
An Application-Level Solution to TCP's Satellite Ine�ciencies

�

Mark Allman, Hans Kruse, Shawn Ostermann

Ohio University

mallman@cs.ohiou.edu,hkruse1@ohiou.edu,ostermann@cs.ohiou.edu

Abstract

In several experiments using NASA's Ad-

vanced Communications Technology Satellite

(ACTS), investigators have reported disappoint-

ing throughput using the TCP/IP protocol suite

over T1 satellite circuits. A detailed analysis of

FTP �le transfers reveals that the TCP receive

window size, the TCP \Slow Start" algorithm,

and the TCP acknowledgment mechanism con-

tribute to the observed limits in throughput.

To further explore TCP's limitations over

satellite circuits, we developed a modi�ed ver-

sion of FTP (XFTP) that uses multiple TCP

connections. By using multiple TCP connec-

tions, we have been able to simulate a large, vir-

tual TCP receive window.

Our experiences with XFTP over both actual

satellite circuits and a software satellite emula-

tor show that a utilization of better than 90%

is possible. Our results also indicate the ben-

e�t of introducing congestion avoidance at the

application level.

1 Introduction

In several experiments using NASA's

Advanced Communications Technology

�

This work is sponsored in part by a grant from the

NASA Lewis Research Center

Satellite (ACTS), investigators have re-

ported disappointing throughput using the

TCP/IP[Com95, Pos81, Ste94] protocol

suite over 1.536Mbit/second (T1) satellite

circuits[Kru95]. A detailed analysis of FTP �le

transfers reveals that both the TCP window

size, and the TCP \Slow Start" algorithm

contribute to the observed limits in throughput.

Furthermore, in the face of loss, TCP's data

recovery (positive acknowledgment) mechanism

works poorly over long-delay channels. All of

these facts lead to TCP's low throughput across

satellite channels.

We are aware of two solutions to this problem.

The �rst solution would be to modify the be-

havior of TCP to perform better over long-delay

channels such as those supported by satellites.

This solution would require formal changes to

the TCP speci�cations. The window size limita-

tion in TCP was addressed in RFC 1323[JBB92].

The problem with the TCP acknowledgment

mechanism is currently being discussed within

an IETF working group

1

. Unfortunately, ver-

sions of TCP with larger windows are not yet

1

An early selective acknowledgment scheme was de-

scribed as part of RFC 1185[JBZ90] in 1990. A more thor-

ough version of this work appeared in RFC 1323[JBB92]

in 1992, but the discussion of selective acknowledg-

ments was removed (pending further research). Cur-

rent work with TCP selective acknowledgments is docu-

mented in several internet drafts and studied in Fall and

Floyd[FF96] and Mathis and Mahdavi[MM96].

1

widely available and versions with the modi�ed

acknowledgment mechanisms are not likely to be

widely available for several years.

A second possible solution to TCP's poor per-

formance over satellite channels involves the use

of multiple TCP connections. One advantage

to this solution is that it can be implemented

entirely at the application level without requir-

ing changes to the TCP protocol. This doc-

ument describes XFTP

2

, a modi�ed version of

FTP[PR85] that uses multiple TCP connections

and application-level congestion avoidance to

achieve high performance �le transfers over satel-

lite links. The experimental results presented

here were collected using the NASA ACTS net-

work, as well as a satellite circuit emulator built

at Ohio University for this project[AO96b].

2 XFTP Overview

To test the validity of a multiple-connection

model to increase TCP throughput, we built a

modi�ed version of FTP called XFTP. The chief

advantage of starting with the existing FTP pro-

tocol was that good source code was available

and that the FTP protocol is well understood

and well documented. One of our design goals

was that our modi�ed versions of the FTP client

and server software must be backward compati-

ble with standard FTP software. To allow this,

we made extensions to the underlying applica-

tion protocol used by FTP. Changes to FTP have

been e�ected at two levels, the FTP protocol it-

self and the FTP client user interface.

The enhancements that we made to the FTP

client and server application to support multiple-

connection �le transfer required the addition of

2

Many modi�ed versions of FTP have been proposed

and the name XFTP has been used previously to describe

other systems. Throughout this paper, XFTP refers only

to the prototype system described herein.

a new user command (entered by the user into

the client application) as well as new FTP com-

mands (sent by FTP across the control connec-

tion).

