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Abstract—This paper provides a preliminary investigation into the im-
pact a link with changing propagation delay has on the performance of
TCP file transfers. We investigate over a dozen different variable delay
patterns, based on spacecraft movement. We highlight the performance
impact of such variability, paying close attention to TCP’s retransmission
timer, which is based on the observed round-trip time of the network path.
In addition, we explore one scenario in which the round-trip time across a
network path suddenly changes due to a large change in the path between
the two end-points. We conclude that the variable delay network paths
studied in this paper do not drastically impact TCP performance.
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I. I NTRODUCTION

In this paper we investigate the effects of network links
with propagation delays that change over time on the perfor-
mance of the Transmission Control Protocol (TCP) [1]. NASA
would like to use commercial protocols to communicate with
its assets in space and therefore, this preliminary investiga-
tion involves communication between various spacecraft and
the Earth. However, the results are applicable in any situa-
tion where the propagation delay of a link changes modestly
over time. The round-trip time (RTT) of the network path
used in our experiments is not only changing, but also quite
large. Therefore, our environment shares a number of chal-
lenges with the more static long-delay environments that have
been researched by the community recently (see [2], [3] for an
overview). In this paper we will investigate not only the per-
formance TCP is able to attain over links with variable delay,
but also the impact of the variable propagation delay on TCP’s
retransmission timeout(RTO).

TCP provides reliable data transfer to higher-layer applica-
tions. In order to do this, TCP must detect when a segment has
been lost and then retransmit the segment. A number of ways
for detecting lost segments have been developed (see [4] for a
discussion). The most basic mechanism is for TCP senders to
track the round-trip time (RTT) of the network path. If an ac-
knowledgment has not been received in the expected amount
of time (based on the RTT), the segment is retransmitted. If
the RTT changes rapidly the RTO may not be able to adapt and
the TCP sender may end up retransmitting segments that would
have not required retransmission had the sender simply waited
longer for the acknowledgment [5].

This paper is a preliminary investigation and is organized
as follows. Section II outlines the methodology and simula-
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tion environment used in our experiments. Section III outlines
simple tests that verify that TCP’s RTO estimator correctly han-
dles the variable delay scenarios investigated in this paper. Sec-
tion IV outlines simple investigations of various TCP transfer
sizes over variable delay network paths. Section V discusses
simple experiments involving handoffs between two signifi-
cantly different network paths. Finally, section VI gives our
conclusions and outlines future work in this area.

II. SIMULATION SETUP

The variable delay scenarios used in our investigation were
developed by choosing several satellite orbits within the low-
Earth orbit (LEO; 500 km – 900 km altitude), mid-Earth orbit
(MEO; 5,000 km – 12,000 km altitude), and geosynchronous
(GEO; 36,000 km altitude) orbital bands. We used the Satellite
Tool Kit (STK), version 4.0, to determine the line-of-sight dis-
tance from a GEO satellite (NASA’s Tracking and Data Relay
Satellite System or TDRS) to each of the LEO and MEO satel-
lites considered. The orbital data was taken for the time period
July 1–2, 1999. During this time period some satellites have
as many as fifteen contact periods with the TDRS 5 satellite,
while others have as few as one contact period. Two contact
periods were selected for each satellite. The first was the min-
imum line-of-sight distance variability period, and the second
was the maximum variability period. The STK distance data
was divided by the speed of light, to obtain time delays, and
processed in Matlab to obtain equations for each of the scenar-
ios. We implemented a new type of link delay in thensnetwork
simulator that used the developed equations to set the link delay
as a function of time.

The topology of the network used in our investigation is
shown in figure 1. The characteristics of the chosen variable
delay scenarios are outlined in table I. Finally, the RTTs of the
various link delay scenarios as a function of time during the
contact period are given in figure 2.

