
DATA TRANSFER EFFICIENCY OVER SATELLITE CIRCUITS USING A

MULTI-SOCKET EXTENSION TO THE FILE TRANSFER PROTOCOL (FTP)

Mark Allman, Shawn Ostermann
School of Electrical Engineering and Computer Science

Hans Kruse†

J. Warren McClure School of Communication Systems Management
Ohio University

Athens, OH 45701

ABSTRACT
In several experiments using NASA’s Advanced Communications Technology Satellite

(ACTS), investigators have reported disappointing throughput using the TCP/IP protocol suite

over 1.536Mbit/sec (T1) satellite circuits. A detailed analysis of FTP file transfers reveals that

both the TCP window size, and the TCP “Slow Start” algorithm contribute to the observed

limits in throughput.

While it is tempting to approach a solution to this issue by raising the TCP window size,

there are several issues which can not be addressed in that way: (1) In order to raise the TCP

window size sufficiently to allow full utilization of a T1 circuit, the TCP Extended Window

Option is required[4]. Commercial implementation of this option in major operating systems

has not been completed. (2) The use of very large windows may actually hurt throughput if a

moderate bit error rate is present on the satellite channel. (3) A change in the window size

does not address the effect of the TCP Slow Start algorithm. We therefore propose an

application-layer solution by adding an option to the standard FTP which uses multiple data

connections. The use of multiple TCP connections allows the effective utilization of the

channel bandwidth without an increase in the TCP window size. A similar approach has been

suggested by Long et al for the transfer of specialized image databases, both via the Internet

and over satellite links [7].

In this paper we summarize the experimental and theoretical analysis of the throughput

limit imposed by TCP on the satellite circuit. We then discuss in detail the implementation of a

multi-socket FTP (XFTP) client and server. XFTP has been tested using the ACTS system.

We present results from these runs and discuss the interaction between the multi-socket

application and the TCP/IP network, especially the queues in the IP routers. Our results show

that a careful choice of the number of connections, or sockets, must be made. Too few

connections result in wasted bandwidth, while too many connections lead to dropped packets

due to queue overflows in the router; in this case the overall throughput is reduced. The

optimal choice of the number of connections leads to a better than 90% utilization of the

satellite circuit.

Finally, we discuss a preliminary set of tests on a link with non-zero bit error rates. XFTP

shows promising performance under these circumstances, suggesting the possibility that a

multi-socket application may be less effected by bit errors than a single, large-window TCP

connection.

† One of the authors (HK) gratefully acknowledges that part of this work was made possible through his

receipt of a NASA Summer Faculty Fellowship at the NASA Lewis Research Center.

BACKGROUND
About a year ago, we conducted a series of experiments to verify the performance reported

for TCP over the ACTS system, and to determine the root causes for the fact that the satellite

channel could not be fully utilized[6]. This section summarizes these results.

Motivation
Two factors combine to motivate a study of satellite transmissions of TCP/IP at this time.

First, satellite communications continue to play an important role in business communication

networks. Today’s increasingly complex applications demand ever more bandwidth and

sophisticated connectivity. In rural areas of the US, this connectivity can be achieved quickly

and economically through satellite links, at least until the terrestrial network has a chance to

catch up. Outside the developed countries, satellite communications may be the long-term

solution to increasing communications needs. Finally, communications to mobile stations such

as trucks, ships, or airplanes demand satellite based solutions.

The second factor is the unexpected longevity of today’s “legacy” protocol stacks. While the

Internet represents a large TCP/IP installed base, it has always been assumed that OSI-

compliant protocols would replace TCP/IP during the migration of the Internet to commercial

use. Instead it appears that commercial users are choosing to implement TCP/IP networks,

and to connect to the Internet in its present form.

It seems therefore very likely that TCP/IP will not only remain prevalent in the corporate

network, but that it will have to be used over satellite links as the network is extended into

areas without adequate terrestrial infrastructure.

Preliminary Studies
The earlier studies were conducted at the ACTS Master Control Station (MCS), using

Traffic Terminals #1 and #2. We used the same experimental setup as the current work; we

therefore refer to the “Experimental Configuration” section below for details. Figure 1 shows

the throughput obtained using the “stock” FTP implementation contained in the Sun OS 4.1.3

operating system.