Our enhanced version of FTP is based on the

4.4BSD Unix source code and has been compiled

and run on various computer platforms support-

ing the Unix operating system. A second XFTP

prototype is currently being built as a 32-bit ap-

plication under Microsoft Windows.

2.1 Why XFTP Uses Multiple Con-

nections

Using multiple TCP connections to transfer data

can increase overall throughput for several rea-

sons. The �rst, and most obvious, is that a

given TCP connection has a maximum through-

put that can be determined using the formula

[Pos81]:

throughput

max

=

receive bu�er size

round trip time

(1)

In the case of the satellite connections that we

tested using XFTP

3

, this yields

throughput

max(satellite)

=

24KBytes

560ms

� 44000

bytes

second

(2)

Another factor that a�ects satellite through-

put is TCP's slow start algorithm. To avoid in-

stantly bombarding the network with the traf-

�c from a new connection, TCP slowly increases

the amount of data sent over a new connection

3

With standard TCP, the receive window size can be

as large as 64 KBytes. Typical Unix FTP implementa-

tions use a receive window size between 4 KBytes and 24

KBytes. Unless otherwise noted, all of our experiments

were conducted using 24 KByte receive windows.

2

[Jac88]. Because of the long delay over satellite

circuits, TCP requires approximately 3.5 seconds

(assuming a 500 millisecond round trip time and

512 byte segments) to achieve maximal through-

put. Using multiple connections allows XFTP

to multiply the maximum throughput of a single

TCP connection to use the entire bandwidth of a

circuit without increasing the slow start startup

costs.

2.2 Changes to the FTP Protocol

The FTP protocol speci�cation de�nes the mes-

sages exchanged between the FTP client and

server applications across the control connection.

To support multiple TCP connections, we mod-

i�ed the FTP protocol by adding two new mes-

sage primitives[AO96a]:

MULT

The MULT command serves as a question

from the FTP client application to the FTP

server application. If the server responds

to the MULT command with an error, then

the client application knows that the server

application does not support multiple con-

nections and the client uses a single TCP

connection to transfer data, otherwise the

answer includes the maximum number of

concurrent TCP connections that the server

is willing to accept.

MPRT The MPRT command is analogous to

FTP's existing PORT command. With

MPRT, the client can select multiple ports,

up to a limit imposed by the server and

speci�ed by the server as the response to the

MULT command. MPRT takes the form:

MPRT ipaddrbyte

1

, : : : ipaddrbyte

4

,n

port

1

, : : : port

n

To support multiple connections, we added the

new FTP client command MULT, as follows:

MULT [n]

The MULT user command requests

multiple-connection transfer mode. With-

out an argument, the default value is used

(currently 4). Note that the actual number

of connections used is also limited by

maximum values in both the client and the

server. We expect that users will normally

enable multiple connections using the

MULT command with the default number

of connections.

2.3 Dividing a File across Multiple

Connections

When multiple TCP connections are available

to transfer a single �le, the �le must be divided

into chunks that can be sent over the various

connections. This process is sometimes called

�le striping , after the commonly-used practice

of disk striping , in which a single �le is stored

on multiple physical disks to increase through-

put. File striping, in the context of TCP con-

nections, however, must be carefully designed to

avoid problems.

A simple, obvious approach to sending a �le

F across n connections is to divide the �le into

n blocks, F

1

:::F

n

. Block F

i

is then transferred

using connection C

i

. This simple approach can

perform badly, however, when the TCP connec-

tions do not all exhibit the same throughput.

Those connections that observe congestion will

slow down, whereas connections that are less af-

fected by congestion will speed up and consume

more network resources. As a result, if each of n

connections transfers the same amount of data,

some of the connections will take longer to com-

plete, reducing e�ciency.

To send a single �le using n connections,

XFTP divides the �le into m 8k records (where

m� n). The sender of the �le (which can be ei-

3

ther the FTP client or server) reads the �le from

local storage one record at a time and sends each

record over whichever connection has resources

available to accept it, determined using disjunc-

tive wait (select) and non-blocking writes. By

dividing a �le in this way, XFTP can keep each of

the connections busy until the entire �le has been

transferred, even if the connections do not all

transfer the same amount of data. To reassemble

the data into the correct order, XFTP prepends

a 4-byte sequence number to each record.

