
An Evaluation of TCP with Larger Initial Windows

�

Mark Allman

NASA Lewis Research Center/Sterling Software

mallman@lerc.nasa.gov

Chris Hayes

Lucent Technologies

chayes@lucent.com

Shawn Ostermann

y

School of Electrical Engineering and Computer Science

Ohio University

ostermann@cs.ohiou.edu

Abstract

TCP's slow start algorithm gradually increases

the amount of data a sender injects into the

network, which prevents the sender from over-

whelming the network with an inappropriately

large burst of tra�c. However, the slow start al-

gorithm can make poor use of the available band-

width for transfers which are small compared to

the bandwidth-delay product of the link, such as

�le transfers up to few thousand characters over

satellite links or even transfers of several hun-

dred bytes over local area networks. This paper

evaluates a proposed performance enhancement

that raises the initial window used by TCP from

1 MSS-sized segment to roughly 4 KB. The pa-

per evaluates the impact of using larger initial

windows on TCP transfers over both the shared

Internet and dialup modem links.

1 Introduction

TCP [Pos81b] uses a congestion window (cwnd)

to control the amount of unacknowledged data

�

This paper appears in ACM Computer Communica-

tion Review, July 1998.

y

Supported in part by NASA's Lewis Research Center

Satellite Networks and Architectures Branch.

the sender injects into the network, and the slow

start algorithm to gradually increase the value

of cwnd [JK88]. The slow start algorithm is em-

ployed at the beginning of a transfer and after

loss is detected by the expiration of TCP's re-

transmission timer [JK88] [Ste97]. In addition,

many TCP implementations use the slow start

algorithm after a connection has been idle for

a certain amount of time (1 round-trip time in

most BSD-derived implementations). This pa-

per only investigates the impact of increasing the

initial value of cwnd at connection startup.

This paper does not attempt to answer all

questions about using a larger initial window.

The impact on the connection using the larger

initial window is studied. However, the impact

on competing TCP connections and overall net-

work congestion is not studied. The implications

of using a larger initial window on competing

tra�c in a relatively simple simulated topology

is examined in [PN98]. The competing tra�c

for these tests is assumed to be using an initial

window of 1 or 2 segments

1

. An interesting, yet

extremely di�cult, test is to measure the impact

of using larger initial windows in a large network

1

A well documented and wide-spread bug in some TCP

implementations causes the use of a 2 segment initial win-

dow in certain situations [PAD

+

98] [All97a].



when all hosts are using the same initial window

size.

The remainder of this paper is organized as

follows. Section 2 briey outlines the slow start

algorithm. Section 3 describes the proposed

change in the initial window. Section 4 describes

our testing framework. Section 5 outlines the ex-

perimental setup used in this investigation. Sec-

tion 6 presents the results of tests using larger

initial windows over a dialup channel, as well

as over the shared Internet. Finally, section 7

presents our conclusions.

2 Standard Slow Start

When a gateway receives segments faster than it

can forward them onto an outgoing link, the seg-

ments are queued for later transmission. When

a gateway exhausts its queue memory, incom-

ing segments are discarded. The slow start algo-

rithm prevents a sender from overwhelming in-

tervening gateways with an inappropriately large

burst of data, that may cause segment loss. How-

ever, slow start can make poor use of avail-

able network capacity, particularly for transfers

which are small compared to the bandwidth-

delay product of the link [Kru95] [AHKO97]

[All97b] [Hay97].

As originally de�ned by Jacobson [JK88], slow

start initializes cwnd to 1 segment

2

. For each

acknowledgment (ACK) the sender receives dur-

ing slow start, the value of cwnd is incremented

by 1 segment. This algorithm increases the size

of cwnd exponentially until its value reaches the

receiver's advertised window or the sender de-

tects network congestion. Assuming the receiver

ACKs each incoming segment and no segments

or ACKs are lost, the amount of time needed

for cwnd to reach the advertised window size is

given in equation 1 [JK88].

slow start time = R log

2

W

A

(1)

In this equation, R is the round-trip time (RTT)

of the given network path and W

A

is the size of

2

In practice, cwnd is usually stored in terms of bytes.