In addition to investigating different variable delay scenarios
the transfer size varies between 4 segments and 10,000 seg-
ments. The SACK-based TCP variant included inns is used in
all experiments. The segment size is 1500 bytes in all sim-
ulations. The advertised window modeled is large enough
(500 segments) to never be a limiting factor in the transfers
(emulating hosts with autotuned socket buffers [6]). Finally,
the clock granularity,G, used to measure RTTs and set the re-
transmission timeouts is varied. We useG = 500ms to model
many current, widely used implementations of TCP. In addi-
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Scenario Scenario Orbit Apogee3 Perigee4

Number Name Band (km) (km)
1 Minimum variability from Sputnik-405to TDRS 5. LEO 293 286
2 Maximum variability from Sputnik-40 to TDRS 5. LEO 293 286
3 Minimum variability from MIR Space Station to TDRS 5. LEO 351 356
4 Maximum variability from MIR Space Station to TDRS 5. LEO 351 356
5 Minimum variability from International Space Station to TDRS 5.LEO 400 384
6 Maximum variability from International Space Station to TDRS 5.LEO 400 384
7 Minimum variability from COBE6to TDRS 5. LEO 898 890
8 Maximum variability from COBE to TDRS 5. LEO 898 890
9 Minimum variability from RADCAL7to TDRS 5. LEO 891 770
10 Maximum variability from RADCAL to TDRS 5. LEO 891 770
11 Minimum variability from LAGEOS-28to TDRS 5. MEO 5951 5619
12 Maximum variability from LAGEOS-2 to TDRS 5. MEO 5651 5619
13 From NAVSTAR-019to TDRS 5 (one continuous contact period). MEO 20559 20254

TABLE I

CHARACTERISTICS OF CHOSEN VARIABLE DELAY SCENARIOS.

S R1
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R2D
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LEO/MEO

Earth

Fig. 1. Network topology.

tion, we useG = 1 ms to investigate whether performance
could be increased by using a more accurate timer. Finally, we
measure performance over the entire curve (shown in figure 2)
by varying the start time of the connections. Specifically, our
start times were roughly every 60 seconds (the start time is ran-
domly selected to be within� 0.5 seconds of each 60 second
interval).

3Apogee is the point in an orbit most distant from the body being orbited.
4Perigee in the point in an orbit nearest to the body being orbited.
5Sputnik-40 represents the 1/3 scale Sputnik launched from MIR on October

4, 1997.
6COBE represents the Cosmic Background Explorer launched November 18,

1989.
7RADCAL is the Radar Calibration Satellite launched June 25, 1993.
8LAGEOS-2 is the Laser Geodynamics Satellite launched October 22, 1992.
9NAVSTAR-01 is the first GPS prototype satellite launched February 22,

III. RTO ESTIMATOR VALIDATION

The first test conducted over the network paths outlined
above was to verify that the RTO estimator was able to adapt to
slowly changing propagation delays. The retransmission time-
out (RTO) is the method of last resort for repairing lost seg-
ments and providing reliable data delivery to applications us-
ing TCP. The estimator works by tracking the round-trip time
(RTT). If a TCP segment is transmitted, but not acknowledged
within the expected amount of time the segment is retransmit-
ted. In addition, TCP assumes the dropped segment is due
to network congestion (see [7] for the original discussion of
TCP’s congestion control algorithms and [4] for the specifi-
cation of the algorithms). Therefore, thecongestion window
(cwnd) andslow start threshold(ssthresh) are reduced to 1 seg-
ment and half the previouscwndrespectively. Thecwndspec-
ifies the amount of data the TCP sender can transmit before
receiving an acknowledgment (ACK). Hence, thecwndreduc-
tion effectively reduces TCP’s sending rate. Therefore, the goal
of a good estimator should be to minimize the number of un-
necessary retransmissions triggered.

