
Estimating Loss Rates With TCP∗

Mark Allman†

International Computer Science Institute
mallman@icir.org

Wesley M. Eddy, Shawn Ostermann
Ohio University

{weddy,ostermann}@eecs.ohiou.edu

Abstract

Estimating loss rates along a network path is a problem
that has received much attention within the research com-
munity. However, deriving accurate estimates of the loss
rate from TCP transfers has been largely unaddressed. In
this paper, we first show that using a simple count of the
number of retransmissions yields inaccurate estimates of
the loss rate in many cases. The mis-estimation stems
from flaws in TCP’s retransmission schemes that cause
the protocol to spuriously retransmit data in a number of
cases. Next, we develop techniques for refining the re-
transmission count to produce a better loss rate estimate
for both Reno and SACK variants of TCP. Finally, we ex-
plore two SACK-based variants of TCP with an eye to-
wards reducing spurious retransmits, the root cause of the
mis-estimation of the loss rate. An additional benefit of
reducing the number of needless retransmits is a reduction
in the amount of shared network resources used to accom-
plish no useful work.

1 Introduction

Assessing network properties is a topic that has received
a great deal of attention in the literature. Among the
measurement techniques developed by the research com-
munity is a set of methods to derive information about
the dynamics of a path from TCP [Pos81] connections.
For instance, [Pax97] assesses the dynamics of a number
of paths through the analysis of pairs of sender-side and
receiver-side TCP traces, while [JD02] details techniques
for assessing the round-trip time of a path by watching
TCP segments from an arbitrary location in the network,
and [BPS99] uses TCP transfers to explore the prevalence
of packet reordering. These are but a sampling of a rich
range of papers in the literature.

This paper adds to the body of measurement techniques
by detailing and validating a method for estimating the
loss rate experienced by a TCP connection by observing

∗This paper appears in ACM Performance Evaluation Review, De-
cember 2003.

†Mark Allman was with BBN Technologies and supported by
NASA’s Glenn Research Center when this research was conducted.

the connection’s segments close to the data sender (or in
the sender-side TCP implementation). Previous work in
the literature has assessed TCP segment losses by compar-
ing segment traces from the two endpoints of a TCP con-
nection [Pax97] or by monitoring only the data segments
of a connection at some point in the middle of the network
[BV02]. Our goal is to monitor the connection at only the
sender-side and to be as accurate as possible. Hence we
leverage information from both the data and ACK streams.

There are several attractive applications and properties
of TCP sender-side estimation of the loss rate, including:

• A proposal for Cumulative Explicit Transport Error
Notification (CETEN) [KAPS02, EOA03] requires
either that the network provide explicit and fine-
grained information about the level of congestion or
that TCP be able to estimate this based on the loss
rate observed. [KAPS02] notes the problems with
using a simple count of the number of retransmis-
sions as an indication of the level of network con-
gestion. We explore this problem empirically in§ 3.
While [KAPS02] uses explicit information from the
network, a lighter weight scheme whereby the sender
could accurately assess the loss rate of the network
would be easier to deploy (as discussed in [EOA03]).

• Measuring the loss rate of networks using tools like
ping (or the like) may provide an unrealistic estimate
of the loss rate a TCP application will actually ex-
perience for several reasons. First,ping is generally
rate-based and therefore does not share TCP’s send-
ing pattern, which inherently effects the loss proba-
bility of the segments. In addition, it is hard to de-
termine some “right” rate for sending measurement
probes into the network. If the rate is too low the
measurement is necessarily gross and may not cap-
ture certain characteristics of the network. On the
other hand, if the rate is too high, the measurement
traffic will be disruptive and the measurement will
end up being biased by its own traffic. These issues
are explored further in [MA01]. While using some
form of random sampling may mitigate these disad-
vantages somewhat, such a probing scheme still fails
to capture TCP’s burstiness or its dependence on the

1

feedback loop. Estimating the loss rate using sender-
side TCP information (or traces) is attractive in that it
derives a loss rate on timescales that matter to appli-
cations and the estimate is formed using an accepted
network-friendly sending rate.

• Estimating loss rates based only on information
available at the sending side of a TCP connection al-
lows researchers to measure networks in which they
only control one side of a TCP connection. This
makes wide-scale measurement easier than the case
when monitoring points on both ends of the connec-
tion are necessary (e.g., as used in [Pax97]).

• Deriving loss rates using TCP can aid the research
community in verifying and refining our TCP models
(e.g., [MSMO97, PFTK98]) using sender-side only
traces.

• Comparing loss rates with TCP’s retransmission rate
offers insight into the effectiveness of TCP’s retrans-
mission strategies.

We present several techniques for determining the loss
rate experienced by a TCP connection. The first is a
simple count of the number of retransmissions. We
then introduceLoss Estimation AlgorithmS for TCP
(LEAST) for TCP Reno and TCP with selective ac-
knowledgments (SACK) (LEASTr andLEASTs respec-
tively) and present validations of both algorithms. The
measurements highlight the large difference between the
actual number of losses and the number of retransmits
TCP uses to repair those losses. Finally, we test a sec-
ond SACK-based loss recovery algorithm with an eye to-
wards reducing the number of spurious retransmissions
sent (and, therefore, reducing the complexity of loss es-
timation techniques).

This paper is organized as follows.§ 2 outlines our ex-
perimental environment, tools and methodology.§ 3 dis-
cusses the accuracy of using a simple count of the num-
ber of retransmissions as an estimate of the loss rate.§ 4
discusses our TCP Reno loss estimator (LEASTr), while
§ 5 discusses our SACK-based version of the loss estima-
tor (LEASTs). § 6 discusses an implementation path for
choosing whichLEAST variant to use for a given trans-
fer. § 7 discusses a second SACK-based loss recovery al-
gorithm that may aidLEAST by using more accurate ac-
counting practices during loss recovery. Finally,§ 8 offers
conclusions and suggests future work.

2 Methodology

To evaluateLEAST , we use transfers conducted across
the NIMI measurement mesh [PMAM98, PAM00]. We
use the bulk transfer capacity [MA01] toolcap [All01] to

conduct the transfers. This section describes the TCP vari-
ants we tested, our experimental methodology, and pro-
vides a high level description of the measurements taken.

2.1 TCP Variants

We used a number of TCP variants in our investigation as
follows:

• Reno. This version supports TCP’s basic congestion
control algorithms: slow start, congestion avoidance,
fast retransmit and fast recovery [APS99].

• SACK. This version builds on TCP’s standard con-
gestion control algorithms by using the selective
acknowledgment (SACK) option as specified in
[MMFR96] and the loss recovery algorithm outlined
in [FF96]. SACKs are used to enhance TCP’s cumu-
lative acknowledgment scheme by allowing the re-
ceiver to provide fine-grained feedback about exactly
which segments have arrived.

• SACK+DSACK. This version builds on both the
standard congestion control algorithms and the
SACK enhancements by adding the use of the
DSACK option [FMMP00]. DSACKs allow the re-
ceiver to inform the sender about segments that have
arrived more than once.