For simplicity, we discuss the value of cwnd in terms of

segments in this paper.

the receiver's advertised window (in segments).

RFC 1122 [Bra89] de�nes the use of an op-

tional delayed acknowledgment mechanism. Re-

ceivers implementing delayed acknowledgments

are not required to send an ACK for every in-

coming segment. However, an ACK must be

sent for every second full-sized segment that ar-

rives. Furthermore, if a second full-sized segment

does not arrive within a given timeout, an ACK

must be transmitted. This timeout can be no

more than 500 ms and is roughly 200 ms in most

BSD-derived systems. As outlined above, the

slow start algorithm increases the value of cwnd

by 1 segment for each ACK received. There-

fore, by reducing the number of ACKs returned

to the sender by roughly half, the time required

for cwnd to reach the advertised window is in-

creased twofold. Equation 2 shows the approx-

imate

3

amount of time required to fully open

cwnd when the receiver employs delayed ACKs

[PS97].

slow start time � 2R log

2

W

A

(2)

While delayed ACKs hinder slow start, the mech-

anism does provide advantages. The reduction

in segments (ACKs) injected into the network

signi�es a reduction in resources and processing

required by the end points as well as the inter-

mediate gateways. Paxson [Pax97] found that

delayed ACKs are common in many TCP imple-

mentations popular today. The resources saved

by employing delayed ACKs can have through-

put advantages for bulk transfers in some envi-

ronments [Joh95]. However, using delayed ACKs

can introduce a performance problem with an

initial window of 1 segment. In this situation,

the sender transmits a single segment and waits

for the corresponding ACK. A single segment ar-

riving at the receiver does not generate an imme-

diate ACK. Rather, the receiver will wait for a

second segment or the delayed ACK timer before

transmitting an ACK. When the sender's cwnd

3

It is di�cult to exactly quantify the time required

to open cwnd in the face of delayed ACKs because of

the delayed ACK timer. The timer implementation, the

length of the timeout and the RTT between the sender

and receiver all interact to make prediction of the exact

increase di�cult, and beyond the scope of this paper.

2



is 1 segment, the sender will be forced to wait

(sending no new data and wasting time) until

the delayed ACK timer expires.

3 Larger Initial Windows

A recent proposal [AFP98] suggests increasing

TCP's initial window (IW) from 1 segment to

the value given in equation 3.

IW = min (4*MSS,

max (2*MSS, 4380)) (3)

For example, if the maximum segment size

(MSS) is 1024 bytes, the initial window consists

of 4 segments, each of size 1024 bytes, as shown

in equation 4.

IW = min (4*MSS,

max (2*MSS, 4380))

= min (4*1024,

max (2*1024, 4380))

= min (4096, max (2048, 4380))

= min (4096, 4380)

= 4096 (or, 4 segments) (4)

As outlined in [AFP98], the larger initial win-

dow is used at the beginning of a transfer and

after an idle period. The cwnd continues to be

reduced to 1 segment following the expiration

of the retransmission timer (RTO) as originally

outlined in [JK88].

There are several advantages of using a larger

initial window. First, increasing the initial win-

dow reduces the amount of time required to

open cwnd to the receiver's advertised window.

Speci�cally, the time required by slow start to

increase the value of cwnd from an initial size

of W

I

to an advertised window of W

A

when the

receiver ACKs every incoming packet is given in

equation 5.

slow start time = R(log

2

W

A

� log

2

W

I

) (5)

Likewise, equation 6 gives an approximation of

the time required to increase the window from an

initial window size of W

I

to an advertised win-

dow of W

A

when the receiver generates delayed

ACKs.

slow start time � 2R(log

2

W

A

� log

2

W

I

) (6)

As these equations show, the time required to

reach a window of size W

A

is reduced by the

number of RTTs needed to reach an advertised

window of W

I

. The time saved by this change

can be signi�cant for transfers that are short

compared to the delay*bandwidth product of the

network. The bene�t for bulk transfers is less

dramatic, because as the length of the transfer

increases, the impact of slow start on the total

performance decreases.

