers are connected to each other
using a 1.5 Mbps link with a one-way delay of 25 ms (except for
the simulations involving ACK reordering given in§ 4.4 which use
a one-way delay of 75 ms on the link between the routers). The
router employs drop-tail queueing with a maximum queue depth
of 20 packets. Each endpoint uses thesack1 variant [8] of TCP
included inns and delayed acknowledgments [7, 4]. Unless oth-
erwise noted the advertised window used in these simulations is
500 segments (enough to never be a limit on sending). All simula-
tions involve a single TCP connection.

In addition, each simulation involves some manipulation toen-
sure that bursting occurs (as will be described in the subsequent
subsections). We note that the exact setup of the simulations and
the manipulations performed are not terribly important to the re-

sults presented in this note. As will be shown, all the situations
discussed in this section can occur naturally. The simulations are
presented to show the stock TCPbehavior and that of the mitiga-
tions in theoretical terms and are not a complete study of howwell
the mitigations work (which will be highly dependent on specific
network dynamics and their prevalence).

4.1 ACK Loss
First, we explore bursts caused by ACK loss. During these sim-

ulations, all ACKs between 3.3 and 3.4 seconds of simulated time
are dropped. Figure 2(a) shows a time-sequence plot of the be-
havior of stock TCP in the face of ACK loss. As shown in the
figure, each of the missed ACKs represents a missed opportunity
for the sender to transmit new data. When an ACK (finally) ar-
rives at nearly 3.45 seconds the sender transmits a burst of roughly
20 segments.

The second two plots in figure 2 ((b) and (c)) show the behav-
ior of MB and AMB for allowable burst sizes (MB SIZE) of 3 and
5 segments respectively. In this simulation there is no difference in
the behavior of MB and AMB since no ACKs arrive out-of-order.
As shown themaxburst limit on sending reduces the size of the
burst just before 3.45 seconds to 3 (or 5) segments and continues
to limit the sending of segments to no more than 3 (or 5) segments
per ACK until theownd reaches the size ofcwnd. The time re-
quired to buildownd to cwnd is directly related to the choice of
theMB SIZE parameter used. When using anMB SIZE of 3 seg-
ments theownd increase takes roughly 150 ms longer than when
MB SIZE is 5 segments in the sample case.

Figure 2(d) shows the behavior of UI/LI (with anMB SIZE of
3) in the face of ACK loss. When the burst is detected just be-
fore 3.45 secondscwnd is reduced, followed by roughly 1 sec-
ond of slow start. The amount of slow start (if any) used afterthe
burst mitigation under UI/LI is arbitrary and depends on thevalue
of ssthresh before the burst is detected. If thecwnd is less than
ssthresh after UI/LI, then slow start will be used untilcwnd reaches
ssthresh. However, ifcwnd is not reduced to belowssthresh, then
the linear increase of congestion avoidance will be used.

Figure 2(e) shows the behavior of CWL when faced with ACK
loss. As with UI/LI, cwnd is reduced just before 3.45 seconds.
However, as discussed in§ 3, CWL setsssthresh to cwnd (assum-
ing the connection is using congestion avoidance) before scaling
backcwnd to prevent the burst. This provides a sort-of history that
helps the connection return to its pre-burst state and provides more
determinism in thecwnd growth after burst mitigation than UI/LI.
As shown, CWL utilizes slow start to increase thecwnd for almost
2 seconds yielding a largercwnd when compared to UI/LI.

We also note that subfigures (b) and (e) are exactly the same
in this situation. That is, MB, AMB and CWL provide the same
effective response to the burst in terms of data sent into thenetwork
when MB SIZE is 3 segments, even though the methodology is
different.

Finally, we note that in the case of the burst depicted in thissit-
uation (and sent in figure 2(a)), a rate-based pacing scheme would
have no natural lull over which to spread the burst of segments.

4.2 Limited Advertised Window
In the next scenario we explore bursting as caused by the adver-

tised window during loss recovery. For this set of simulations we
set the advertised window to 32 segments. Figure 3(a) shows the
time-sequence plot of standard TCP’s behavior. The TCP sender is
able to fill the advertised window and then takes a single loss. Fast
retransmit [13, 4] is used to retransmit the segment. Fast recovery
should then take over and clock out new segments during the sec-

500

520

540

560

580

600

620

3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(a) Stock TCP

500

520

540

560

580

600

620

3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(b) MB 3 (and AMB 3)

500

520

540

560

580

600

620

3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(c) MB 5 (and AMB 5)

500

520

540

560

580

600

620

3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(d) UI/LI 3

500

520

540

560

580

600

620

3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(e) CWL 3

Figure 2: ACK loss induced bursting behavior.