Note: In our experiments we use only Reno and
SACK+DSACK transfers. Since the DSACK option does
not change any of TCP’s on-the-network algorithmic dy-
namics, we can ignore the DSACK information in our
analysis to study the SACK without DSACK case.

While real TCP implementations use byte-based se-
quence numbers for reliability (and ordering),cap is based
on segment numbers for simplicity. In this paper, we will
discuss our algorithms in terms of segment numbers. We
believe the transformation to byte counts is fairly straight-
forward, but will require a bit of care in accounting for
things like retransmits that do not include exactly the same
sequence space as the original transmission and like prob-
lems.

Finally, TCP Reno is susceptible to a phenomenon
called successive fast retransmits [Flo95]. In this sit-
uation, spurious retransmissions cause enough duplicate
ACKs to trigger the fast retransmit algorithm during re-
covery which (i) reduces TCP’s congestion window need-
lessly and (ii) often triggers additional spurious retrans-
mits. [FH99] outlines a “bugfix” that prevents these suc-
cessive fast retransmits from triggering. Our TCP Reno
implementation does not use this bug fix for two reasons.
First, we believe that estimating the loss rate without the
bugfix is more difficult than when the bugfix is imple-
mented so we are testing our estimation techniques in the

2

worst case environment. Without using the bugfix, spu-
rious fast retransmits and the duplicate ACKs they trig-
ger are common. Therefore, the loss recovery process is
messier without bugfix [Flo95] and therefore we believe it
provides a more rigorous test of our loss estimation tech-
niques. The second reason for not using the bugfix is
that we have no information on its implementation status
in real world TCP implementations and therefore did not
want to make an unrealistic assumption that would hinder
the application of our techniques in real networks.

2.2 Platform

Our experiments involve a mesh of 14 NIMI hosts us-
ing the cap bulk transfer capacity tool to take measure-
ments. The NIMI machines are hosted by research cen-
ters and universities. Of the 14 NIMIs used in our exper-
iments, 8 are located in the United States, 4 in Europe,
1 in the Far East and 1 in South America. Both Reno and
SACK+DSACK are implemented incap. We scheduled
a transfer between two randomly chosen hosts at intervals
chosen by a Poisson process with a mean of 60 seconds.
Each transfer consists of 5000 segments, using a packet
size of 1500 bytes, an infinite advertised window (simu-
lating automatic socket buffer tuning [SMM98]) and the
TCP timestamp option [JBB92]. We collect packet traces
from both the sender and receiver and compare them to
obtain the actual loss rate for a given connection. We run
LEAST across only the sender-side packet trace to as-
sess the algorithm’s ability to estimate the loss rate along
the path.

2.3 Measurements

We scheduled 16320 transfers between February 24, 2003
and March 10, 2003. Of the scheduled transfers, we ended
up with a dataset of 5123 transfers. The final dataset
consists of 2546 valid Reno transfers and 2577 valid
SACK+DSACK transfers. For the transfers not in the fi-
nal dataset, the failures were caused by a myriad of prob-
lems in the network and the NIMI mesh. The largest
problem was that we scheduled tests involving 6 addi-
tional NIMI hosts (above the 14 hosts described above)
that turned out to be misconfigured and could not support
our measurements (this accounts for roughly 30% of the
scheduled experiments). In addition, time synchroniza-
tion problems between machines caused the source and
sink of the transfer to execute at different times and hence
no transfer is conducted (even after introducing a 5 minute
window to try to mitigate this). Another example failure is
the route between two hosts being lost during the transfer.
[PAM00] discusses the problems of taking measurements
in the NIMI mesh. While the failure rate is high, we do not
believe our results are biased since we need only a sample

of transfers with a variety of loss rates and loss patterns to
assess our loss estimation techniques.

Figure 1 illustrates several characteristics of the loss
present in our dataset. The first plot shows that the trans-
fers in the dataset experienced a variety of per connec-
tion loss rates. Over 20% of the transfers (both Reno
and SACK) experienced no losses. This is explained by
the quality of the connections between some of the NIMI
hosts. Over a number of paths, the 5000 segment trans-
fers used in our study did not load any links to the point
of packet loss. As an example, one of the paths included
in our dataset is between hosts at the International Com-
puter Science Institute and the Lawrence Berkeley Na-
tional Laboratory, both of which are in Berkeley, CA,
USA. The hosts are separated by roughly 1.5 miles over
a path with an RTT of roughly 5 ms and bandwidth of
100 Mbps. While at different institutions, these hosts are
essentially connected via a LAN-type network, explaining
why transfers between them are loss free. At the other end
of the spectrum, from figure 1(a) we also note that a small
percentage (0.6%) of the connections experienced a loss
rate of more than 10%.

The second plot in figure 1 shows theloss distance
[KR02]. The loss distance is calculated for each lost
packetP and is defined as the number of packets sent
since the last packet loss. For example, if the3rd and
5th packets are lost the loss distance for packet 5 will
be 2. This metric provides information about both how
clustered the losses are and how often losses are experi-
enced. The plot shows that roughly 50% of the loss dis-
tances are 1, indicating that half of the losses belong to
larger groups of losses (e.g., clumped losses that happen
at the end of slow start). We also note a range of loss dis-
tances, with over 15% of the distances being greater than
16 segments.

The final plot in the figure shows the distribution ofloss
periods [KR02]. The length of a loss period is the number
of losses that occur in a row. In this figure we again see
a range in the loss patterns. Most of the loss periods are
1 segment in length (over 60%), however we did note one
loss period of 886 segments!

All the plots show that the loss characteristics of Reno
and SACK are largely similar. We believe the differences
between the two versions of TCP correspond to SACK’s
aggressiveness in keeping thecwnd larger than Reno and
therefore keeping more segments in the network, as well
as TCP’s bursty sending pattern in slow start-based loss
recovery (which happens more frequently in Reno than
SACK). Finally, we believe that figure 1 shows that our
experiments cover a variety of loss characteristics (which
is the key to evaluating a loss estimator).

3

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.001 0.01 0.1 1

C
D

F

Fraction of Segments Lost (per connection)

Reno
SACK

(a) Loss rate.

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
D

F

Loss Distance (segments)

Reno
SACK

(b) Loss distance.

0.6

0.7

0.8

0.9

1

1 10 100 1000

C
D

F

Loss Period (segments)

Reno
SACK

(c) Loss period.

Figure 1: Per connection loss characteristics across NIMI mesh.

3 Retransmissions

Because TCP is a reliable transport, all segments lost in
the network should be repaired with retransmissions from
the data originator. Therefore, a natural first choice for
estimating the loss rate experienced by a connection is to
count the number of retransmissions. Figure 2 provides
the distribution of the percent difference between the ac-
tual loss rate and the retransmission rate for the Reno and
SACK transfers in the NIMI mesh. For TCP Reno trans-
fers, we have found that retransmits exactly estimate the
loss rate in roughly 26% of the transfers. However, in
roughly two-thirds of the transfers, using retransmits as
an estimate of the loss rate is off by more than 10%. Fur-
ther, in approximately 16% of the transfers, the discrep-
ancy between retransmissions and losses is over 100%.
Finally, the median percent difference between the num-
ber of retransmits and the actual number of losses in the
Reno transfers is roughly 33%.