3 Results

Our initial experiments with XFTP veri�ed that

using multiple connections to transfer a �le

yields higher throughput than using a single con-

nection [AOK95]. Unfortunately, the through-

put improvement was very sensitive to the num-

ber of connections, as shown in �gure 1, below.

This important observation led us to study the

behavior of TCP in a satellite environment in

much greater detail, as summarized in the sec-

tions that follow.

3.1 Multiple Connection E�ciency

To test the overhead of managing multiple TCP

connections, we conducted tests using several

di�erent settings for the TCP receive window

size and the number of data connections. The

results are summarized in �gure 2, showing

throughput as a function of the e�ective win-

dow size for transfers of 5MByte �les. In this

case, the achievable throughput is clearly depen-

dent only on the e�ective window size, indicating

that the extra overhead of multiple connections

is negligible.

70

80

90

100

110

120

130

140

150

160

170

2 4 6 8 10 12 14 16 18 20

K
B

yt
es

/S
ec

on
d

TCP Connections

Throughput

Figure 1: Throughput vs Number of Connec-

tions

This �gure shows the throughput achieved dur-

ing an emulated 5 MByte �le transfer as a func-

tion of the number of connections used.

0

2 0

4 0

6 0

8 0

100

120

140

160

0 200 400 600 800

"Effective" Window Size (KBytes)

K
B

y
te

s
/s

e
c

12K 24K 48KTCP Window Size for Each Connection:

Figure 2: Throughput Improvement vs the Ef-

fective Window Size

This �gure shows that the throughput achieved

is dependent only on the e�ective window size

(number of connections times window size)

4

3.2 Number of Connections vs

Throughput

With the maximum throughput of the T1

satellite circuit being approximately 192,000

bytes/second (� 1.5 Mbit/second) and the max-

imum throughput per TCP connection being ap-

proximately 44,000 bytes/second (from equation

2), quick division might lead one to expect maxi-

mum throughput with 4 connections

4

. Notice in

�gure 1, however, that the maximum throughput

is achieved using 6 to 8 connections; after that

point, throughput drops as more connections are

used. These results are consistent with the re-

sults using MFTP described in Hahn [Hah94]

and Iannucci and Lekashman [IL92].

One reason that XFTP requires more con-

nections than calculated above to achieve maxi-

mum throughput is that the round trip time in-

creases with the number of connections

5

. As the

amount of data on the satellite circuit increases,

the routers that connect the various networks

are forced to enqueue more and more of the seg-

ments. This queuing behavior delays the TCP

segments, e�ectively increasing the round trip

time and decreasing the throughput. Using the

NASA ACTS network, we observed round trip

times as high as 1.5 seconds, as shown in the

graph in �gure 3.

To understand the throughput decrease on the

right side of �gure 1 (as more than 8 connections

are used), one must investigate TCP's congestion

control mechanism. Routers between the XFTP

client and the XFTP server are forced to enqueue

4

192; 000

bytes

second

�

44;000

bytes

second

connection

� 4connections

5

TCP slow start also accounts for some of the de-

creased performance. Because slow start is only per-

formed at the beginning of a connection and after some

loss events, it is less of a factor in decreased throughput

for large �le transfers (assuming low segment loss) than

is increased round trip times.

1400

1200

1000

800

600

 15:57:30 15:57:00 15:56:30 15:56:00 15:55:30

139.88.90.92:3999_==>_pongo.lerc.nasa.gov:2131 (rtt samples)

Figure 3: Variations in RTT Over Time

This �gure shows the increase in RTT over time

for a multiple-connection �le transfer using the

NASA ACTS network.

more and more data as we increase the number of

connections. Because the routers are only able to

enqueue a �nite amount of data, they are even-

tually forced to discard incoming TCP segments

as the data rate increases. Looking back at �g-

ure 1, 8 connections could not generate enough

segments per second to cause queue over
ow in

the routers; at 10 connections, over
ow loss be-

gins to occur. Although TCP compensates for

the lost data by retransmitting segments that

were not acknowledged by the receiver, it also

uses segment loss as an indication of congestion

(too much data in the network) and decreases

the rate at which data is sent into the network

6

.

The interaction of slow start, multiple TCP

connections, and segment loss due to router

queue over
ow accounts for the decreased

throughput. As TCP's slow start algorithm

sends more data into the network, intervening

6

TCP's congestion control mechanisms are more com-

plex than explained here. Jacobson [Jac88] provides the

original theoretical work and Stevens[Ste94] provides a

good overview.

