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4 Introduction and Motivation |

e Plenty of researchers have looked at the impact of long,
static delays on TCP performance.

- See RFCs 2488, 2760 and references therein.

e But, what about situations where the propagation delay
changes over time?

- E.g., NASA's Earth-observing satellites.
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- Introduction and Motivation (cont.) |

e Our paper is based on models of satellites sending data to
the ground.

e However, we believe the results apply to any situation
where modest motion is involved.
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4 Simulation Environment |

e \We used a variety of spacecraft orbiting in the LEO and
MEO bands.

- These spacecraft send data to TDRS, which transmits
the data to Earth.
e \We used Satellite Toolkit 4.0 to generate orbital data.
e \We introduced a variable delay link into the ns network
simulator.

- The propagation delay along the link changes as a
function of time, based on the STK output.
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: Simulation Environment (cont.) |

e Simulated topology:

LEO/MEO

100 Mbps

___________________

— e e - =
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Variable Delay Scenarios
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4 Simple RTO Experiments |

e TCP uses a retransmission timer (RTO) to guarantee
reliable data delivery.

e [ he standard RTO estimator:

RTO <+ SRTT + 4 -RTITVAR

e RTO measured and calculated using a clock with
granularity G.

- Traditionally G = 500 ms

- Some have suggested finer grained timers will yield
better performance, so we also used G = 1 ms.
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: Simple RTO Experiments (cont.) |

e LOSS is also taken as an indication that the network is
congested.

- Hence, the sending rate is reduced.

e [ herefore, one desirable property of an RTO estimator is
that it not retransmit segments too early and cause a
needless reduction in sending rate.
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: Simple RTO Experiments (cont.) |

e Do the variable delay scenarios used in our experiments
confuse the RTO estimator?

- Set the maximum TCP window size to 1 segment.
- Run a TCP transfer for the length of the scenario.
- Watch for retransmissions.
e Answer: No. The RTO estimator is able to cope with the
changing propagation delays we tested.

- But, what about a slightly more dynamic environment
with queueing delays?
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: Single Flow Tests |

e Tested various file sizes (4—10,000 packets).

e T he transfer start time was roughly every 60 seconds over
the course of the scenario.

e Started with G = 500 ms
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- Single Flow Tests (cont.) |
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- Single Flow Tests (cont.) |

e AS expected...
- Small files underutilize the capacity.
- Large files nearly fully utilize the capacity.

- More throughput variation in small files.

e AISO, nO unnecessary retransmits were detected.
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- Single Flow Tests (cont.) |

e What about using a fine-grained timer?

- Small transfers (4—200 packets) did not cause needless
retransmissions.

e Small transfers do not build queues — and we know
that fine-grained timers work well with no queues on
our delay scenarios.

» RTTV AR is initially £4imeas which inflates the RTO
at the beginning of a transfer, providing some
protection against spurious retransmits.

- Large transfer do experience needless retransmits.
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Single Flow Tests (cont.) |
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4 Handoff Scenario |

e Our last scenario models a perfect (no loss, no reordering)
handoff that essentially moves from a single GEO hop to a
double hop and back.

e G =1 ms cannot cope with the drastic change in RTT
caused by moving from a single hop to a double hop.

e G = 500 ms does not needlessly retransmit even when
crossing the large jump in throughput.
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4 Conclusions |\

e With a large minimum RTO (e.g., as we get with
G = 500 ms) TCP performs quite well in the environments
examined.

e Fine-grained timers reduce performance for long transfers.

e AsS in more static environments, short transfers often
underutilize the capacity of the network path.

e [ he throughput obtained by short transfers is somewhat
variable depending on start time.
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4 Future Work |

e Consider more realistic handoffs where reordering and/or
lOSsS may occur.

e VWhen a satellite is moving, typically the signal strength is
changing, as well as the propagation delay. This will yield
different BERs at different points in the curve. This should
be investigated.

e A more realistic traffic pattern should be obtained and used.
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