Finally, using an initial window of more than

1 segment reduces the transfer time by 1 delayed

ACK timeout when the receiver implements de-

layed ACKs. As outlined in section 2, when us-

ing a 1 segment initial window the receiver must

wait for the delayed ACK timeout to expire be-

fore sending an ACK, since a second segment

never arrives. Therefore, the total savings pro-

vided by the proposed initial window size is up

to 3 RTTs plus a delayed ACK timeout [AFP98].

While increasing the size of the initial window

can bene�t performance, the change can also

have disadvantages. In a highly congested en-

vironment, using a larger initial window may in-

crease the amount of loss experienced by a TCP

connection. This additional loss may reduce per-

formance. The use of a larger initial window may

also cause additional loss in competing TCP con-

nections sharing a highly congested bottleneck.

Therefore, in some circumstances, using a larger

initial window may hurt performance and be un-

fair to competing tra�c.

4 Preliminary Tests

To verify that the �ndings of the experiments

discussed in this paper would be applicable to

the general Internet, we conducted extensive pre-

liminary tests to understand the characteristics

and dynamics of the networks involved. This

section discusses these preliminary experiments.

3



4.1 Remote Hosts

In the Internet experiments presented in this

paper, the sending machine was a Pentium-

Pro based computer running NetBSD 1.2.1 at

NASA's Lewis Research Center (LeRC). The

changes we made to the NetBSD TCP implemen-

tation to use larger initial windows are outlined

in appendix A. We chose remote Internet sites

randomly from logs collected by the Ohio Uni-

versity Computer Science WWW server. The

sample of hosts used in this paper consists of the

�rst 100 hosts randomly chosen from the WWW

log that met the following two criteria.

1. The host was running a TCP discard server.

2. The host advertised a window that exceeded

our largest initial window (32 segments, or

16 KB)

4

. This ensured our initial window

was not constrained by the receiver's adver-

tised window.

Appendix B provides details about the path

characteristics between LeRC and the remote

hosts used in our tests.

4.2 Characterizing the Common Path

By running tests to a large group of Internet

sites, we hoped to test a cross-section of In-

ternet paths to determine the impact of using

a larger initial window. Since the sender is at

LeRC for all transfers, the test results could have

been skewed by nearby network problems. For

instance, a congested or underbu�ered gateway

near LeRC may skew the results. In this case,

the majority of the transfers may be subject to

the same bottleneck and therefore roughly the

same behavior would have been observed over

the majority of the network paths chosen.

To ensure all close gateways were neither

generally congested nor underbu�ered, we at-

tempted to characterize the portion of the net-

work path common to the majority of remote

hosts in our sample. To determine the common

path between LeRC and the sample of remote

4

In this paper, 1 KB = 1024 bytes

hosts, we used the traceroute

5

utility to measure

the route to each of the 100 remote hosts. A

gateway is considered to be a part of the com-

mon path if it meets the following two conditions.

1. The gateway in question is the �rst gate-

way traversed, or the previous gateway was

a member of the common path.

2. The gateway was in the path to at least a

third of the remote hosts. Or, it was appar-

ent that multiple routers were sharing the

load at a given hop and together they were

in the path to at least a third of the remote

hosts.

After determining the common path used to

reach the sample of remote sites, this path

was probed to detect whether bottlenecks were

present. We designed the bprobe

6

utility to mea-

sure the burst capacity of the common path. We

de�ne the burst capacity as the number of seg-

ments that can be sent back-to-back into the net-

work and successfully arrive at the destination.

A burst of 100 ICMP echo-request segments of

size 512 bytes was injected into the network. In

each of the segments transmitted, the IP time-

to-live (TTL) �eld [Pos81a] was set to one more

than the number of gateways in the common

path. This forced each of the gateways in the

common path to attempt to queue and forward

each segment in the burst. The �rst gateway

beyond the common path should decrement the

TTL to 0 and return an ICMP time-exceeded

message. The number of time-exceeded messages

returned to the sender is reported by bprobe. We

do not believe this accurately measures the burst

capacity of the network, but rather reports a

lower bound on the burst capacity. Several sit-

uations may cause this estimate to be conserva-

tive, including lost time-exceeded messages and

routers prematurely discarding ICMP messages.

The route to each of the 100 remote Internet

hosts was measured and two distinct common

paths, each consisting of 7 gateways, were found.