This discrepancy between retransmits and losses in
Reno TCP is explained by the use of slow start after the
retransmission timer (RTO) fires. In this mode, and in
the absence of SACK blocks informing the sender ex-
actly which segments have arrived, Reno often retransmits
packets that have not been clearly indicated as lost. For ex-
ample, say segmentN is retransmitted after the expiration
of the RTO timer. The reception of segmentN will cause
an ACK covering segmentM to be sent (whereM ≥ N).
As previous work has shown [Hoe96, FH99], this ACK in-
dicates that segmentM + 1 has likely been lost. Since the
TCP sender is in slow start, segmentsM +1 andM +2 are
retransmitted. However, the sender received no indication
that M + 2 needs to be retransmitted – and, as figure 2
implies, in a large number of cases the sender is guess-
ing wrong and needlessly retransmitting data. This whole
process is further aggravated because, without selective
acknowledgments, TCP is more prone to relying on the
RTO timer to repair losses [FF96].

In the absence of SACK information, TCP may still be
able to be more intelligent about which packets are trans-
mitted, thus reducing the number of needless retransmis-
sions. For instance, the use of NewReno [Hoe96, FH99]
refines the retransmission algorithms in an effort to be
more precise in retransmitting data.

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

C
D

F

Percent Difference (Retransmits vs. Loss Rate)

Reno
SACK

Figure 2: Accuracy of retransmissions as an estimate of
the loss rate.

Figure 2 also shows the performance of retransmissions
as a loss estimator using TCP SACK. The plot shows a
significant improvement over Reno, with a median differ-
ence between the loss rate and the retransmission rate of
roughly 2% and with roughly 75% of the estimates within
10% of the actual loss rate. However, the plot shows that
there are still cases where TCP SACK retransmits unnec-
essarily and hence skews the loss estimate. We find that
the cause of these needless retransmits is the pattern of
SACK information that is sent from the receiver after a
timeout. Upon a timeout, the sender clears its copy of
the SACK scoreboard (per RFC 2018 [MMFR96]). In
addition, the receiver always acknowledges the blocks
corresponding to the most recently transmitted blocks.

4

Therefore, the receiver sometimes does not re-populate
the sender’s scoreboard appropriately and so the sender
believes that some packets need to be retransmitted even
though they have arrived at the receiver. This problem is
discussed in greater detail in§ 7.

Using the number of retransmissions as the basis for
a loss rate estimate may work for some applications (es-
pecially for TCP with SACK). However, for applications
that require a more accurate estimate of the loss rate, we
explore leveraging information from the ACK stream to
refine the retransmission-based estimate. Our algorithms
are detailed in the next sections.

4 LEAST for TCP Reno

This section discusses the TCP Reno version of the loss
estimator,LEASTr.

4.1 Algorithm

Figure 3 shows the Python code for implementing the
LEASTr algorithm. The principle behindLEASTr

is that, after the RTO timer fires and TCP starts using
slow start-based loss recovery, needless retransmissions
will trigger the receiver to transmit duplicate acknowledg-
ments. For instance, consider the case when a sequence
of four packets,n...n + 3, is transmitted and onlyn + 2

arrives at the receiver. Figure 4 shows the sequence of
events after the RTO timer fires, as follows:

1. The TCP sender times out and resends segmentn,
causing the receiver to send an ACK covering seg-
mentn (i.e., expecting segmentn + 1).

2. Upon reception of the ACK covering segmentn, the
sender increases the congestion window (cwnd) to
2 segments. The incoming ACK points to the next
missing segment,n + 1, that the sender retransmits.
However, sincecwnd is now 2 segments, the sender
also retransmitsn+2 even though no specific knowl-
edge about whethern+2 has been lost has arrived at
the sender.

3. When segmentn + 1 arrives at the receiver an ACK
for segmentn + 3 is generated (sincen + 2 is now
the highest in-order data segment that has arrived).

4. When the spurious copy of segmentn + 2 arrives at
the receiver a second ACK covering segmentn+3 is
transmitted.

LEASTr uses the receipt of this second (duplicate)
ACK for segmentn + 3 as an indication that a spurious
retransmission occurred. A counter tracks the number of
unneeded retransmissions and theLEASTr estimate is
calculated as:

LEASTr = Rtotal − Rspurious (1)

whereRtotal is the total number of retransmissions and
Rspurious is the estimated number of unnecessary retrans-
missions. We count duplicate ACKs for accumulation in
Rspurious during the “RTO event” – which starts when
the RTO timer fires and ends when the TCP sender re-
ceives an ACK for the highest segment outstanding when
the event was initiated. We found a number of situations
that cause errors inLEASTr, which will be illustrated
in the next subsection. While the principle of counting
duplicate acknowledgments seems straightforward, the al-
gorithm given in figure 3 contains several rules to cover
special cases, as follows:

• Duplicate ACKs that do not cover the segment most
recently transmitted via the RTO timer should not be
taken as indicating that spurious segments arrived at
the receiver. To understand why, assume segmentn

is lost, fast retransmitted and lost again. Eventually,
the RTO timer will fire and segmentn will be retrans-
mitted for a second time. However, between the fast
retransmit and the expiration of the RTO timer, fast
recovery governs the sending of segments. Any seg-
ments sent will trigger duplicate ACKs for segmentn

(i.e., the receiver is expecting segmentn). These ac-
knowledgments do not indicate spurious retransmis-
sions. However, if the RTO timer fires while these
ACKs are still streaming into the sender, they would
skew theLEASTr estimate without this rule.

• When the RTO timer expires after the connection is
already in slow start-based loss recovery, the current
event must be extended to account for the most re-
cent segment retransmitted via the RTO timer and the
outstanding data at the time of the latest RTO timer
expiration.

• The point at which the event is terminated needs to be
extended when previously unsent data is transmitted
during the event in order to catch the last few (possi-
ble) duplicate ACKs.

• When an ACK arrives that passes the recovery point,
we add the number of spurious retransmits we have
counted in the current event to the totalRspurious

count. Ideally, we are counting only duplicate ACKs
for spurious retransmissions. However, as outlined
below, situations arise that cause our count to be
wrong. Therefore, as a double check, we actually
add the minimum of the number of duplicate ACKs
counted during the event (i.e., spurious retransmits)
and the number of retransmits sent during the event
(which is an upper bound on the number of spuri-
ous retransmits sent). This rule does not necessarily

5

seqno = ackno = highdata = highack = retransmits = dup_xmits = 0
in_rto_event = False

for pkt in snd_trace:
 if pkt.IsAck () and (pkt.AckNo () > highack):
 highack = pkt.AckNo ()

 if pkt.IsData ():
 if pkt.SeqNo () > highdata:
 highdata = pkt.SeqNo ()
 else:
 retransmits += 1
 ## an RTO that initiates slow start-based loss recovery
 if not in_rto_event and pkt.IsRTO ():
 in_rto_event = True
 recovered = recovered_orig = highdata
 rto_segment = pkt.SeqNo ()
 event_retrans = 1
 event_dupacks = 0
 continue