We interpret the “saturation” in throughput, i.e. the fact that the throughput over the

satellite circuit does not increase with increasing bandwidth, as an indication that the window

size in TCP (which was 24KBytes1 in this case) limits the throughput[3-5]. The fact that

throughput is file-size dependent suggests the influence of the TCP “slow-start” algorithm[11]
. Using actual packet traces captured during the file transfer, we can demonstrate the slow-

start as shown in figures 2 and 3.

Using standard modeling techniques, we can attempt to predict the combined impact of the

slow-start and the limited window size. The details of this model can be found in ref [6].

Figure 4 shows a comparison of the model for a 24KByte window size with the experimental

results. The agreement between the experiment and the model, while not perfect, leads us to

believe the combined effects of the slow-start algorithm and the window size limit are

sufficient to explain the observed throughput limitations.

1In this paper we will use the term KBytes to represent 1024 bytes. In contrast, the term kbits will

stand for 1000 bits, and kbytes for 1000 bytes.

Extensions to FTP
One of our design goals was that our modified versions of the FTP client and server

software, referred to as XFTP, must be backward compatible with standard FTP software. To

allow this, we needed to make some extensions to the protocol used by FTP [9]. Our enhanced

version of FTP is based on the 4.4BSD Unix source code and has been compiled and run on

Sun workstations running various flavors of SunOS. To understand our enhancements to

FTP, one must first understand how FTP transfers files across a network.

The FTP file transfer protocol uses the TCP [8] transport protocol to communicate across

networks. The user interface to FTP is through an FTP client application [1], which may have

either a textual or graphical interface. An FTP client communicates with an FTP server at a

remote machine to transfer files. The FTP server runs, by default, on TCP port 21.

When a user wants to transfer a file, he starts an FTP client and directs it to contact the

FTP server on a given machine at port 21. The resulting TCP connection between the client

and server is called the control connection and is used to send commands and result codes

between the client and server applications. The control connection, however, is never used to

transfer files; a separate TCP connection is created for each file transfer.

It is important to differentiate between the user commands issued by the user to the FTP

client application and the FTP commands exchanged between the client and server

applications2. In common, text-based client interfaces, the user types user commands such as

GET, PUT, BIN, and CD to control the FTP client. The FTP client transforms these user

commands into FTP commands sent to the server application. The enhancements that we

made to the FTP client and server application to support multiple-connection file transfer

required the addition of new user commands as well as new FTP commands.

How FTP Transfers Files
In the standard FTP implementation, the client and server software use the following

sequence of actions to transfer a file (as shown in figure 5).

1) The client chooses an unused, local port number.

2) The client uses the "PORT" FTP command to inform the FTP server what port number to

use for the next file transfer.

3) The server application acknowledges its willingness to use the port number by returning a

"PORT command successful" message.

4) The client (in the case of file retrieval) tells the server which file it wants by using a "RETR
file" FTP command.

5) The server creates a new TCP connection using the local port requested by the client,

above.

6) The FTP server writes the requested file onto the new TCP connection and then closes

the connection.

7) The server returns a "file complete" message to the client, once again using the original

control connection.

Extended FTP Commands
For the FTP client and server to transfer a file using multiple TCP connections, we

extended the sequence of actions in the following ways (as shown in figure 6):

2 Unfortunately, the official FTP specification in RFC 959 refers to the tokens in both of these control

languages as commands. We will use the terms user commands and FTP commands to distinguish

between the two languages for clarity.

1) A new FTP command, “MULT n”, was introduced. This command is a request from an

FTP client to an FTP server to use n connections for file transfer rather than one. If the

server has been extended to support multiple connections, then it accepts the request. If

the server is a standard implementation, then it won't understand the request and will

reject the command, in which case the client will use a single connection for file transfer.

2) A new FTP command, "MPRT port1, port2, ... portn" was introduced. This

new command is used by the client application in place of the "PORT port" command.

The MPRT command, however, allows the client to specify n ports rather than just 1,

where n was previously agreed upon by the client and server using the MULT

command.

If either the client application or the server application is a standard application, then the

MULT command will not be exchanged or accepted and data transfer takes place using a

single connection, making our extended scheme backward compatible with current

implementations of FTP.

Extended User Commands
Our enhanced client application, xftp, provides a single new user command, MULT. Before

initiating a file transfer using multiple connections, the user must use the command "MULT
n", where n is the number of connections that should be used to transfer files. The default

value of 1 will be used if the user does not request multiple data connections. The MULT user

command results in an exchange of FTP commands between the client and server applications

to agree on the value of n.