760

780

800

820

840

860

880

900

920

940

4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(a) Stock TCP

760

780

800

820

840

860

880

900

4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(b) MB 3 and AMB 3 and UI/LI 3 and CWL 3

Figure 3: Advertised window induced bursting behavior.

ond half of the loss recovery period. However, because the sender
has filled the advertised window no new data can be sent. There-
fore, when the retransmitted segment is ACKed (along with the rest
of the outstanding data – in this case) a burst of data is transmitted
into the network. In the situation shown in figure 3(a) the burst is
nearly 20 segments. This phenomena has been observed and de-
tailed elsewhere for different strategies of TCP loss recovery and
different network environments [8, 11].

While algorithmically different, all the burst mitigationstrate-
gies perform identically in this situation (with a commonMB SIZE
of 3), as shown in figure 3(b). Since theownd is collapsed to
zero by the large cumulative ACK that arrives just before 5 sec-
onds, all of the schemes start from the same place. Further, with
an MB SIZE of 3 segments themaxburst-based schemes exactly
mimic slow start with delayed ACKs and no ACK loss (where each
ACK clocks out 3 data segments). Finally, the non-determinism
shown in UI/LI in the last subsection is not present becausessthresh
is set to a known point at the time of the fast retransmit.

Unlike the ACK loss case explored in the last section, the ad-
vertised window limit shown in this section offers a reasonably
straightforward situation in which to use rate-based pacing. In this
case, all the data has drained from the network and so there isa lull
in activity after the burst is transmitted that lasts roughly one RTT
(from just before 5 seconds to around 5.05 seconds). Therefore, an
RBP scheme could easily space out the segments evenly over the
course of the RTT following the burst detection.

4.3 Application Limiting
The next case of bursting we examine is caused by the applica-

tion layer protocol’s sending pattern. Figure 4(a) shows the time-
sequence plot of a TCP transfer where the application does not send
data from just after 0.65 seconds until 0.8 seconds. The plotshows
that no data is sent in this interval even as ACKs arrive. However,
when the application begins sending again at 0.8 seconds theun-
derlying TCP transmits a burst of roughly 20 segments. The burst
caused by such an idle period can be mitigated by using an idle
timer (as introduced in [13] and discussed in [12]). After the idle
timer fires the TCP connection must start sending with a smallcwnd
(per RFC 3390 [3]) and use slow start to increasecwnd. In addition,
Congestion Window Validation (CWV) [10] can come into play

in this scenario. CWV calls for TCP to use only “valid” window
sizes — i.e., windows that have been fully utilized and therefore
are known to be reasonable, but windows that are not fully used are
not known to be appropriate for the current network conditions and
therefore the window will be reduced.

Figure 4(b) shows the behavior of all mitigations given in figure 1
in the face of the application sending pattern sketched above. As in
the last subsection MB, AMB, UI/LI and CWL perform the same in
this simulation (with a commonMB SIZE of 3 segments). MB and
AMB perform the same because there are not out-of-order ACKs
in this simulation. Themaxburst schemes perform the same as the
strategies based on limiting thecwnd because bothmaxburst and
slow start call for transmitting 3 segments on each ACK received.
In this simulation UI/LI and CWL perform the same. However, as
discussed above the non-determinism of UI/LI does not guarantee
that these two schemes will behave the same. In particular, CWL
could use slow start longer than UI/LI (as shown in§ 4.1), yielding
a largercwnd.

Application limited situations sometimes present a straightfor-
ward opportunity for using RBP, while at other times offering a
more muddled situation. For instance, if all data on a connection
has drained from the network and is acknowledged and then the
application produces more data the TCP sender can easily pace out
the congestion window over its estimate of the RTT. The flip side
is shown in figure 4(a), whereby there is a period where no datais
available for transmission, but not all the data drains fromthe net-
work. Therefore, when the burst occurs there is still an ACK clock
and there is not a natural gap in the data transmission over which
the burst can be smoothed.

4.4 ACK Reordering
The last bursting situation we examine in detail involves ACK

reordering6. [5] finds that packet reordering is not a rare occurrence
over the MAE-East exchange, suggesting that ACK reorderingmay
not be an uncommon phenomenon on at least some network paths.
Figure 5(a) shows the behavior of stock TCP in the face of ACK
reordering. In the simulation we changed the delay imposed on

6This is not to say that bursting does not occur in additional situ-
ations. However, we believe the four we sketch in this note cover
the space of general types of bursting scenarios.

40

50

60

70

80

90

100

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(a) Stock TCP

40

50

60

70

80

90

100

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(b) MB 3 and AMB 3 and UI/LI 3 and CWL 3

Figure 4: Bursting caused by application layer sending patterns.

the link between the routers that carries the ACKs from 75 ms to
1 ms at 6.32 seconds and then back to 75 ms at 6.33 seconds. This
caused a single ACK to “pass” a number of previously sent ACKs
in the trip from the receiver to the sender. When this ACK arrives
the TCP window slides and a burst of segments is sent, as shown
around 6.33 seconds in figure 5(a). Following the burst, a number
of ACKs arrive that are not used to clock out data segments because
(a) the ACKs convey no new information and (b) thecwnd is full.