 ## in slow start-based loss recovery
 if in_rto_event:
 if pkt.IsData ():
 ## count retransmits in the event
 if pkt.IsRetrans () and (pkt.SeqNo () < recovered):
 event_retrans += 1

 ## an RTO within the RTO event; extend the event
 if pkt.IsRTO ():
 recovered = recovered_orig = highdata
 rto_segment = pkt.SeqNo ()

 ## track new packets sent during recovery -- we need to
 ## account for the last few duplicate ACKs
 if not pkt.IsRetrans () and (highack <= recovered_orig):
 recovered = pkt.SeqNo ()

 else:
 ## an ACK that terminates the RTO event
 if pkt.AckNo () > recovered:
 dup_xmits += min (event_dupacks, event_retrans)
 in_rto_event = False

 ## count duplicate ACKs received in the event -- but, not
 ## any associated with the RTO segment (which are not caused
 ## by needless retransmissions)
 elif (pkt.AckNo () == last_ackno) and (pkt.AckNo () >= rto_segment):
 event_dupacks += 1

 ## track the last ACK number
 if pkt.IsAck ():
 last_ackno = pkt.AckNo ()

least = retransmits - dup_xmits

Figure 3: TCP Reno LEAST algorithm.

6

make our estimate exactly right; however, it bounds
the error.

 Data nSource

 ACK n+1 Sink

 Data n+1

 Data n+2 ACK n+3

 ACK n+3

Figure 4: Sample TCP retransmit pattern after RTO timer
fires.

4.2 Validation

As outlined in§ 2, we obtained 2546 valid Reno trans-
fers from the NIMI measurement mesh. We calculated the
loss rate for each transfer by analyzing both sender and
receiver traces and comparing the packets transmitted by
the sender with those arriving at the receiver. We then use
the sender-side trace to derive aLEASTr estimate of the
loss rate. In the discussion below, we also use acorrected
version ofLEASTr that uses receiver-side information to
confirm the sources of error in the estimate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-100 -50 0 50 100 150 200

C
D

F

Percent Error

LEAST
Retransmits

Figure 5: Accuracy ofLEASTr compared to the actual
loss rate (percent differences that are less than zero in-
dicate underestimates while differences greater than zero
indicate overestimates).

Figure 5 shows the distribution of the percent error be-
tween the actual loss rate for the connections and the loss
rate derived fromLEASTr. In addition, for compari-
son, we plot the percent error in using retransmits as a
loss estimate (discussed previously in§ 3 in more detail).

When usingLEASTr, roughly 56% of the transfer loss
rate estimates are exactly right, with roughly 3% of the
estimates differing from the (measured) loss rate by more
than 10%. These results again highlight the grossness
of Reno’s retransmission behavior. Using the straightfor-
wardLEASTr estimator, we are able to predict the loss
rate to within 10% in over 96% of the transfers in our
dataset. We now look at several categories of errors found
in theLEASTr estimate.

4.2.1 Sources of Error

As we will show below, the five sources of error explained
in this section account for the majority of the error in the
LEASTr estimate. Each error listed below is given a one-
letter identifier for the purposes of the discussion of the
results.
Spurious Fast Retransmit (A). This error is not caused
by theLEASTr algorithm itself, but rather from spurious
fast retransmits caused by packet reordering in the net-
work. Sufficient packet reordering can cause spurious fast
retransmits [BPS99, BA02]. However, sinceLEASTr

only works after the RTO timer fires, these spurious fast
retransmits are counted inRtotal but since they are not
detected as spurious they are not counted inRspurious.
Therefore, this causes an overestimate inLEASTr.
Lost Duplicate ACKs (B). When a duplicate ACK that
indicates a spurious retransmission to theLEASTr algo-
rithm is lost in the network, the information about a spuri-
ous retransmit is lost. For instance, in figure 4, if the sec-
ond ACK forn+3 is lost, the sender will be unable to de-
termine whether the retransmission of segmentn + 2 was
required. Losing duplicate ACKs during the RTO event
causes overestimation.
Spurious Retransmit Triggers Partial ACK (C). Some-
times we have noticed spurious retransmits resulting in
partial ACKs1 arriving at the TCP sender. This problem
works hand-in-hand with the lost duplicate ACK phenom-
ena described above. Losing a partial ACK causes a subse-
quent duplicate ACK to be effectively turned into a partial
ACK and therefore the information conveyed in the dupli-
cate ACK will be lost. If the first ACK forn+3 in figure 4
is lost, the second (duplicate) ACK forn+3 will look like
a partial ACK when arriving at the sender. Hence, there
will be no second (duplicate) ACK following to indicate a
spurious retransmit occurred. Losing partial ACKs during
the RTO event causes overestimation.
Lost Retransmissions (D). A lost retransmission during
slow start-based loss recovery can trigger duplicate ACKs
that do not indicate spurious retransmits and hence skew
the estimate. Figure 6 shows the sequence of events after
the RTO timer fires (for segmentn) in the case where seg-

1A partial ACK covers previously unacknowledged data, but not
enough previously unacknowledged data to terminate recovery.

7

 Data nSource

 ACK n+1 Sink

 Data n+1

 Data n+2

 ACK n+1

Figure 6: Example of sequence of events following a lost
retransmission.

mentsn, n + 1 andn + 2 are lost before the RTO timer
expires. The diagram shows the events that occur when
the retransmit of segmentn+1 is lost (for a second time).
In this case, the ACK returned for segmentn+2 is a dupli-
cate ACK, whichLEASTr takes as indicating a spurious
retransmit even though the retransmit of segmentn + 2 is
required in this case. This series of events yields an un-
derestimate in theLEASTr algorithm.
Spurious Fast Retransmit Terminates Recovery (E).
As outlined in [Flo95], TCP Reno is susceptible to suc-
cessive fast retransmits within a window of data. If one
of these successive fast retransmits happens at the end of
slow start-based loss recovery, a duplicate ACK indicat-
ing that the retransmission was spurious will fall outside
the “recovery event”. Therefore, theLEASTr algorithm
will not detect the duplicate ACK. While we may be able
to extend the event to wait for the resulting duplicate ACK,
it is not obvious how long to extend the event waiting for
an ACK that may or may not arrive – or, may arrive de-
layed or out-of-order.LEASTr makes the assumption
that the retransmit was necessary and thus overestimates
when such a retransmit is sent needlessly. This overesti-
mate is limited to the number of RTO events that happen
within a transfer.

The above list of estimation errors is likely not com-
plete. Other sources of error could be packet reordering,
packet duplication or other situations yet unknown. How-
ever, as will be shown in the next section, we believe the
above sources of error capture the major causes of estima-
tion error found in our measurements.

4.2.2 Quantifying Errors

In our NIMI dataset,LEASTr exactly matched the loss
rate in roughly 56% of the transfers (or 1418 of the
2546 Reno transfers). In 57 of these exact matches,
LEASTr mis-estimates in more than one of the above
outlined ways, but the estimation problems exactly cancel
out to yield a correct overall estimate.