The RTO estimator used in most TCP implementations (and
this study) is based on the estimator presented in [7] and spec-
ified in [8]. The algorithm calls for TCP to track a smoothed
average of the RTT,SRTT , as well as an estimate of the vari-
ance in the samples,RTTV AR. The RTO is then calculated
asSRTT +K � RTTV AR whereK = 4 (per most TCP im-
plementations). (See [8] for the exact details.)

For each of the variable delay scenarios outlined above (S1 –
S13) we started a TCP sender at time 0 seconds and allowed
the transfer to continue for the entire length of the scenario.
The maximum TCP window size was set to 1 segment such

1978.
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Fig. 2. RTTs of the variable delay scenarios investigated.
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that queueing delays were not an issue. In this experiment,
1 segment was transmitted at a time. After the acknowledg-
ment (ACK) for the segment is received a RTT sample is taken,
the RTO is updated and another segment is sent. If the RTO
estimator was not able to accurately adapt to the changing RTT
of the network path we would have observed the TCP sender
retransmit segments needlessly. However, for all variable de-
lay scenarios and forG = 1ms andG = 500ms we observed
no retransmissions in this simple set of experiments.

These experiments indicate that the RTO estimator is able
to cope with the changing RTT of the link scenarios studied
in this paper. As outlined in [5] spikes in the RTT can cause
needless retransmissions. Such network characteristics did not
come into play in these experiments.
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Fig. 3. Throughput as a function of variable delay scenario.

IV. SINGLE FLOW TCP TESTS

We conducted simulations taking into account all combina-
tions of the variables outlined in section II. Figure 3 shows
the average throughput as a function of the variable delay sce-
nario for each file size tested andG = 500ms. The results are
expected and conform to prior results obtained in static long-
delay networks [9]. As the file size grows the throughput in-
creases. The shorter transfers spend most (if not all) of their
time using the slow start algorithm and therefore obtain lower
throughput. The figure includes error bars that indicate the
minimum and maximum throughput observed. Unlike in static
delay environments the throughput a given transfer receives is
modestly dependent on the delay pattern when the transfer is
being conducted. As the figure illustrates, short transfers are
more susceptible to performance variation than long transfers
(where the error bars are not even noticeable). ScenariosS11 –
S13 show the most amount of throughput variation. This is ex-
pected as the RTT varies more during these scenarios than the
others (by at least a factor of 2). Finally, note that the largest
transfer (10,000 packets) essentially fully utilizes the available
bandwidth (1.5 MBps) of the network path in all scenarios.

Next, we investigated whether the clock granularity,G, TCP
uses to measure RTTs and schedule retransmissions has pro-
nounced effects in this environment. For the smaller transfer
sizes (4–200 segments) the value ofG did not have an im-
pact on the transfer. However, for the two largest transfer sizes
(2,000 and 10,000 packets) a clock granularity ofG = 1 ms

did cause needless retransmissions, while whenG = 500 ms

the transfers experienced no bad retransmissions.
We found two reasons for the lack of bad retransmissions in

short transfers. [5] suggests that bad timeouts are caused by
spikes in the RTT. However, small transfers with no compet-
ing traffic do not build queues large enough or fast enough to
create RTT spikes. Therefore, the RTO estimator is well be-
haved. The second reason TCP avoids bad timeouts in short
transfers isRTTVAR is initially set toR

2
whereR is the first

RTT measurement taken. Hence, when the RTT is large this
adds a significant delay to the RTO calculation at the begin-
ning of a connection (or for an entire short transfer), making
the estimator less likely to trigger a bad retransmit.
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Fig. 4. RTO components as RTT exceeds RTO on theS13 network link.