The two common paths di�ered only in hop 5.

5

traceroute can be obtained from

http://www-nrg.ee.lbl.gov/

6

We intend to release bprobe in late-1998.

4



It appears that two gateways were sharing the

load at this hop. Therefore, when probing the

common path, one probe was sent through each

gateway at hop 5. For the remainder of the paper

the common path will refer to both paths, unless

otherwise noted.

Since the TCP tests spanned 24 hour periods

for multiple days, we measured the burst capac-

ity of the common path for the 24 hours prior to

the start of our TCP tests. The burst capacity

was measured every 2 minutes in order to min-

imize the amount of network capacity used and

to ensure that the burst tests did not interfere

with one another. On average this probing pe-

riod injected 427 bytes/second into the network.

We believe this overall tra�c rate is low enough

that the burst probing has minimal impact on

the network. Figure 1 shows the cumulative dis-

tribution function for the measured burst capac-

ity. As indicated by the point on graph, roughly

15% of the time, the burst capacity of the com-

mon path was less than 32 segments (the largest

initial window size tested in our experiments).

From these measurements, we conclude that the

burst capacity of the common path to the remote

sites used in our TCP tests does not contain a

bottleneck that skews the test results.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

Burst Capacity (segments)

Figure 1: Burst capacity of the network in the

24 hours prior to the TCP tests presented in this

paper.

5 Experimental Setup

5.1 TCP Tests

TCP transfers using various initial window sizes

were employed to measure the relative costs and

bene�ts of using larger initial TCP windows over

a dialup channel and the global Internet. 16 KB

transfers were used to isolate the di�erences in

the startup behavior caused by various initial

window sizes. The segment size of the sending

host was 512 bytes. The tests were divided into

30 test rounds for statistical purposes. Each test

round consists of one test group for each of the

remote hosts in the sample (1 remote host was

used in the dialup channel tests and 100 remote

hosts were used in the Internet tests). A test

group is comprised of one transfer using each ini-

tial window size tested to a given remote host.

5.2 Procedure

In addition to TCP transfers using various initial

window sizes, the network path and burst capac-

ity of the common path were also measured pe-

riodically during the Internet tests. These mea-

surements were taken to ensure that any changes

in the common path or general burst capacity

of the common path during the TCP tests were

noted. The burst capacity of the common path

was determined 3 times during each test round

(following test groups 33, 66 and 99; roughly ev-

ery 90 minutes). At the end of each test round

(approximately every 4.5 hours), the network

path to each of the remote hosts was recorded

using traceroute.

5.3 Analysis

All TCP connections were traced by a machine

on the same local area network as the data sender

using tcpdump

7

. The tcptrace

8

utility was used

to gather statistics about the transfers. The data

analysis consisted of comparing TCP transfers

within each test group. For example, a transfer

7

tcpdump is available from

http://www-nrg.ee.lbl.gov/

8

tcptrace is available from

http://jarok.cs.ohiou.edu/

5



�

��

A

�

��

B

�

��

C

�

��

D

�

��

E

1

�

��

E

2

�

��

F

�

��

G

- - -

�

�

�

�>

Z

Z

Z

Z~

Z

Z

Z

Z~

�

�

�

��

--

100% 100% 100% 97%

49%

48%

95% 68%

Figure 2: Measured common path from NASA LeRC to the sample of remote hosts with percentage

of hosts using each gateway.

utilizing an initial window of 2 segments is com-

pared to the transfer using an initial window of

1 segment in the same test group. The metrics

we used to compare the transfers using various

initial windows were transfer time and number of

retransmitted segments. The di�erences in these

metrics within each test group were averaged in

the results presented in this paper.

6 Experimental Results

6.1 Common Path

As outlined in section 5.2, the route to each of

the 100 remote Internet hosts was determined af-

ter each test round using traceroute. These mea-

surements were then combined to determine the

common path, as outlined in section 4.2. Figure

2 illustrates the gateways in the common path

and the percentage of route measurements us-

ing the given gateway. Our measurements did

not show a change in the common path over the

course of the TCP tests. However, this does not

necessarily mean that the routes did not change

between measurements, as has been discussed in

[Pax96]. The common path measured during the

TCP tests was the same as the common path

measured in the preliminary tests (as outlined

in section 4.2). No gateway beyond the com-

mon path was traversed in more than 25% of the

measurements.