Next we observe that in 10% (or 256) of the transfers in

our NIMI dataset,LEASTr underestimates the loss rate.
The only source of underestimation outlined in§ 4.2.1 is
duplicate ACKs returned for needed retransmits because
a needed retransmission was lost (D). We found that cor-
recting our estimate based on the problems identified in
§ 4.2.1 yields an exact accounting of the errors in roughly
69% of the transfers yielding an underestimate. In another
20% of the transfers the corrected estimate is closer to the
actual loss rate, while 5% of the transfers ended up being
overestimates after the correction. Finally, in 5% of the
transfers yielding an underestimate, the correction had ei-
ther no effect or increased the underestimation. From this
analysis we believe that while we have not found all the
causes of underestimation in our data we have identified
the major causes.

Next we turn our attention to the 34% (or 872) of the
transfers in our NIMI dataset in whichLEASTr overes-
timates the loss rate. Of those, 71% of the overestimates
can be exactly corrected by taking into account the sources
of error from§ 4.2.1. In these transfers, duplicate ACK
losses (B) are the largest cause of error in the estimate with
45% of the error, followed by receiving partial ACKs in re-
sponse to spurious retransmits (C) with 36% of the error,
reordering causing spurious fast retransmits that are not
accounted for byLEASTr (A) with 14% of the error and
lost retransmits triggering duplicate ACKs (D) with 3.7%
of the error. In 29% of the overestimates in which the
mis-estimate could not be exactly corrected for, we noted
a variety of sources of error. However, we note that the
median difference between the corrected estimate and the
actual loss rate is roughly 0.6%, indicating that we have
identified the majority of the errors that skew the estimate.

Finally, we note that the phenomenon whereby a spuri-
ous fast retransmit is sent at the end of the RTO event (E)
discussed in§ 4.2.1 is not a large contributor to the error
in LEASTr. This case accounts for less than 1% of the
error in LEASTr across all our TCP Reno NIMI trans-
fers, indicating that the assumption outlined in 4.2.1 that
the retransmit is needed does not greatly skewLEASTr.

4.3 Summary

In this section we have shown that theLEASTr estimate
is accurate within 10% of the actual loss rate in over 96%
of the transfers. Furthermore, for roughly 56% of the
transfers,LEASTr exactly matches the loss rate. In addi-
tion, whenLEASTr does not match the loss rate, we have
identified the vast majority of the errors in the estimate
such that we believe that (given only the information avail-
able at the sender-side of a TCP connection),LEASTr is
forming a near-optimal estimate of the loss rate.

8

highdata = retransmits = dup_xmits = 0

for pkt in snd_trace:
 if pkt.IsData ():
 if pkt.SeqNo () > highdata:
 highdata = pkt.SeqNo ()
 else:
 retransmits += 1

 if pkt.IsACK ():
 if using_DSACK and pkt.DSACK () and WasRexmted (pkt.DSACK ()):
 dup_xmits += 1
 elif not using_DSACK and IsSACKRedundant (pkt):
 dup_xmits += 1

least = retransmits - dup_xmits

Figure 7: TCP SACK LEAST algorithm.

5 LEAST for TCP SACK

In this section we explore theLEASTs variant for
TCPs that support the selective acknowledgment option
[MMFR96]. Selective acknowledgments allow a TCP re-
ceiver to inform the TCP sender about the sequence space
that has actually arrived at the receiver in a more fine-
grained way than simply using the standard cumulative
acknowledgment mechanism. As shown in§ 3, the use of
SACK allows TCP to be more accurate in resending data
and therefore the number of retransmits is a better estimate
of the loss rate than when using TCP Reno. However,
needless retransmissions are still sent by SACK-based al-
gorithms and therefore we have developed a mechanism
that uses clues in the returning ACKs to form a better loss
estimate.

5.1 Algorithm

TheLEASTs algorithm is given in figure 7. The first por-
tion of the code counts all retransmits. The second half of
thefor loop in the code is used to estimate the number of
spurious retransmits sent. The code is different depend-
ing on whether the receiver supports the DSACK option
[FMMP00].

If the receiver (i) supports the DSACK option
[FMMP00], (ii) the incoming acknowledgment contains
DSACK information and (iii) the DSACK information re-
ported is for a retransmitted segment then the TCP sender
considers the retransmission to be spurious2. DSACK

2Note: to work optimally, the receiver should not delay an ACKcon-
taining DSACK information. This advice agrees with [APS99]’s guid-
ance that out-of-order arrivals should trigger immediate ACKs. If an
ACK with a DSACK must be delayed, the DSACK information should
be included in the delayed acknowledgment. In our experiments the re-

blocks are only sent on one acknowledgment packet.
Therefore, if an ACK with a DSACK is lost in the net-
work, the information conveyed in the DSACK will not
be resent and the sender’s estimate of the loss rate will be
affected.

If the receiver does not support DSACK, theLEASTs

algorithm looks forredundant SACKs. That is, return-
ing ACKs that do not advance the cumulative ACK point
and contain no previously unknown SACK information.
Such an ACK is assumed to have been caused by a need-
lessly retransmitted data segment that does not update the
state of the receiver’s buffer. However, ACK reordering
can also cause an ACK to be deemed redundant in the
case where a later ACK passes an earlier ACK in the net-
work and conveys the same information (and likely more)
than the earlier ACK. When the ACK that was originally
transmitted first (but, arrives second) is processed by the
sender, all the information contained within the ACK is
redundant, hence meeting our criteria for being counted
as indicating a needless retransmission and fooling our al-
gorithm.

As with LEASTr, the SACK variant of the algorithm
is also susceptible to packet duplication in the network
path. However, when using DSACK, the sender has some
protection by ensuring that a segment reported as arriving
multiple times was actually retransmitted by the sender.

5.2 Validation

As outlined in§ 2, we obtained 2577 valid SACK trans-
fers from the NIMI measurement mesh. We calculated the
loss rate for each transfer by comparing the sender and re-
ceiver traces. We then use the sender-side trace to derive

ceiver immediately transmits an ACK when a DSACK is required.
9

two LEASTs estimates of the loss rate (with and without
DSACK information).

Figure 8 shows the distribution of the percent differ-
ence between the actual loss rate and our estimates. Using
the number of retransmits in the connection (as discussed
in § 3) is the worst of our estimators. The two remain-
ing estimators use theLEASTs algorithm to attempt to
correct for spurious retransmissions. As the plot shows,
when using DSACK, nearly 96% of the estimates are ex-
act, with less than 1% of the connections experiencing es-
timates that are more than 10% different from the actual
loss rate. When DSACK is not used and a count of the
redundant (S)ACKs is employed instead, we note approx-
imately 60% of the estimates being exact, with roughly
9% of the connections showing estimates that are more
than 10% different from the actual number of losses.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-40 -20 0 20 40

C
D

F

Percent Error

LEAST: S+D
LEAST: SACK

Retransmits

Figure 8: Accuracy ofLEASTs compared to the actual
loss rate (percent differences that are less than zero indi-
cate underestimates while differences over zero indicate
overestimates).