Figure 5(b) shows the behavior of the MB technique (with an
MB SIZE of 3 segments). The burst limit does not allow the full
use ofcwnd until just after 6.5 seconds. Figure 5(c) shows the be-
havior of AMB, which uses each “invalid” ACK to clock out an
MB SIZE burst of segments. While these ACKs convey no new in-
formation for the connection, from a reliability standpoint, they can
be used to clock out new segments because, unlike stock TCP, the
TCP is not utilizing the entire window due to the burst mitigation.
As shown in the figure, the last two ACKs are, in fact, not used
to clock new data into the network. This is explained by the TCP
sending 3 segments on each of the previous invalid ACKs, rather
than 2 segments as TCP would normally transmit during conges-
tion avoidance. Therefore, thecwnd is filled using less ACKs than
normal and so the last two “invalid” ACKs are ignored.

Figure 5(d) shows the behavior of the UI/LI technique. This fig-
ure shows that when the burst is detected (just after 6.4 seconds)
the cwnd is clamped to mitigate the burst and congestion avoid-
ance (linearcwnd increase) ensues. Finally, figure 5(e) shows the
behavior of CWL. In contrast to the UI/LI scheme, CWL utilizes
slow start to increasecwnd to the value it had prior to the burst
detection. As in the previous sections, MB and CWL show iden-
tical on-the-wire behavior in our simulations, even thoughthe two
schemes use different methods for obtaining their behavior.

ACK reordering presents a tricky situation for RBP. As shownin
figure 5(a), there is a natural lull in the connection after the burst
is transmitted. At first glance, it may seem natural to attempt to
smooth the burst over this pause. However, the reception of the
ACK that causes the burst could indicate either ACK reordering (as
is the case in figure 5) or simply a case of dropped ACKs (as dis-
cussed previously). If the sender could know that ACK reordering
was the root cause then conceivably RBP could be used over an
interval that depends on the length of the reordering. On theother

hand, if the root cause was known to be dropped ACKs then thereis
no clear way to utilize RBP. Without knowledge about the cause of
a larger than expected cumulative ACK it is difficult to make sound
decisions as to what course of action to take.

5. CONCLUSIONS
This note’s contribution is in (i) the methodical analysis of the

behavior of several burst mitigation schemes and (ii) the extension
of several previously defined burst mitigation strategies.In doing
so, several high-level points have surfaced:

• The behavior and performance of UI/LI is dependent on the
congestion control state when UI/LI is invoked. We intro-
duced the notion of usingssthresh as a history mechanism to
avoid this non-determinism in CWL.

• If faster than slow-start transmission rate increase is desired
after a burst is detected then MB or AMB are needed because
cwnd-based schemes can increase the transmission rate no
faster than slow start. The flip side of this issue is the ques-
tion of whether it is safe to increase faster than slow start
would. We suspect that the answer is that it is indeed safe,
given that the connection is increasing only to a previously
(and recently) known appropriate operating point.

• CWL provides asingle control for the amount of data a TCP
connection can transmit into the network at any given point.
This is arguably a clean approach to controlling the load im-
posed on the network. On the other hand, MB provides for
separation of concerns. In other words, limiting the sizes of
micro-bursts is, in some sense, a different task than limiting
the overall transmission rate to control network congestion.
Therefore, using two different mechanisms may make sense.
As noted above, the MB scheme is more flexible than the
CWL scheme. However, an additional drawback is that MB
adds a second control and brings with it the possibility of the
two transmission controllers interacting poorly and causing
problems.

• The simulations in§ 4.4 shows that there are times when tra-
ditionally discarded “invalid” ACKs could be useful in keep-
ing the ACK clock going. Of course, these ACKs have been

880

900

920

940

960

980

1000

6.25 6.3 6.35 6.4 6.45 6.5 6.55 6.6

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(a) Stock TCP

880

900

920

940

960

980

1000

6.25 6.3 6.35 6.4 6.45 6.5 6.55 6.6

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(b) MB 3

880

900

920

940

960

980

1000

6.25 6.3 6.35 6.4 6.45 6.5 6.55 6.6

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(c) AMB 3

880

900

920

940

960

980

1000

6.25 6.3 6.35 6.4 6.45 6.5 6.55 6.6

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(d) UI/LI 3

880

900

920

940

960

980

1000

6.25 6.3 6.35 6.4 6.45 6.5 6.55 6.6

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Data Segments
ACK Segments

(e) CWL 3

Figure 5: Bursting caused by ACK reordering.

traditionally disregarded for a reason and these ACKs could
be bogus for any number of reasons (network duplicates, old
segments from previous connections, etc.). Therefore, care-
ful thought is required before using such ACKs to trigger
further data transmission.