5

router queues eventually over
ow causing the

loss of segments belonging to some of the TCP

connections. The a�ected TCP connections ini-

tiate congestion avoidance and decrease the rate

that they send segments into the network. An

example of this behavior can be seen, indirectly,

in the previous �gure (�gure 3) showing RTT

over time. Notice that the round trip time

quickly grows to approximately 1.5 seconds

7

and

then drops back to the base RTT as several of

the TCP connections initiate congestion control.

This same behavior can be seen four other times

in the same �gure as the RTT peaks. In these

later cases, however, the various TCP connec-

tions are no longer increasing their throughput

in sync with each other and the resulting seg-

ment loss a�ects fewer connections, resulting in

less RTT fall-o� after the loss event.

3.3 Application-Level Congestion

Avoidance

XFTP uses an adaptive algorithm to control the

number of TCP connections being used over time

based on changes in the observed round trip

time. The user chooses an initial value for the

maximum number of connections to use for each

�le transfer. The XFTP sender (the side sending

the �le, either the client or the server) uses infor-

mation gathered by using UDP echo datagrams

8

to determine the current round trip time. Using

these round trip time samples, XFTP either in-

creases or decreases the number of TCP connec-

tions currently in use. XFTP's application-level

7

In our experimental network, router queues were

large enough to build up a one second segment delay be-

fore dropping segments

8

The XFTP sender generates a 12-byte UDP data-

gram containing a 4-byte sequence number and an 8-byte

Unix timestamp and sends it to the UDP echo port on

the machine that is receiving the �le (up to 10 times per

RTT).

congestion control algorithm uses two RTT pa-

rameters, � and �

9

. When the observed round

trip time exceeds �, XFTP reduces the num-

ber of connections in use by half. When the

round trip time falls below �, one more connec-

tion is added (up to the maximum speci�ed).

Using experimentally-obtained values for � and

�, one version of XFTP was able to obtain the

throughput shown in �gure 4. Notice in this �g-

ure that, using the new algorithm, throughput

continues to increase with the number of con-

nections rather than decreasing as it did with

the original version of XFTP.

70

80

90

100

110

120

130

140

150

160

170

2 4 6 8 10 12 14 16 18 20

K
B

yt
es

/S
ec

on
d

TCP Connections

Without RTT Feedback
With RTT Feedback

Figure 4: Throughput vs Number of Connec-

tions (New Algorithm)

This �gure shows the throughput achieved dur-

ing a 5 MByte �le transfer as a function of the

number of connections used with both the orig-

inal version of XFTP and the new version that

adapts the number of connections used during

the transfer as a response to changes in round

trip time.

9

The idea of using bounding limits for RTT to con-

trol TCP behavior is similar to (and was inspired by) the

work with TCP Vegas described in Brakmo, O'Malley,

and Peterson [BOP94], although the TCP Vegas scheme

operates inside the operating system within a single TCP

stream.

6

3.4 Performance Over Links with

Errors

The results reported to this point were obtained

on an error-free link, where our tests had re-

vealed no di�erence in throughput between a sin-

gle large window, and multiple TCP connections

creating an \e�ective" window of the same size.

In a brief test using the ACTS network, we pur-

posely degraded the RF performance of an earth

station to create a link with bit error rates in

the 1 � 10

�7

to 1 � 10

�5

range. File transfer

throughput was evaluated using di�erent num-

bers of connections to create an e�ective win-

dow of 192 KBytes. Figure 5 shows signi�cantly

better throughput when the e�ective window is

created by a large number of connections. We

speculate that the multiple connections simulate

a type of selective acknowledgment, but further

studies of this e�ect are now underway.

0

5

1 0

1 5

2 0

2 5

3 0

3 5

0 1 0 2 0 3 0 4 0 5 0

TCP Window (KBytes)

K
B

y
te

s
/s

e
c

Figure 5: The E�ect of Link Errors on Transfer

E�ciency

The three points in this graph represent the

throughput achieved using a 192 KByte e�ec-

tive window composed of either 16 connections

each with window size 12 KBytes, 8 24 KByte

connections, or 4 48 KByte connections.