When using DSACK, the error in theLEASTs algo-
rithm is always explained by lost spurious retransmits or
lost ACKs that contain DSACK information. The source
of error could be reduced by either (i) making DSACK
more robust to ACK loss by sending it more than once (ala
the rest of the SACK information) or (ii) by making TCP’s
retransmission machinery less likely to transmit spurious
retransmits (see§ 7). In addition, several non-DSACK
schemes for detecting spurious retransmits have been out-
lined in the literature [LK00, SKR02] and may be gener-
alizable to the problem of finding spurious retransmits for
loss estimation.

Without DSACK, LEASTs is more prone to mis-
estimation. To determine the source of error, we use the
LEASTs algorithm to analyze the trace made by the re-
ceiver so that we see the exact stream of acknowledgments
that are sent. Using the receiver-side acknowledgment
stream yields exactLEASTs estimates in over 84% of the

connections and estimates within 10% of the actual loss
rate in over 99% of the connections. In addition, the un-
derestimation shown in figure 8 is eliminated. This analy-
sis illustrates that most of the error in theLEASTs (with-
out DSACK) estimates is caused by the packet dynam-
ics along the network path traversed by the ACKs (e.g.,
losses, reordering, etc.). Therefore, we believe that im-
provingLEASTs further would require either more infor-
mation (from more than just the sender’s vantage point) or
heuristics that try to infer additional information from the
ACK stream.

6 Implementation Path

In the previous sections, we have described three variants
of LEAST : LEASTr for TCP Reno connections and two
variants ofLEASTs for connections that support SACK
(with and without the DSACK option). The natural ques-
tion that arises in the face of three different algorithms is
which to use for a given (arbitrary) TCP connection (or
trace). The following is a sketch of a scheme that can be
used to determine which variant ofLEAST to employ.

1. If either of the hosts involved in a connection fails
to advertise support for selective acknowledgments
in TCP’s three-way handshake, then loss estimation
should proceed usingLEASTr.

2. Assuming SACK is supported by both hosts in a con-
nection, loss estimation can proceed using one of the
SACK variants. Unfortunately, the DSACK option
is not negotiated during the connection setup phase.
Therefore, which variant ofLEASTs to use is not
immediately obvious. Two approaches to loss esti-
mation are possible, as follows.

In the case when LEAST is being computed by a
TCP implementation or by some form of measure-
ment tool based on TCP (alasting [Sav99] or TBIT
[PF01]), the first two data segments sent can ex-
plicitly overlap by 1 byte. If the receiver supports
DSACK, this overlap will cause a DSACK to be re-
ported in the returning ACK. Therefore, based on the
returning ACK, the TCP can determine which variant
of LEASTs to employ.

On the other hand, in the case of estimating loss
rates by passively monitoring TCP connections, the
above active manipulation of the byte-stream is not
possible. Therefore, the recommended loss estima-
tion approach is to assume the receiver does not sup-
port DSACK until a DSACK notification arrives and
then switch variants of the algorithm. To imple-
ment this approach, the code given in figure 7 is
changed slightly, as follows. Theusing DSACK
boolean starts being set to “false”. When (a) ACK

10

segments arrive, (b) using DSACK is set to “false”
and (c) the incoming ACK contains a DSACK then
theusing DSACK flag is set to “true” and the count
of duplicate transmits (dup xmits) is reset to zero.
This results in a fresh start at loss estimation using
the DSACK variant ofLEASTs.

Using the above approach,LEAST can be used in en-
vironments without a priori knowledge of the TCP variant
being utilized (or, from traces containing a multitude of
different TCP variants).

7 Reducing Spurious Retransmis-
sions With SACK

As shown in previous sections, the fundamental prob-
lem with estimating the loss rate of a TCP connection
is that TCP retransmissions are not an accurate reflection
of the actual loss. Designing algorithms that make better
choices about what to retransmit will simplify loss esti-
mators (possibly obviating the need for anything over a
retransmission count), as well as reduce the shared net-
work resources expended on carrying traffic that accom-
plishes no useful work. In this section we show that more
aggressive accounting of data during loss recovery with
SACK can reduce the number of needless retransmits sent
by TCP (and, hence, reduce the amount of estimation that
an algorithm, such asLEASTs, has to do to arrive at the
actual loss rate). In this section we explore two different
SACK-based loss recovery schemes in terms of the num-
ber of needless retransmits triggered by each algorithm.

7.1 Why SACK Needlessly Retransmits

The specification for TCP’s selective acknowledgment
(SACK) option [MMFR96] outlines the information a
SACK receiver is to return to the sender when the re-
ceiver’s socket buffer is non-contiguous, as follows:

• The first SACK block returned is to contain the re-
ceived range of data that includes the arriving data
segment.

• Any remaining option space is to be used to resend
the most recent discontiguous SACK blocks trans-
mitted.

In addition, [MMFR96] specifies that TCP senders clear
any collected SACK information upon the expiration of
the retransmission timer to allow for the possibility the
receiver may reneg3 on a previously sent SACK block.

3[MMFR96] allows a receiver to discard received data that it has not
cumulatively acknowledged (to recover buffer space, for example). The
receiverrenegs by not keeping data that itimplied to the sender (through
a SACK) would not need to be retransmitted.

The above specification creates a situation where the
TCP sender sometimes never obtains valuable information
about data in the receiver’s buffer after a timeout, which
leads to the possibility that the sender will needlessly re-
transmit segments. As an example, table 1 shows a map
of the receiver’s socket buffer at the point when the TCP
sender’s RTO timer fires. Note that segments 1, 4, 7, 9,
and 13 are missing. The latest three SACK blocks trans-
mitted to the data sender are blocks:B6, B8 andB10 (cov-
ering segment 8, segments 10-12, and segment 14 respec-
tively). The following events occur after the RTO timer
fires:

1. The sender retransmits segment 1.

2. When segment 1 arrives at the receiver, an acknowl-
edgment is sent containing a cumulative ACK cover-
ing segment 3 and the SACK blocksB6, B8 andB10

(the most recently transmitted SACK blocks).

3. When the ACK sent in step 2 arrives, the sender will
increase the congestion window by 1 segment and
will retransmit segments 4 and 5. While segment 4
requires retransmission at this point, segment 5 does
not (as shown in table 1). However, the TCP sender
has not been informed that segment 5 has arrived
(since clearing the scoreboard) and therefore assumes
it requires retransmission.

4. Segment 4 arrives at the receiver which generates a
cumulative ACK covering segment 6 and again sends
the SACK blocksB6, B8 andB10. When this ACK
arrives, the sender will have complete knowledge of
the receiver’s buffer and will not needlessly retrans-
mit any more segments.