6.2 Burst Probing

As discussed in section 5.2, the bprobe utility was

used to determine the burst capacity of the com-

mon path 3 times during each test round. Figure

3 shows the cumulative distribution function of

the measured burst capacity of the common path

during the TCP tests. In only one of the bprobe

measurements was the measured burst capacity

less than the largest window size used in our

TCP tests. In this case, the burst capacity was

measured as 30 segments. These measurements

were taken less frequently than the preliminary

measurements outlined in section 4.2 (approxi-

mately every 90 minutes, as opposed to every 2

minutes in the preliminary tests). Therefore, we

believe the measurements shown in �gure 1 are

more representative of true network conditions

than those taken during the TCP tests (�gure 3).

However, the burst probes done in conjunction

with the TCP transfers show that the common

path did not develop long-term congestion that

would skew the results of the TCP tests.

6.3 Modem Results

The �rst set of TCP tests involved a 28.8 kbps

dialup modem connection. Both the sender and

receiver in these tests were NetBSD 1.2.1 ma-

chines. A CSLIP [Jac90] connection was estab-

lished through a Xyplex MaxServer 800 terminal

server and the local phone company. Figure 4(a)

shows the average percentage of time saved as

a function of the initial window size when com-

pared to a transfer using a 1 segment initial win-

6



0

10

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

Burst Capacity (segments)

Figure 3: Burst capacity of the network during

the TCP tests presented in this paper.

dow. Using an initial window of between 3 and

16 segments reduced transfer time by roughly

10% when compared to using an initial window

of 1 segment. Figure 4(b) shows that initial win-

dows up to 16 segments experienced no more

retransmissions than did transfers using an ini-

tial window of 1 segment. However, this �gure

shows that when using an initial window of 32

segments, additional loss is experienced. Figure

4(a) shows the additional loss caused by using

an initial window of 32 segments increased the

transfer time by roughly 50%. Using the initial

window suggested in [AFP98], transfer time was

reduced by roughly 10% without increasing the

number of retransmissions experienced over the

dialup channel.

6.4 Internet Tests

Figure 5(a) shows that as the initial window was

increased, the time required to transfer a 16 KB

�le over the Internet was reduced. Figure 5(b)

shows the increase in retransmitted segments per

transfer as a function of the initial window size.

Using a 4 segment initial window reduced the

transfer time by roughly 25% and each transfer

experienced roughly 0.04 additional retransmit-

ted segments. The Internet tests show that 74%

of transfers using an initial window of 1 segment

(i.e., standard TCP) experienced no loss. There-

fore, when �gure 5(b) indicates that a given ini-

tial window size increased the number of retrans-

mitted segments by 1 segment per transfer, that

usually indicates that the transfer in question

retransmitted a single segment.

Figure 5(b) shows a reduction in retransmit-

ted segments when using an initial window of 4

segments, when compared to initial windows of

2 and 3 segments. When a single segment is lost

from an initial window of 4 segments, the fast

retransmit algorithm can repair the loss with-

out waiting for a retransmission timeout (RTO)

and without sending needless retransmissions.

When loss is detected via the RTO timer, TCP

uses slow start to retransmit segments which can

cause needless retransmits (when the receiver al-

ready has the segment) [FF96]. When losing a

segment from an initial window of 2 segments,

the fast retransmit algorithm is not used due to a

lack of returning ACKs. When a single segment

is lost from an initial window of 3 segments, the

fast retransmit algorithm can be used in some

cases. Therefore, of the range of initial windows

(2 to 4 segments) proposed in [AFP98], an initial

window of 4 segments provides the best chance of

recovering from a single dropped segment with-

out unnecessary retransmissions.