Note that our current implementation requires the user to specify the number n, the

number of concurrent data connections to use. An important research issue is to determine

how the client and server can choose an appropriate value of n without the user's input. In a

future version of the client interface, the user will simply type MULT, requesting that the client

and server applications should attempts to use an "optimal" number of connections to transfer

files. An appropriate definition of "optimal", in this context, remains an open issue.

Dividing a File across Multiple Connections
When multiple TCP connections are available to transfer a single file, the file must be

divided into pieces that can sent over the various connections. This process is sometimes

called file striping, after the commonly-used practice of disk striping, in which a single file is

stored on multiple physical disks to increase throughput. File striping, in the context of TCP

connections, however, must be carefully designed to avoid problems. A simple, obvious

approach is to divide the file, F, into n blocks, F1 ... Fn. Block Fi is then transferred using

connection Ci.

This simple approach can perform badly, however, when the TCP connections do not all

exhibit the same throughput. Because each of the connections is competing for the same

resources, they may each perform differently. A primary cause of throughput variance is

network congestion. The TCP protocol adapts to network congestion by backing off, or

decreasing the rate at which it inserts information into the network [2]. Those connections

that observe congestion will slow down, whereas connections that aren't affected by

congestion will speed up and consume more network resources. As a result, if each of n

connections transfers the same amount of data, some of the connections will take longer to

complete. In the worst case, n-1 of the connections have each transferred their blocks and

one connection requires additional time to finish, which is clearly inefficient.

To optimize the transfer rate of a single file using n connections, each with a different

throughput, an application cannot determine the division of the file into blocks beforehand.

Our solution to this problem divides a single file into m records (where m >> n). Each record

is then sent over a single connection. The sender of the file, which can be either the FTP

client or server, reads the file from local storage one record at a time and sends each record

over whichever connection has resources available to accept it. By dividing a file in this way, it

is possible to keep each of the connections busy until the entire file has been transferred, even

if the connections do not all transfer the same amount of data.

An application can easily determine if a TCP connection can accept more data. The TCP

protocol maintains a sending buffer of a fixed size. As data from the sending buffer is sent

across the network (and acknowledged by the receiver), TCP makes more space available in

the sending buffer. An application can determine if a connection has available resources by

checking the size of the sending buffer.

As a file's records arrive at the receiver (which may be either the client or the server), the

application must put the records back into their proper order to recreate the file being

transferred. To accomplish this, each record must contain an identification field that tells the

receiver where the record belongs relative to the start of the file. Because these identification

fields must also be sent over the network, they impose an additional overhead on the file

transfer. In the current implementation, a file is divided into 8k records. Each record contains

a 4-byte offset field that specifies the byte number of the first byte in the record. These values

represent an added transfer overhead of 4/8096 bytes ≈ .05%

Handling Multiple Connections
Adding multiple connections to FTP's file transfer model required that we greatly expand

the complexity of FTP's connection management software. When using a single connection to

transfer a file, FTP's connection handling algorithm could be fairly simple, as shown in

figure 7.

The addition of multiple connections requires a more sophisticated I/O processing

algorithm because the software must choose which TCP connection to use at each step. The

primary problem is that access to the TCP connection can block, meaning that the calling

application is forced to wait because the requested operation could not be immediately

complete because of a lack of resources [10]. For example, if an application tries to read 1000

bytes from TCP and the TCP connection does not have 1000 bytes currently available, then the

caller is blocked. When trying to optimize data transfer across many TCP connections, an FTP

client or server that blocks is prevented from performing other useful work.

The most elegant solution to this problem would be to write a multi-threaded [10] version

of the FTP client and server. Each thread could manage a single connection and blocking a

single thread would not diminish performance. Unfortunately, multi-threaded applications

cannot currently be used on many platforms. A more expensive alternative would be to use

multiple processes rather than multiple threads. The overhead required for interprocess

communication and context switching, not to mention the extra computer resources required,

made this on unattractive alternative.