The above example shows a simple situation where the
sender transmits one needless segment into the network.
As the amount of outstanding data grows and becomes
more fractured (requiring more SACK blocks to describe),
the number of spurious retransmissions increases because
the receiver only reports information about the far right-
side of the window. This general problem is the cause for
the vast majority of the needless retransmits observed in
our SACK dataset described in§ 5. Several possible so-
lutions to this problem exist. For instance, the receiver
could change the scheme it uses to choose which SACK
blocks to include in an ACK to provide the sender with
more timely information. Alternatively, the sender could
be made more conservative – retransmitting segments that
are in a “bounded hole” in the sequence space where the
receiver has informed the sender about arrived segments
on each side of the segment being retransmitted (e.g., re-
transmitting segment 13 before segment 5 in the above ex-
ample). A third possible mitigation for this problem is to

11

Blocks of Received and Missing Segments
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Received Segment Range 2-3 5-6 8-8 10-12 14-14

Table 1: Sample socket buffer map at receiver.

repair as much loss as possible before the RTO timer ex-
pires, thus allowing the receiver to describe the state of its
buffer in fewer SACK blocks. This last solution does not
attempt to fix the fundamental problem, but rather tries to
avoid the problem. We experiment with a second SACK-
based loss recovery algorithm to understand the degree to
which it is able to repair more loss before the RTO timer
expires and describe our results in the following subsec-
tions.

7.2 SACK Algorithm Descriptions

The SACK algorithm implemented incap is based on
[FF96] which, in turn, is codified inns2’s sack1 TCP vari-
ant. The algorithm keeps an estimate,pipe, of the num-
ber of segments in the network. When loss recovery is
started,pipe is initialized to the amount of outstanding
data. For each duplicate ACK received during recovery,
pipe is decremented by 1 segment. For each segment sent
(new or retransmit),pipe is incremented by 1 segment.
For each partial ACK received,pipe is decremented by
2 segments (one for the original segment transmitted and
one for the retransmit). Whenpipe is less thancwnd, TCP
can send (retransmitting if data for resend is available or
sending new segments if not).

[BAFW03] outlines a second SACK-based loss recov-
ery algorithm, which we will denotesack2, that is based
on the principles ofsack1 but is more careful in estimat-
ing how much data is in the network4. The key difference
betweensack1 andsack2 is thatsack2 can declare a seg-
ment “lost” and therefore deduct it from thepipe estimate.
Sack1 does not do this, but rather relies only on ACK ar-
rivals to declare that data has left the network (missing
the fundamental impossibility of a lost segment trigger-
ing an ACK).Sack2’s more aggressive estimation ofpipe

provides (re)transmission opportunities sooner than when
usingsack1. Therefore, in the case of the RTO timer expir-
ing (e.g., if a retransmit is, itself, lost)sack2 has an easier
job thansack1 becausesack2 has likely repaired more loss
before the RTO timer fires thansack1.

4Note: The authors ofsack1 note in [FF96] that one may be able to
design a better algorithm by being more careful – but, that was beyond
the scope of their initial study.

Parameter Range Increment
Df 25% – 75% 5%
Dd 0% – 10% 1%
Da 0% – 10% 1%

Table 2: Ranges for simulation parameters.

7.3 Simulation Comparison

To explore the SACK algorithms detailed above, we wrote
a small simulator in Python that models both the sender
and receiver during the loss recovery phase of a TCP
SACK connection. The simulator,tcpsim, consists of a
sender and receiver separated by a link with a one-way de-
lay of 0.25 seconds and a bandwidth of 10 Mbytes/second.
The simulator’s data originator uses eithersack1 or sack2
for loss recovery. The simulator starts by transmitting a
window of 250 data segments (assumed to be the last win-
dow sent in slow start, for instance). The simulation ends
when loss recovery is finished – i.e., upon receipt of an
ACK covering the highest segment outstanding when re-
covery started.

From the first window of data, the first segment,S1,
is always dropped (and subsequently fast retransmitted).
In addition, segments are dropped from the first window
of data randomly with probabilityDf . After the first win-
dow of data transmission,tcpsim drops data segments with
probability Dd and drops acknowledgments with proba-
bility Da. Table 2 outlines the parameter space used for
the simulations presented in this paper. We use two dif-
ferent loss rates for data segments to approximate the sit-
uation at the end of TCP’s slow start phase where TCP
roughly doubles the congestion window every round-trip
time. This causes a situation where one window of data
often experiences drastically different loss characteristics
than would be expected given the steady state loss rate of
the network path. We conducted 30 random simulations
with each permutation of the parameter space and report
medians in this paper.

In addition to always dropping the first segment sent,
S1, tcpsim also always drops the first retransmit ofS1 to
ensure that the retransmission timer (RTO) is required to
recover some of the loss5.

5Both sack1 and sack2 require the use of the RTO timer to recover
from lost retransmits.

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

C
D

F

Needless Segments Transmitted

sack1
sack2

Figure 9: Distribution of needless retransmits across all
tcpsim simulations.

Figure 9 shows the distribution of the number of need-
less retransmits sent by each SACK variant on each trans-
fer. The plot shows the distribution of the median of the
30 random simulations of each loss scenario described
above. As shown, the amount of needlessly retransmitted
data sent bysack1 is 3–17 times the amount spuriously
sent bysack2. While sack2 suffers fewer spurious retrans-
mits, it also sends 7–39% more unique bytes during re-
covery thansack1 and loss recovery takes approximately
20 seconds (or roughly 40 round-trip times) less than when
usingsack1 (on median).

These results show thatsack2’s more aggressive ac-
counting during SACK-based loss recovery allows it to
be more accurate in its overall retransmission behavior.
Sack2’s use of a more aggressive recovery before the RTO
timer fires largely avoids the problems caused by the re-
ceiver not re-populating the sender’s SACK scoreboard af-
ter an RTO. In addition, we note thatsack2 uses its trans-
mission opportunities more wisely since it sends more
unique data thansack1. Finally, we note thatsack2’s ag-
gressiveness does not violate the spirit of TCP’s conges-
tion control principles [Flo00] in that multiplicative de-
crease is applied.

The results in this section suggest that the TCP sender’s
choice of which particular SACK-based loss recovery al-
gorithm to utilizecan have an impact on the performance
of a loss estimator such asLEAST . By reducing the
number of needless retransmits sent into the network, the
TCP sender reduces the amount ofestimation that needs
to happen to accurately assess the loss rate and distills the
problem tocounting retransmissions. The loss estimation
techniques outlined in this paper are still useful for as-
sessing the loss rate on a wide variety of arbitrary traffic.
However, the results of this section suggest that when us-
ing an active measurement strategy, researchers would be
well served to choose a SACK-based loss recovery strat-

egy carefully.

8 Conclusions and Future Work

The following are the major contributions of this paper:

• Through measurements from the NIMI mesh of mea-
surement points, we have shown that using a count
of the number of retransmissions sent by TCP pro-
vides a poor estimate of the number of packets actu-
ally lost.

• We have developed sender-side loss estimation tech-
niques for TCP Reno, SACK and SACK with
DSACK that estimate the loss rate of the network
path within 10% of the actual loss rate in over 90% of
the transfers we conducted over the NIMI measure-
ment mesh.

• We have found the majority of the sources of error
in the LEAST estimate of the loss rate. The main
causes of errors in the estimate come from network
dynamics that cannot be mitigated from information
only available on the sender side of the TCP connec-
tion (e.g., ACK loss).