When transferring large files withG = 1 ms we did ob-
serve the RTO timer firing prematurely and needlessly retrans-
mitting data. These events were caused by RTT spikes due
to rapid increases in queueing delays. TCP experienced need-
less retransmissions in every variable delay scenario exceptS7.
Figure 4 shows the RTO components for a 2,000 segment file
transfer across theS13 network link. As shown in the plot,
approximately 69 seconds intoS13 (and� 9 seconds into the
TCP transfer) the RTT exceeds the RTO. This causes a need-
less retransmission. The root cause of this is a spike in the
RTT caused by the queueing delay increasing as TCP quickly
increases the load on the network during slow start. The RTO
algorithm is not able to adapt to this RTT spike fast enough
and therefore the TCP sender needlessly retransmits a segment
roughly 23 ms before the ACK for the original transmission ar-
rives at the sender. A TCP sender using a 500 ms granularity
clock does not needlessly retransmit in this case. As a result,
whenG = 1ms the transfer takes approximately 110 seconds,
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while when usingG = 500 ms the transfer takes only about
82 seconds. Note that we ran an additional simulation with a
static link delay of approximately the same delay as shown in
figure 4 withG = 1 ms and the RTT spike caused a needless
retransmission in that case, as well. Therefore, as argued in [5],
RTT spikes are the main cause of bad RTOs, rather than the
slowly changing link delay. As discussed in [5], there seems to
be no easy fix to the RTO estimator to make it anticipate RTT
spikes in general. The suggested strategy is to use a large min-
imum RTO (asG = 500 ms provides). Another mechanism
that may help reduce spikes in the RTT is pacing TCP seg-
ments [10]. This mechanism attempts to smooth out the bursts
caused by TCP’s transmission pattern and avoid large queueing
delays, thus helping to decrease RTT spikes.
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Fig. 5. Throughput comparison betweenG = 1 ms andG = 500 ms for a
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Figure 5 compares the average performance of a 2,000 seg-
ment transfer as a function of the delay scenario. As noted
above, transfers over theS7 link do not experience unneces-
sary retransmissions, therefore the performance is the same for
G = 1ms andG = 500ms. In all other scenarios, the perfor-
mance is hurt by using a fine-grained timer. In other words, the
greater precision of the timer, which can save time when the
RTO expires appropriately, is more than offset by the number
of times the RTO fires prematurely whenG = 1 ms. The de-
gree to which the average performance suffers is a function of
the percentage of transfers that experienced unnecessary time-
outs. For instance, delay scenarioS1 has a lower percentage
of transfers experiencing bad timeouts than scenarioS13, but a
higher percentage of transfers with bad timeouts than scenario
S11. Therefore, the average throughput attained underS1 is
better than underS13 and worse than underS11.

V. HANDOFF SCENARIO

The last item we consider is a scenario where a handoff is
required. The scenario involves two spacecraft (Mir and the In-
ternational Space Station) in low-Earth orbit communicating
through one or two GEO satellites (TDRS 4 and TDRS 5).

When both LEO spacecraft can communicate with the same
GEO satellite, the communication simply goes through this
common spacecraft. However, if each LEO spacecraft is com-
municating with a different GEO spacecraft, the traffic between
ISS and Mir must occur through the ground. In other words,
Mir sends traffic to one of the GEO satellites, which sends it to
the ground. The traffic is then routed to the other GEO satellite
and finally to ISS, resulting in basically a double satellite hop.
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We are only investigating the impact of varying RTTs on
TCP performance in this paper and therefore, the handoffs be-
tween satellites are assumed to be perfect. Obviously, this is a
large simplifying assumption in general and investigating hand-
offs is an area which deserves future attention.

The RTT of the network, denotedS14, when unloaded is
shown in figure 6. We repeated the stop-and-wait experiments
outlined in section III on theS14 network. As one might ex-
pect, whenG = 1ms the RTO algorithm cannot cope with the
large increase in the RTT at approximately 350 seconds into the
period shown in figure 6. TCP sent a needless retransmission
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at this point. As expected, the RTO estimator had no problem
with the drastic decrease in RTT that happens approximately
900 seconds into the simulation. WhenG = 500 ms, effec-
tively ensuring a large minimum RTO, no needless retransmis-
sions were produced by the estimator. This illustrates the im-
portance of a large minimum RTO.