Our enhanced FTP client and server use a sophisticated system of asynchronous I/O and

application-level buffering to prevent blocking. All access to the TCP connections is

accomplished using non-blocking system calls. Because non-blocking read and write system

calls have the option of accepting (or returning) less data than was requested, however,

application-level buffering is required to hold the remaining data for a particular record until it

can be accepted. The main processing loop used by our enhanced FTP applications is shown in

figure 8.

EXPERIMENTAL STUDIES

Experimental Configuration
All tests reported here were conducted in the ACTS visitor center facility. The equipment

diagram is shown in figure 9. Test files of various sizes were created on “pongo.lerc.nasa.gov”;

the file contents consists of random ASCII characters (including non-printable characters).

The XFTP client runs on “pongo...”. In all tests “PUT” commands are used to send the test file

to the XFTP server on “perdita.lerc.nasa.gov”. On the server side, a “null” device is used to

receive the file to avoid the cost of transferring the file back to disk. Ethernet packets can be

captured on the network that connects “pongo...” to its associated router

(“actsrtr2.lerc.nasa.gov”). Packet tracing is implemented using the Etherpeek™ software

package running on a separate hardware platform (a Macintosh Centris).

Each of the two routers in the system have two hardware interfaces, one ethernet and one

serial RS449. The RS449 interface is clocked off the CSUs, which in turn take clock

information from the ACTS Traffic Terminals. The nominal data rate on the serial link is

1.536Mbits/sec3 For test purposes, and when the satellite link is not active, the CSUs can be

connected in a “back-to-back” bypass as shown in figure 5.

For most tests the ACTS Traffic Terminals #1 (TT1) and #2 (TT2) have been used. These

terminals are part of the Master Control Station (MCS). They share the large-diameter

reflector used for all MCS functions, and therefore operate error-free under almost all

weather conditions. For tests on links with non-zero bit error rates, traffic terminal 1 or 2 was

replaced by an ACTS T1 VSAT terminal (Traffic Terminal #3). The RF feed on this terminal

had to be de-polarized to produce the desired bit error rates.

At the bottom of figure 9 we show the theoretical limits on the transmission rates between

the workstations and the routers, and between the two routers. The rates in KBytes/sec also

include the overhead appropriate for TCP transmission using 512byte packets. In the case of

Ethernet, each packet carries a 58 byte header (Ethernet, IP, and TCP). Between the routers,

a modified HDLC frame structure is used; the overhead here is 46 bytes. The Ethernet on the

sending (left) side may be able to operate at the physical speed since it contains only two

transmitting devices. The receiving Ethernet also contains a gateway to the Internet (not

shown in figure 9), and will therefore not be able to run at line speed.

All file transfers were timed using time-stamp system calls within the XFTP code. All

performance figures reported in this paper were obtained this way. For selected file transfers

we have also recorded the packet headers of all packets seen on the “sending” Ethernet

segment. These packet traces are used to evaluate the details of the file transfer operation;

while we will refer to a few of these results, a detailed discussion of the trace file analysis is

beyond the scope of this paper.

Results
Our original measurements using FTP showed that a single data connection could yield a

throughput of about 40KBytes/sec, or approximately 24% of the available capacity4. Using the

3Mbits/sec equal 106 bits per second.
4Refer to figure 5 and the discussion of the overhead computations in the text.

model described in ref [6], we obtain reasonable agreement between the measurements and

the model predictions. The model is centered around the fact that FTP is forced to send data in

discrete “blocks”, since the TCP window for the data connection fills up long before an

acknowledgment can be received, given the round-trip time of approximately 590msec. The

size of the data blocks is time-dependent due to the slow-start algorithm, which initially allows

only one TCP segment to be sent. After that, each acknowledgment will double the available

window size up to the full TCP window (which can be up to 64KBytes without the extended

window option; in practice most operating systems limit the TCP window to a lower value). If

this maximum window size is less than the product of the round-trip delay and the data rate of

the channel (taking into account the packet overhead), there will still be periods of time when

the channel is unused, because the window has been exhausted, and the next

acknowledgment is still in transit. For a T1 channel, this will occur for windows less than

about 100KBytes.

The multi-socket XFTP still shows that same behavior. In this case, however, the multiple

data connections combine to create an “effective” window size, equal to the product of the

number of data connections and the window size allocated to each connection. For example,

with a 24KBytes TCP window and 4 connections, the effective window size will be 96KBytes,

very close to the window needed to saturate the channel. The slow-start will allow each

connection to begin by transmitting one TCP segment. The initial effective window is

therefore equal to the number of data connections; this window will double in size with each

group of acknowledgements (one per connection). By extending the model in this way, and

taking into account the limit on the number of segments that can traverse the channel in a

given time interval, we can attempt to predict the performance of the multi-socket XFTP.