4 Conclusions

The goal of this research was to investigate

the previously-reported problems using TCP

to transfer data over high-bandwidth, long-

delay satellite circuits. Our work with XFTP

showed that using multiple connections allowed

a user application to achieve high TCP through-

put across a satellite circuit. Unfortunately,

throughput increases are shown to be very sen-

sitive to the number of TCP connections used.

Experiments over non error-free circuits show

that TCP's standard acknowledgment and re-

transmission mechanisms can adversely a�ect

performance over satellite networks. Unlike ter-

restrial networks in which link errors are rare

(relative to congestion loss), satellite circuits are

more susceptible to periodic link errors.

We have also shown that an application-level,

adaptive algorithm monitoring changes in the

observed round trip time can adapt the num-

ber of TCP connections in use at one time to

avoid throughput penalties for using too many

connections.

Finally, and most importantly, the XFTP ap-

plication is merely an interim solution to TCP's

ine�ciencies over satellite circuits. Recent ad-

vances in TCP such as increased window sizes,

modi�ed congestion control mechanisms, and

new (selective) acknowledgment schemes may

be able to improve TCP's satellite performance.

Unfortunately, these mechanisms are relatively

new and haven't been widely studied over satel-

lite links.

Until these new mechanisms are veri�ed and

made more widely available, XFTP and the

lessons learned from it will be useful in the satel-

lite community. The need for further work in this

area is clearly indicated.

7

References

[AO96a] Mark Allman and Shawn Ostermann.

Multiple Data Connection FTP Ex-

tensions. Technical report, Ohio Uni-

versity, 1996. (in preparation).

[AO96b] Mark Allman and Shawn Ostermann.

One: The Ohio Network Emula-

tor. Technical report, Ohio University,

1996. (in preparation).

[AOK95] Mark Allman, Shawn Ostermann, and

Hans Kruse. Data Transfer E�ciency

over Satellite Circuits Using a Multi-

Socket Extension to the File Transfer

Protocol (FTP). In Proceedings of the

ACTS Results Conference, Cleveland,

OH, September 1995. NASA Lewis Re-

search Center.

[BOP94] L. S. Brakmo, S. W. O'Malley, and

L. L. Peterson. TCP Vegas: New Tech-

niques for Congestion Detection and

Avoidance. In Proceedings of ACM

SIGCOMM '94., pages 24{35, August

1994.

[Com95] Douglas E. Comer. Internetworking

with TCP/IP Volume I, Principles,

Protocols, and Architecture. Prentice-

Hall, Englewood Cli�s, New Jersey,

third edition, 1995.

[FF96] Kevin Fall and Sally Floyd.

Simulation-based Comparisons of

Tahoe, Reno, and SACK TCP. Com-

puter Communications Review, July

1996.

[Hah94] Jonathan Hahn. MFTP: Recent En-

hancements and Performance Mea-

surements. Technical Report RND-

94-006, NASA Ames Research Center,

NAS Systems Development Branch,

June 1994.

[IL92] David J. Iannucci and John Lekash-

man. MFTP: Virtual TCP Window

Scaling Using Multiple Connections.

Technical Report RND-92-002, NASA

Ames Research Center, NAS Systems

Development Branch, January 1992.

[Jac88] V. Jacobson. Congestion Avoidance

and Control. In Proceedings ACM

SIGCOMM '88, pages 314{329. ACM,

August 1988.

[JBB92] V. Jacobson, R. Braden, and D. Bor-

man. TCP Extensions for High Per-

formance, May 1992. RFC 1323.

[JBZ90] V. Jacobson, R. Braden, and L. Zhang.

TCP Extension for High-speed Paths,

October 1990. RFC 1185.

[Kru95] Hans Kruse. Performance Of Com-

mon Data Communications Protocols

Over Long Delay Links: An Exper-

imental Examination. In 3rd Inter-

national Conference on Telecommuni-

cation Systems Modeling and Design,

1995.

[MM96] Matthew Mathis and Jamshid Mah-

davi. Forward Acknowledgment: Re-

�ning TCP Congestion Control. In

ACM SIGCOMM, August 1996.

[Pos81] J. Postel. Transmission Control Pro-

tocol, September 1981. RFC 793.

[PR85] J. Postel and J. Reynolds. File Trans-

fer Protocol (FTP), October 1985.

RFC 959.

[Ste94] W. Richard Stevens. TCP/IP Illus-

trated, Volume 1. Addison-Wesley,

Reading, Massachusetts, 1994.

8