Figure 5(a) exhibits a counter-intuitive result

that requires further explanation. Figure 5(a)

shows roughly the same throughput improve-

ment for both 16 and 32 segment initial win-

dows. However, discounting connection setup

(which does not vary with the size of the initial

window) and assuming no loss, transferring 16

KB of data would require 2 RTTs with a 16 seg-

ment initial window and only 1 RTT with a 32

segment initial window. One might reasonably

expect that because the 32 segment initial win-

dow test could send the data in 1 less RTT than

the 16 segment initial window test, the 32 seg-

ment test would also reduce transfer time when

compared to the 16 segment test. The answer to

the anomaly is found in �gure 5(b). Figure 5(b)

shows that using an initial window of 32 seg-

ments caused nearly 3 segments per transfer to

be retransmitted on average, whereas the 16 seg-

ment test caused just over 1 retransmitted seg-

ment. We believe that this extra retransmitted

segment between the 16 and 32 segment tests

inserts an extra RTT into the 32 segment test,

which causes both transfers to take the same

7



-60

-50

-40

-30

-20

-10

0

10

20

0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e 
--

 P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

Initial Window (segments)

(a) Transfer time improvement when compared to

standard TCP.

0

5

10

15

20

5 10 15 20 25 30

A
dd

iti
on

al
 R

et
ra

ns
m

its
 (

dr
op

pe
d 

se
gm

en
ts

/tr
an

sf
er

)

Initial Window (segments)

(b) Increase in dropped segments when compared

to standard TCP.

Figure 4: Modem Results

amount of time on average and therefore have

the same throughput improvement.

The extra RTT inserted due to the extra re-

transmission can be explained as follows. In the

absence of selective acknowledgments (SACK)

[MMFR96], the fast retransmit algorithm can

only repair a single lost segment per window of

data. Therefore, when multiple segments are lost

from a window of data, the slow start algorithm

is used to retransmit additional lost segments af-

ter the retransmission timer (RTO) expires. Fig-

ure 5(b) shows that, for the 16 segment test,

more than 1 segment is retransmitted on aver-

age; the �rst retransmitted segment is sent using

the fast retransmit algorithm and the second re-

transmitted segment is sent using slow start after

an RTO, adding 1 RTT and 1 RTO timeout to

a loss-free transfer time.

However, the 32 segment test caused almost

3 retransmits on average (from �gure 5(b)). As

with the 16 segment test, the �rst retransmitted

segment is sent using the fast retransmit algo-

rithm. In the 32 segment case, however, the slow

start algorithm is used to retransmit 2 additional

segments, rather than 1 as in the 16 segment

test. Because slow start begins by sending a sin-

gle segment and waiting for an ACK, retrans-

mitting 2 segments requires 2 RTTs, plus the

RTO timeout. Therefore, recovery takes an ad-

ditional RTT when the initial window is 32 seg-

ments when compared to an initial window of 16

segments. This nulli�es the RTT saved by using

the larger initial window and causes the trans-

fer time improvement to be roughly the same in

both cases.

7 Conclusions

This paper evaluates the e�ect on TCP perfor-

mance of changing the initial window size. We

have found that an initial window of 2 to 4 seg-

ments, as suggested by [AFP98], decreases the

transfer time of short transfers over dialup chan-

nels and the Internet. Furthermore, the change

does not signi�cantly increase the number of

retransmitted segments. In addition, using an

initial window of 4 segments provides a better

chance for good loss recovery when compared to

2 and 3 segment initial windows.

Because re-starting an idle connection is fun-

damentally very similar to starting a new con-

nection, we believe the investigation presented

in this paper implicitly covers the initial window

used to re-start an idle connection. However, it

should be noted that this is an active research

area and other methods of re-starting an idle

TCP connection may prove more bene�cial (e.g.,

rate-based pacing [VH97]).

8



0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e 
--

 P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

Initial Window (segments)

(a) Transfer time improvement when compared to

standard TCP.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

A
dd

iti
on

al
 R

et
ra

ns
m

its
 (

se
gm

en
ts

/tr
an

sf
er

)

Initial Window (segments)

(b) Increase in dropped segments when compared

to standard TCP.

Figure 5: Internet Results

Acknowledgments

This work has bene�ted from discussions with

a large number of people. First, we thank

Fred Baker, Sally Floyd, Vern Paxson and Al-

lyn Romanow for discussions involving the use

of a larger initial window. Doug Dechow, Matt

Mathis and Tim Shepard provided valuable feed-

back about our testing and analysis procedures.