Figure 10 shows both the experimental and the model results. All tests were conducted

using a TCP window of 24KBytes. The model shows the expected near-linear performance

improvement up to 4 data connections. Full channel speed cannot be reached due the time

lost in the slow-start sequence. The model predicts a small performance increase past 4 data

connections since the channel can be saturated a little sooner with more connections.

The experimental results agree in general with these predictions, with a number of

important differences. The performance increase from 1 data connection to 4 data

connections is not as high as the model predicts. By the time we reach 8 data connections (the

effective window in that case is about twice what should be required to saturate the channel),

the experimental and the modeled throughput agree again. At that point, the throughput

represents a 91% utilization of the T1 link.

In the experiment, attempts to operate with more than 8 data connections lead to packet

loss in the router queues, with large performance penalties due to packet re-transmission.

Two router queues are involved in this case, both in “actsrtr2.lerc.nasa.gov”. The router

maintains an input queue for packets from the Ethernet segment, and an output queue for

packets waiting for transmission over the ACTS link. Both of these queues will fill up if the

effective window size allows data to be sent faster than the T1 channel rate. The queue

lengths are adjustable within the limits of total router memory available. In general, long

queues are not desirable since they add to the overall round-trip delay. For our

measurements, we decided to allocate all available5 router memory to these two queues in

5Some buffer memory is needed for the T1 input queue and the Ethernet output queue. Since both of

these queues are at transition points from lower to higher data rates, only a small amount of memory is

needed for each one.

equal parts. Note that no adjustments were needed on “actsrtr2.lerc.nasa.gov”, since the

return traffic of acknowledgment segments cannot exceed the T1 rate at which data is

received by the server. A detailed analysis of the queue behavior in the router, and the XFTP

performance in the area beyond an effective window of 100KBytes is still in progress.

To determine the validity of the effective window concept, we conducted tests using several

different settings for the TCP window and the number of data connections. The results are

summarized in figure 11, showing throughput as a function of the effective window size, for

transfers of 5MByte files. In this case, the achievable throughput is clearly dependent only on

the effective window size. There are no observable performance penalties for the use of a

large number of data connections, compared to the use of large TCP windows. Note that slow-

start has a very small effect for files of this size. Large numbers of data connections may have

a slight advantage for smaller files since the slow-start throughput penalty can be overcome a

little sooner.

All results reported to this point were obtained on an error-free link. In figure 12 we

present preliminary results obtained during test runs on a T1 VSAT link which was not error-

free. The RF feed of the VSAT was adjusted to weaken both the receive and the transmit

signal. The resulting link had a bit error rate between 5x10-6 and 1x10-5 in the direction that

the data was flowing, and between 1x10-7 and 5x10-7 in the reverse direction. The effective

window size was held constant at 192KBytes for all three data points. Contrary to the error-

free case, the configuration using a large number of independent data connections shows a

much better performance than cases where fewer connections with larger TCP windows were

used.

CONCLUSIONS
Our preliminary experiments clearly show that it is possible to achieve throughput as high

as 90% across a satellite link running at 1.544Mbps with an unmodified TCP implementation.

We have shown that, by combining several TCP connections in parallel, it is possible to

achieve effective window sizes that allow very efficient file transfer over long, narrow

channels such as satellite links. Newer standards for TCP allow applications to specify sending

and receiving buffer sizes that result in higher throughput across satellite links. These

versions of TCP, however, have been slow in reaching end users. Historically, it is also

unlikely that many installed computers will be upgraded to newer versions of TCP. More

important than the lack of new TCP implementations, however, is that multiple TCP

connections may work better than a single TCP connection with a huge buffer size.

Preliminary experiments over links with mild error rates suggest that multiple TCP

connections achieve a higher aggregate throughput in the presence of errors.

Our exhanced version of the FTP client and server, XFTP, is completely backward

compatible with existing FTP implementations. XFTP allows a user to transfer a single file

over a long narrow channel at throughput levels well above those achievable with

conventional FTP implementations. Determining the optimal number of connections to use

for file transfer, however, is still an open issue. We are currently working on several

theoretical models that may allow us to build an application that can choose a near optimal

number of connections for a particular file transfer without user intervention.