There are pros and cons to all of the strategies studied in this
note. Therefore, we do not concretely find any one “best” mech-
anism. Rather, we hope that this note provides useful information
for researchers and implementers to use when reasoning about the
various possibilities.

Acknowledgments
Armando Caro, Sally Floyd, Tom Henderson, Kacheong Poon, Scott
Shenker and Randall Stewart provided helpful discussions about
the topics covered in this note. The first author’s work was funded
by NSF grant number 0205519. Our thanks to all!

6. REFERENCES
[1] Amit Aggarwal, Stefan Savage, and Tom Anderson. Under-

standing the Performance of TCP Pacing. InIEEE INFO-
COM, March 2000.

[2] Mark Allman. TCP Congestion Control with Appropriate
Byte Counting (ABC), February 2003. RFC 3465.

[3] Mark Allman, Sally Floyd, and Craig Partridge. Increasing
TCP’s Initial Window, October 2002. RFC 3390.

[4] Mark Allman, Vern Paxson, and W. Richard Stevens. TCP
Congestion Control, April 1999. RFC 2581.

[5] Jon Bennett, Craig Partridge, and Nicholas Sheetman.
Packet Reordering is Not Pathological Network Behavior.
IEEE/ACM Transactions on Networking, December 1999.

[6] Ethan Blanton and Mark Allman. On the Impact of Burst-
ing on TCP Performance. InPassive and Active Measurement
Workshop, March 2005.

[7] Robert Braden. Requirements for Internet Hosts – Communi-
cation Layers, October 1989. RFC 1122.

[8] Kevin Fall and Sally Floyd. Simulation-based Comparisons
of Tahoe, Reno, and SACK TCP.Computer Communications
Review, 26(3), July 1996.

[9] Sally Floyd and Eddie Kohler. Profile for DCCP Congestion
Control ID 2: TCP-like Congestion Control, March 2005.
Internet-Draft draft-ietf-dccp-ccid2-10.txt (work in progress).

[10] Mark Handley, Jitendra Padhye, and Sally Floyd. TCP Con-
gestion Window Validation, June 2000. RFC 2861.

[11] Chris Hayes. Analyzing the Performance of New TCP Exten-
sions Over Satellite Links. Master’s thesis, Ohio University,
August 1997.

[12] Amy Hughes, Joe Touch, and John Heidemann. Issues in TCP
Slow-Start Restart After Idle, December 2001. Internet-Draft
draft-hughes-restart-00.txt (work in progress).

[13] Van Jacobson. Congestion Avoidance and Control. InACM
SIGCOMM, 1988.

[14] Hao Jiang and Constantinos Dovrolis. Source-Level IP Packet
Bursts: Causes and Effects. InACM SIGCOMM/Usenix Inter-
net Measurement Conference, October 2003.

[15] Eddie Kohler, Mark Handley, and Sally Floyd. Datagram
Congestion Control Protocol (DCCP), March 2005. Internet-
Draft draft-ietf-dccp-spec-11.txt (work in progress).

[16] Craig Partridge. ACK Spacing for High Delay-Bandwidth
Paths with Insufficient Buffering, September 1998. Internet-
Draft draft-rfced-info-partridge-01.txt (work in progress).

[17] Craig Partridge, Dennis Rockwell, Mark Allman, RajeshKr-
ishnan, and James P.G. Sterbenz. A Swifter Start for TCP.
Technical Report TR-8339, BBN Technologies, March 2002.

[18] Vern Paxson. Automated Packet Trace Analysis of TCP Im-
plementations. InACM SIGCOMM, September 1997.

[19] Vern Paxson, Mark Allman, Scott Dawson, William Fen-
ner, Jim Griner, Ian Heavens, Kevin Lahey, Jeff Semke, and
Bernie Volz. Known TCP Implementation Problems, March
1999. RFC 2525.

[20] Jon Postel. Transmission Control Protocol, September1981.
RFC 793.

[21] Randall Stewart, Qiaobing Xie, Ken Morneault, Chip Sharp,
Hanns Juergen Schwarzbauer, Tom Taylor, Ian Rytina,
Malleswar Kalla, Lixia Zhang, and Vern Paxson. Stream Con-
trol Transmission Protocol, October 2000. RFC 2960.

[22] Vikram Visweswaraiah and John Heidemann. Improving
Restart of Idle TCP Connections. Technical Report 97-661,
University of Southern California, August 1997.

[23] Lixia Zhang, Scott Shenker, and David Clark. Observations
on the Dynamics of a Congestion Control Algorithm: The
Effects of Two- Way Traffic. InACM SIGCOMM, September
1991.