In addition, we thank Paul Mallasch, the IETF's

TCP Implementation Working Group and the

anonymous reviewers for useful feedback on our

experiments and this paper. Finally, thanks to

Boris Friedman and Eric Helvey for providing

the dialup channel used in our experiments.

A Modi�ed TCP Implementa-

tion

We modi�ed a NetBSD 1.2.1 kernel to use a

larger initial congestion window as described in

section 3. The changes allow the initial window

to be easily controlled using the netcon�g

9

util-

ity in our testing scripts. Two new variables have

been added to the kernel as follows:

9

netcon�g is available at

http://www-csl.ucsd.edu/

� Initial Window Byte Limit

(initwin bytes)

When non-zero, initwin bytes is an upper

bound on the number of bytes allowed

in the initial window. TCP sends an

initial burst of initwin bytes bytes in

the appropriate number of MSS-sized data

segments.

� Initial Window Segment Limit

(initwin segs)

When non-zero, initwin segs sets an

upper bound on the number of segments

allowed in the initial window. TCP sends

an initial burst of initwin segs segments,

each 1 MSS in length.

When both initwin bytes and initwin segs

are set, the lesser of the two values is used

as the initial window. For example, if the

MSS is 512 bytes, initwin bytes is 4096 bytes

and initwin segs is 4, then the initial window

will be 4 segments with a total of 2048 bytes.

Consider a second example when the MSS is

1024 bytes, initwin bytes is 4096 bytes, and

initwin segs is 5. In this case, the initial win-

dow will be 4 segments with a total of 4096 bytes.

If both initwin bytes and initwin segs are

set to zero, the standard NetBSD 1.2.1 code is

used to set the initial window. If one of the vari-

9



ables is non-zero while the other is zero, the ini-

tial window will be governed by only the non-

zero variable. For instance, if initwin segs is

set to 5 and initwin bytes is set to zero, the

initial window will consist of 5 MSS-sized seg-

ments.

Most BSD-derived TCP implementations con-

tain a bug that e�ectively sets the initial value

of cwnd to 2 segments when TCP connections

are opened passively [All97a] [PAD

+

98]. In the

tests presented in this paper, all TCP connec-

tions were opened actively by the host transmit-

ting the data. Therefore, this bug does not a�ect

the results presented in this paper.

B Statistics about the Remote

Hosts

As outlined in section 4.1, the remote Inter-

net sites used in the TCP transfers presented in

this paper were chosen randomly from a WWW

server log �le. Table 1 lists the distribution of

domains covered by our sample of remote hosts.

As the table shows, at least half the sites are

outside the United States. However, the sites in

domains such as .com and .edu cannot be clas-

si�ed one way or another. According to the In-

ternet Domain Survey [Wiz98], 28% of hosts be-

long to the .com domain, while only 13% belong

to the .edu domain. This is clearly not the case

in our sample, as 35% of the sample belongs to

the .edu domain and 6% of the sample belongs

to the .com domain. We believe the discrepancy

can be explained by the likelihood of hosts in

the .com domain being located behind �rewalls.

These �rewalls prevented the probe used to �nd

acceptable hosts from reaching hosts inside the

given organization. Even though the distribution

of top-level domains is skewed in our sample, the

hosts used o�ered a variety of network paths.

Figure 6 gives the distribution of hop counts

between the sending host and the remote Inter-

net hosts in our sample. The route to each host

may have changed during the course of the tests

[Pax96]. Therefore, the average number of hops

measured to each remote host was used to gener-

ate the graph. We did not alter traceroute's de-

fault limit of 30 hops to a given host. However,

only 1 host averaged 30 hops and therefore, this

limit did not skew the results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n 
(C

D
F)

Hop Count

Figure 6: Hop-Count Distribution

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

Round Trip Time (RTT)

Figure 7: RTT Distribution

Figure 7 reports the distributions of RTTs be-

tween the TCP sender and the remote Internet

hosts. The average RTT between the sender

and each remote host was found by analyzing

the trace �le of the TCP transfers with tcptrace.