Figure 7 shows the throughput as a function of file size for
scenarioS14. The error bars on the plot illustrate the min-
imum and maximum throughput obtained for the given file
size. As shown, the variability in the link delay causes the
largest throughput variation in the medium file sizes (200 and
2,000 packets). This is caused because these files are more
likely to be split across a handoff than the smaller files. When
the transfer’s RTT is suddenly increased, thecwnd must be
increased accordingly, which takes some time (during which
TCP underutilizes the network). The same thing happens to
the 10,000 packet transfer. However, those transfers are long
enough to better absorb the handoff performance degradation
without taking a large overall performance hit.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents a preliminary evaluation of TCP over
a network path that includes a link whose delay changes as
a function of time. We illustrate that TCP is able to perform
quite well in this environment. With the use of an RTO timer
that has a large minimum value we have found that the chang-
ing delay does not trigger bad retransmissions. However, there
can be quite large performance degradation if a fine-grained
timer is used without imposing a minimum value on the RTO.
There are several extensions to this work that we are planning
on investigating.
� Section V only considers ideal handoffs. In practice, hand-
offs can cause packet drops, packet duplication and often times
“dead” periods when no communication occurs. The impact
these phenomena have on TCP performance should be studied.
� Often times when a satellite is moving the signal strength be-
tween it and the GEO satellite varies. With the varying signal
strength comes the possibility of packet losses due to corrup-
tion. TCP interprets all packet losses as indications of network
congestion and reduces the sending rate accordingly. Future
work should investigate the extent to which this reduces TCP
performance in general and what (if anything) can be done to
combat it.
� Finally, future studies should take into account a more real-
istic traffic model. As more traffic is added to the network the
RTT spikes will happen more randomly and this should shed
some light on what the minimum RTO should be and whatG

is the most appropriate in the general case.

ACKNOWLEDGMENTS

We thank Brian Kachmar and Jason Pugsley for their assis-
tance in defining the variable delay models used in this paper.

REFERENCES

[1] Jon Postel, “Transmission Control Protocol,” Sept. 1981, RFC 793.

[2] Mark Allman, Dan Glover, and Luis Sanchez, “Enhancing TCP Over
Satellite Channels Using Standard Mechanisms,” Jan. 1999, RFC 2488,
BCP 28.

[3] Mark Allman, Spencer Dawkins, Dan Glover, Jim Griner, John Heide-
mann, Tom Henderson, Hans Kruse, Shawn Ostermann, Keith Scott, Jeff
Semke, Joe Touch, and Diepchi Tran, “Ongoing TCP Research Related
to Satellites,” Feb. 2000, RFC 2760.

[4] Mark Allman, Vern Paxson, and W. Richard Stevens, “TCP Congestion
Control,” Apr. 1999, RFC 2581.

[5] Mark Allman and Vern Paxson, “On Estimating End-to-End Network
Path Properties,” inACM SIGCOMM, Sept. 1999.

[6] Jeff Semke, Jamshid Mahdavi, and Matt Mathis, “Automatic TCP Buffer
Tuning,” in ACM SIGCOMM, Sept. 1998.

[7] Van Jacobson, “Congestion Avoidance and Control,” inACM SIG-
COMM, 1988.

[8] Vern Paxson and Mark Allman, “Computing TCP’s Retransmission
Timer,” Apr. 2000, Internet-Draft draft-paxson-tcp-rto-01.txt (work in
progress).

[9] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann, “TCP
Performance Over Satellite Links,” inProceedings of the 5th Interna-
tional Conference on Telecommunication Systems, Mar. 1997, pp. 456–
469.

[10] Joanna Kulik, Robert Coulter, Dennis Rockwell, and Craig Partridge,
“Paced TCP for High Delay-Bandwidth Networks,” inProceedings of
Globecom, Dec. 1999.