• We found that, in some situations, TCP’s SACK gen-
eration scheme does not provide the TCP sender with
timely information about the state of the receiver’s
buffer. This triggers spurious retransmits from the
TCP sender. We explored a second SACK-based
loss recovery algorithm (outlined in [BAFW03]) and
show that it is effective at reducing the number of
needless retransmits (by roughly an order of magni-
tude in the cases we tested). In turn, this makes the
job of accurately estimating the loss rate easier.

In addition, the results outlined in this paper bring up
several areas for future research:

• In § 7 we outlined a general problem with SACK-
based loss recovery after TCP’s RTO timer fires (and
the TCP sender purges its copy of the SACK score-
board). The fundamental problem is that the receiver
only informs the sender about the right side of the
window and so the sender’s retransmission of the
data on the left side of the window is fairly gross.
While we examined an alternate SACK algorithm
that mitigates the adverse effect of the missing in-
formation, we did not fix the problem itself. Future
work should include examining ways to send more
timely SACK information after the RTO timer fires.

• TestingLEAST against different variants of TCP
(e.g., NewReno [FH99]) to assess how well the tech-
niques apply would be useful.

13

• Testing the applicability ofLEAST to various
tasks, such as modeling TCP performance or using
LEAST with CETEN techniques (which attempt to
aid TCP performance by taking into account packets
lost due to corruption when choosing a congestion
response) would be useful. While the experiments
outlined in this paper illustrate that the estimate of
the loss rate is often “quite good”, it is unclear what
problems the estimate is “good enough” for and what
problems need an even better estimate (which, ar-
guably, would require multiple vantage points).

• A more complete comparison ofsack1 and sack2
would be useful.

• We believe that merging the techniques presented in
this paper with those given in [BV02] may allow for
the leveraging of better loss estimation from arbitrary
vantage points.

Acknowledgments

This paper benefited from discussions with Ethan Blan-
ton, Josh Blanton and Joseph Ishac. David Irimies helped
with tcpsim. David Irimies and the anonymous review-
ers provided valuable comments on a draft of this paper.
Andy Adams and Vern Paxson provided a large amount of
assistance with NIMI. Our thanks to all!

References

[All01] Mark Allman. Measuring End-to-End Bulk Trans-
fer Capacity. InACM SIGCOMM Internet Mea-
surement Workshop, November 2001.

[APS99] Mark Allman, Vern Paxson, and W. Richard
Stevens. TCP Congestion Control, April 1999.
RFC 2581.

[BA02] Ethan Blanton and Mark Allman. On Making TCP
More Robust to Packet Reordering.ACM Com-
puter Communication Review, 32(1):20–30, Jan-
uary 2002.

[BAFW03] Ethan Blanton, Mark Allman, Kevin Fall, and Lili
Wang. A Conservative Selective Acknowledgment
(SACK)-based Loss Recovery Algorithm for TCP,
April 2003. RFC 3517.

[BPS99] Jon Bennett, Craig Partridge, and Nicholas Shect-
man. Packet Reordering is Not Pathological Net-
work Behavior. IEEE/ACM Transactions on Net-
working, December 1999.

[BV02] Peter Benko and Andras Veres. A Passive Method
for Estimating End-to-End TCP Packet Loss. In
Proceedings of IEEE Globecom, 2002.

[EOA03] Wesley Eddy, Shawn Ostermann, and Mark All-
man. New Techniques for Making Transport Proto-
cols Robust to Corruption-Based Loss, July 2003.
Under submission.

[FF96] Kevin Fall and Sally Floyd. Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP.
Computer Communications Review, 26(3), July
1996.

[FH99] Sally Floyd and Tom Henderson. The NewReno
Modification to TCP’s Fast Recovery Algorithm,
April 1999. RFC 2582.

[Flo95] Sally Floyd. TCP and Successive Fast Retransmits.
Technical report, Lawrence Berkeley Laboratory,
May 1995.

[Flo00] Sally Floyd. Congestion Control Principles,
September 2000. RFC 2914.

[FMMP00] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and
Matt Podolsky. An Extension to the Selective
Acknowledgement (SACK) Option for TCP, July
2000. RFC 2883.

[Hoe96] Janey Hoe. Improving the Start-up Behavior of a
Congestion Control Scheme for TCP. InACM SIG-
COMM, August 1996.

[JBB92] Van Jacobson, Robert Braden, and David Borman.
TCP Extensions for High Performance, May 1992.
RFC 1323.

[JD02] Hao Jiang and Constantinos Dovrolis. Passive Esti-
mation of TCP Round-Trip Times.ACM Computer
Communication Review, 32(3), July 2002.

[KAPS02] Rajesh Krishnan, Mark Allman, Craig Partridge,
and James P.G. Sterbenz. Explicit Transport Er-
ror Notification (ETEN) for Error-Prone Wireless
and Satellite Networks. Technical Report TR-8333,
BBN Technologies, March 2002.

[KR02] Rajeev Koodli and Rayadurgam Ravikanth. One-
Way Loss Pattern Sample Metrics, August 2002.
RFC 3357.

[LK00] Reiner Ludwig and Randy Katz. The Eifel Algo-
rithm: Making TCP Robust Against Spurious Re-
transmissions.Computer Communication Review,
30(1), January 2000.

[MA01] Matt Mathis and Mark Allman. A Framework for
Defining Empirical Bulk Transfer Capacity Met-
rics, July 2001. RFC 3148.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and
Allyn Romanow. TCP Selective Acknowledgement
Options, October 1996. RFC 2018.

[MSMO97] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and
Teunis Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm.Computer Com-
munication Review, 27(3), July 1997.

[PAM00] Vern Paxson, Andrew Adams, and Matt Mathis.
Experiences with NIMI. InProceedings of Passive
and Active Measurement, 2000.

14

[Pax97] Vern Paxson. End-to-End Internet Packet Dynam-
ics. InACM SIGCOMM, September 1997.

[PF01] Jitendra Padhye and Sally Floyd. Identifying the
TCP Behavior of Web Servers. InACM SIG-
COMM, August 2001.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and
Jim Kurose. Modeling TCP Throughput: A Sim-
ple Model and its Empirical Validation. InACM
SIGCOMM, September 1998.

[PMAM98] Vern Paxson, Jamshid Mahdavi, Andrew Adams,
and Matt Mathis. An Architecture for Large-
Scale Internet Measurement.IEEE Communica-
tions, 1998.

[Pos81] Jon Postel. Transmission Control Protocol,
September 1981. RFC 793.

[Sav99] Stefan Savage. Sting: a TCP-based Network Mea-
surement Tool. InProceedings of the 1999 USENIX
Symposium on Internet Technologies and Systems,
October 1999.

[SKR02] Pasi Sarolahti, Markku Kojo, and Kimmo
Raatikainen. F-RTO: A New Recovery Algorithm
for TCP Retransmission Timeouts. Technical Re-
port C-2002-07, University of Helsinki, February
2002.

[SMM98] Jeff Semke, Jamshid Mahdavi, and Matt Mathis.
Automatic TCP Buffer Tuning. InACM SIG-
COMM, September 1998.

15