The reported RTT is an average of the measured

RTTs. This �gure shows that the RTT to the

remote hosts in our sample was su�ciently well

distributed between close and far away hosts.

References

[AFP98] Mark Allman, Sally Floyd, and

Craig Partridge. Increasing

TCP's Initial Window, April 1998.

Internet-Draft draft-oyd-incr-init-

win-03.txt (work in progress).

10



Domain Frequency Domain Frequency

edu 35 tr 1

unknown 7 su 1

uk 7 se 1

de 7 nz 1

com 6 my 1

fr 5 mx 1

gov 4 it 1

nl 3 il 1

mil 3 id 1

kr 3 gr 1

ca 3 � 1

au 2 es 1

tw 1 cl 1

ch 1

Table 1: Domain Distribution

[AHKO97] Mark Allman, Chris Hayes, Hans

Kruse, and Shawn Ostermann. TCP

Performance Over Satellite Links.

In Proceedings of the 5th Interna-

tional Conference on Telecommuni-

cation Systems, March 1997.

[All97a] Mark Allman. Fixing Two BSD

TCP Bugs. Technical Report CR-

204151, NASA Lewis Research Cen-

ter, October 1997.

[All97b] Mark Allman. Improving TCP

Performance Over Satellite Chan-

nels. Master's thesis, Ohio Univer-

sity, June 1997.

[Bra89] Robert Braden. Requirements for

Internet Hosts { Communication

Layers, October 1989. RFC 1122.

[FF96] Kevin Fall and Sally Floyd.

Simulation-based Comparisons of

Tahoe, Reno, and SACK TCP.

Computer Communications Review,

26(3), July 1996.

[Hay97] Chris Hayes. Analyzing the Per-

formance of New TCP Extensions

Over Satellite Links. Master's the-

sis, Ohio University, August 1997.

[Jac90] Van Jacobson. Compressing

TCP/IP Headers For Low-Speed

Serial Links, February 1990. RFC

1144.

[JK88] Van Jacobson and Michael Karels.

Congestion Avoidance and Control.

In ACM SIGCOMM, 1988.

[Joh95] Stacy Johnson. Increasing TCP

Throughput by Using an Extended

Acknowledgement Interval. Master's

thesis, Ohio University, June 1995.

[Kru95] Hans Kruse. Performance Of Com-

mon Data Communications Proto-

cols Over Long Delay Links: An Ex-

perimental Examination. In 3rd In-

ternational Conference on Telecom-

munication Systems Modeling and

Design, 1995.

[MMFR96] Matt Mathis, Jamshid Mahdavi,

Sally Floyd, and Allyn Romanow.

TCP Selective Acknowledgement

Options, October 1996. RFC 2018.

[PAD

+

98] Vern Paxson, Mark Allman, Scott

Dawson, Ian Heavens, and Bernie

Volz. Known TCP Implementation

11



Problems, March 1998. Internet-

Draft draft-ietf-tcpimpl-prob-03.txt

(work in progress).

[Pax96] Vern Paxson. End-to-End Routing

Behavior in the Internet. In ACM

SIGCOMM, August 1996.

[Pax97] Vern Paxson. Automated Packet

Trace Analysis of TCP Implementa-

tions. In ACM SIGCOMM, Septem-

ber 1997.

[PN98] Kedarnath Poduri and Kathleen

Nichols. Simulation Studies of In-

creased Initial TCP Window Size,

June 1998. Internet-Draft draft-

tcpimpl-poduri-01.txt.

[Pos81a] Jon Postel. Internet Protocol,

September 1981. RFC 791.

[Pos81b] Jon Postel. Transmission Control

Protocol, September 1981. RFC 793.

[PS97] Craig Partridge and Tim Shepard.

TCP/IP Performance Over Satel-

lite Links. IEEE Network, 11(5),

September/October 1997.

[Ste97] W. Richard Stevens. TCP Slow

Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Al-

gorithms, January 1997. RFC 2001.

[VH97] Vikram Visweswaraiah and John

Heidemann. Improving Restart of

Idle TCP Connections. Technical

Report 97-661, University of South-

ern California, August 1997.

[Wiz98] Network Wizards. Internet Do-

main Survey, January 1998.

http://www.nw.com.

12