Our prototype software was built into an FTP client and server. Our algorithms could be

adapted for use in other network applications, with obvious examples being HTTP (used by

world wide web applications), and NNTP (used by network news).

REFERENCES
[1] Comer, D.E., Internetworking with TCP/IP Volume I, Principles, Protocols, and

Architecture, 1988, Prentice Hall.

[2] Jacobson, V. Congestion Avoidance and Control. in Proceedings ACM SIGCOMM ‘88.

1988. .

[3] Jacobson, V. and R. Braden. TCP Extensions for Long-Delay Paths. LBL 1988; Internet

RFC 1072.

[4] Jacobson, V., R. Braden, and D. Borman. TCP Extensions for High Performance. LBL

1992; Internet RFC 1323.

[5] Jacobson, V., R. Braden, and L. Zhang. TCP Extension for High-Speed Paths. LBL 1990;

Internet RFC 1185.

[6] Kruse, H. Performance of Common Data Communications Protocols Over Long Delay

Links: An Experimental Examination. in 3rd International Conference on

Telecommunication Systems Modeling and Design. 1995. Nashville, TN.

[7] Long, L.R., L.E. Berman, and G.R. Thoma. Client/Server Design for Fast Retrieval of

Large Images on the Internet. in Proceedings of the Eighth IEEE Symposium on

Computer-Based Medical Systems (CBMS ‘95). 1995. Lubbock, TX.

[8] Postel, J. TRANSMISSION CONTROL PROTOCOL. ISI 1981; Internet RFC 793.

[9] Postel, J. and J. Reynolds. FILE TRANSFER PROTOCOL (FTP). ISI 1985; Internet RFC

959.

[10] Silberschatz and Galvin, Operating System Concepts, 4th ed. 1994, Addison Wesley.

[11] Stevens, W.R., TCP/IP Illustrated: The Protocols, Vol. 1. 1994, Addison-Wesley.

FIGURES

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600

Channel Bandwidth (kbits/sec)

T
hr

ou
gh

pu
t (

kb
its

/s
ec

)

45k 100k 2M 2M Terr.

Figure 1 — Measured throughput, defined as the ratio of file size to the file transfer time, for

the transfer of different size files at different channel data rates. The “2M Terr.” line is the

terrestrial baseline case, all other measurements were made over the satellite channel.

This figure that the satellite channel’s bandwidth cannot be fully utilized. As the bandwidth of

the satellite channel is increased, throughput initially also increases, but then levels off. The

bandwidth at which throughput levels off, and the maximum observed throughput are both

dependent on the size of the file being transferred.

Time (sec)

k
il

ob
yt

es

tr
an

sm
it

te
d

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 1.00 2.00 3.00 4.00 5.00

Figure 2 — Amount of data transferred as a function of elapsed time from the start of the file

transfer. The data is being sent on a 1.344Mbits/sec satellite channel. The data shown here

covers the first 5 seconds of the file transfer. The near-horizontal portions of the graph

represent times when the window is exhausted, and the sender is waiting for an

acknowledgment. The amount of data transferred between wait periods increases as the

slow-start algorithm allows the window to open up.

Time (sec)

k
il

ob
yt

es

tr
an

sm
it

te
d

200.00

250.00

300.00

350.00

400.00

450.00

500.00

10.00 11.00 12.00 13.00 14.00 15.00

Figure 3 — Same as figure 2, but at a later time in the file transfer. Note that the horizontal

scale covers a much larger range than in figure 2. The wait periods are still visible, but not as

pronounced. The amount of data transmitted between wait periods is roughly equal to the

window size.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

File Size (kbytes)

T
h

ro
u

g
h

p
u

t
(k

b
it

s/
se

c)

Model 1536 Exp 1536 Model 384 Exp 384

Figure 4 — Comparison of the slow-start model and experimental results obtained at channel

speeds of 1.536Mbits/sec (solid line and filled squares), and 384kbits/sec, for different file sizes.

The experimental results are based on the unmodified FTP, with a window size of 24KBytes.

Agreement between the model and the experiment is generally good; the model tends to

predict somewhat higher throughput than is observed for a given file size and channel

bandwidth.

FTP Client

“get fname”
choose local port

request file

Accept connection
on port 1111 and

receive file

FTP Server

Open connection to port
1111 and send file

Port 1111

PORT successful

RETR fname

OK

(file data)

FILE complete

Figure 5 — Normal FTP Action Sequence. This figure shows the normal sequence of actions

that takes place when a user retrieves a file fname using standard FTP.

FTP Client

“mult 2”

“get fname”
choose local port

request file

Accept connection
on port 1111,2222

and receive file

FTP Server

Open connection to port
1111,2222 and send file

MULT OK

MPRT successful

RETR fname

OK

(file data)

FILE complete

MULT 2

MPORT 1111,2222

Figure 6 — Extended FTP Action Sequence. This figure shows the sequence of actions that

takes place when a user retrieves a file using enhanced FTP. The file is transferred using TCP

connections on ports 1111 and 2222.

Repeat while not eof(file) {
Read a buffer from the file
Write the buffer to the connection

}

Repeat while not eof(tcp) {
Read a buffer from the connection
Write the buffer to the file

}

Figure 7 — FTP Main File Transfer Algorithms. This figure shows the simple logic used for

FTP's main file transfer input and output routines.

while (not done) {
FD_SET(wmask, interested_file_descriptors);
select(wmask); /* wait for available connection */
for (each usable file descriptor fd) {

len = write(fd,buffer);
if (len < sizeof(buffer))

bufferup(the_rest)
}

}

Figure 8 — XFTP Input Processing. This code fragment shows the algorithm used for writing

the multiple TCP connections. Input processing is similar.

actsrtr2.

lerc.nasa.gov

Etherpeek™

Tracer

pongo.lerc.

nasa.gov

actsrtr1.

lerc.nasa.gov

perdita.lerc.

nasa.gov

CSU
RS449

CSU
RS449

ACTS

TT2

ACTS

TT1

DS1 DS1

10Mbits/sec

1096KBytes/sec

10Mbits/sec

1096KBytes/sec

1.5Mbits/sec

168KBytes/sec

Figure 9 — Block diagram of the experiment configuration. “pongo.lerc.nasa.gov” and

“perdita.lerc.nasa.gov” are Sun IPX workstations, the tracing software runs on a Macintosh

Centris System; “actsrtr1.lerc.nasa.gov” and “actsrtr2.lerc.nasa.gov” are Cisco Systems 2500

series routers. ACTS traffic terminals #1 and #2 (TT1 and TT2) are shown; in some

experiments the T1 VSAT terminal #3 was used in place of either TT1 or TT2.

Below the equipment diagram is an indication of the maximum line speeds on the ethernet

segments and the router connection. Traffic between the workstations and their associated

routers travels over 10Mbits/sec channels. Taking overhead into account, the theoretical user

data transfer rate on these channels is 1096KBytes.sec. The connection between

“actsrtr1.lerc.nasa.gov” and “actsrtr2.lerc.nasa.gov” is made at 1.536Mbits/sec unless otherwise

noted. At that bit rate, and taking into account overhead, the maximum user data transfer

rate is 168KBytes/sec.

0

2 0

4 0

6 0

8 0

100

120

140

160

0 4 8 1 2

Connections

K
B

y
te

s
/s

e
c

2MB File 5MB File 2MB Model 5MB Model

Figure 10 — Performance of 2Mbyte and 5Mbyte file transfers using varying numbers of data

connections. The symbols represent experimental measurements, while the solid lines are the

result of a model calculation including slow-start, TCP window size, and multi-socket

operation.

0

2 0

4 0

6 0

8 0

100

120

140

160

0 200 400 600 800

"Effective" Window Size (KBytes)

K
B

y
te

s
/s

e
c

12K 24K 48KTCP Window Size for Each Connection:

Figure 11 — A comparison of 5MByte file transfers with different TCP windows and different

numbers of data connections. The effective window size is the product of the TCP window size

and the number of data connections.

0

5

1 0

1 5

2 0

2 5

3 0

3 5

0 1 0 2 0 3 0 4 0 5 0

TCP Window (KBytes)

K
B

y
te

s
/s

e
c

Figure 12 — Throughput on a link with non-zero bit error rates. During these tests, bit error

rates were measured between 5x10-6 and 1x10-5. The number of connection was adjusted for

each of the TCP window sizes used to keep the effective window size constant from test to

test.

