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Abstract. Often when assessing complex network behavior a single measure-
ment is not enough to gain a solid understanding of the root causes of the behav-
ior. In this initial paper we argue for thinking about “measurement” as a process
rather than an event. We introduce reactive measurement (REM), which is a tech-
nique in which one measurement’s results are used to automatically decide what
(if any) additional measurements are required to further understand some ob-
served phenomenon. While reactive measurement has been used on occasion in
measurement studies, what has been lacking is (i) an examination of its general
power, and (ii) a generic framework for facilitating fluid use of this approach.
We discuss REM’s power and sketch an architecture for a system that provides
general REM functionality to network researchers. We argue that by enabling the
coupling of disparate measurement tools, REM holds great promise for assisting
researchers and operators in determining the root causes of network problems and
enabling measurement targeted for specific conditions.

1 Introduction

Because networks are vast collections of integrated components, it can often be the
case that analyzing some network behavior in depth (for characterization, tuning, or
troubleshooting) requires adapting on-the-fly what sort of measurements we conduct
in consideration of the conditions manifested by the network. While the technique of
adapting measurements dynamically has been recognized by practitioners in a number
of contexts, a key missing element has been the ability to tie together disparate forms
of measurement into a cohesive system that can automatically orchestrate the use of
different techniques and tools.

To this end, we outline a new measurement paradigm: reactive measurement
(REM). The vision of REM is to provide a platform that can couple measurements—
both active and passive—together in a way that brings more information to bear on the
task of determining the root cause of some observed behavior. For instance, consider
the problem of analyzing the failure of a web page to load. When a REM system ob-
serves unsuccessful web page requests, it can automatically execute a set of diagnostic
measurements designed to winnow the set of possible reasons for the failure down to
the root cause(s) (e.g., a subsequent traceroute may highlight a disconnect or loop in
the path). While any particular reactive measurement task can be manually pieced to-
gether with straightforward scripting, many of the tasks (collecting events, expressing
dependencies, managing timers, archiving results to varying degrees) benefit a great
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deal from a “toolbox” approach. Essentially, it is the absence of such a toolbox that, we
believe, has led to a failure to exploit reactive measurement to date.

The basic notion behind the reactive measurement paradigm is that automatically
coupling disparate measurement techniques can bring more information to bear on the
task of gaining insight into particular network behavior. The fundamental REM build-
ing block is having one measurement’s result trigger additional reactive measurements.
Thus, when a particular behavior is observed, we can automatically trigger additional
measurements to work towards determining the root cause(s) of the behavior. Further-
more, as those tools hone in on the underlying reasons—or determine that a given
hypothesis is incorrect—their output can again trigger the additional measurements
needed to drive progress forward. The paradigm of reactive measurement is to think
of “measurement” as a process rather than a simple activity. The goal of the process is
to gain insight, and in a system as complex as today’s networks such a task will likely
involve more than one assessment technique.

This quite simple idea holds promise both for providing a foundation for signifi-
cant advances in network troubleshooting, and for fostering new types of Internet mea-
surement studies. Regarding this latter, the literature is filled with Internet measure-
ment studies that evaluate the behavior of networks that are working as expected. These
studies sometimes offer glimpses of the failure modes present in the current network,
when such glitches are observed in the course of taking measurements (e.g., [12] iden-
tifies routing “pathologies”, which are then removed from subsequent analysis). REM,
however, enables the opposite approach. Because REM can key on anomalies in the
network, REM can be used to trigger measurement infrastructure precisely when unex-
pected events occur, enabling us to learn a wealth of information about the causes of
the problems and their immediate effects. We can further ultimately envision REM as
the basis for networks that can automatically diagnose problems and take steps to work
around detected failures.

REM enables fundamentally new ways to measure network behavior that cannot
be accomplished with stand-alone active or passive techniques. Consider the case of
measuring failures in the Domain Name System (DNS). While a number of studies on
the operation of the DNS have been conducted (e.g., [6]), the fundamental question
“how long does a particular DNS failure persist?” remains largely unanswered. This
question cannot be answered by simply monitoring the network, because the experi-
ment is then beholden to users who may or may not trigger additional DNS requests
after a failure (particularly if they’ve been trained by the failure patterns they’ve expe-
rienced in the past). Alternatively, researchers could actively query the DNS for a set of
hostnames independent of the requests invoked by actual users. In this case, following
up on failed requests is straightforward. However, while this approach can shed light
on the original question, the workload imposed on the DNS and network is synthetic
and likely unrealistic. Using reactive measurement allows for bringing both active and
passive measurements to bear to answer the basic question: a monitor can observe nat-
urally occurring DNS requests in the network, and, upon noticing a failed DNS request,
the REM system triggers an active measurement tool to periodically query the DNS to
determine how long the failure persists, whether the failure is intermittent, etc. We can
also invoke additional tools to determine why the DNS requests are not completing.
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A second use of REM is for targeting measurements. Consider a packet-trace study
investigating the behavior of networks and protocols under “very congested” conditions
to gain insight into how to evolve protocols and algorithms to work better in such situ-
ations. The way this is often done today is to trace the network for a lengthy block of
time and then post-process the resulting traces for periods when the network is “very
congested,” discarding the remainder of the trace. This methodology is scientifically
sound, but logistically cumbersome due to the volume of traces that must be initially
collected. Using a REM system, however, the researcher could first passively assess the
state of the network, and then trigger detailed packet capture only when the network is
in the desired state. In this way, not only does the researcher not have to capture and
store traffic that will ultimately not be used, but the traffic that is captured is immedi-
ately available for analysis without pre-processing. In this case, REM does not provide
a methodology for conducting a fundamentally different experiment than could other-
wise be undertaken (as is the case for the DNS investigation described above), but it
eases some key logistical challenges by providing targeted measurements. This is not a
minor benefit, as the logistical burdens can easily be such that they, in fact, provide the
ultimate limit on how much useful data is gathered.

Finally, we note that while we have framed the REM system in terms of reactive
measurements, the system is general enough to support a much broader notion of a re-
action—such as something that is executed, but is not a measurement. For example, a
generic reaction could page a network operator when the system has determined that
a router has crashed. Ultimately, the REM system could be used as a platform to au-
tomatically mitigate or correct observed problems. For instance, if the REM system
determines that a local DNS server has crashed, it could trigger a backup server to
take over (as well as notifying operators of the change). Using the REM framework in
this way offers great potential for providing a powerful method to add robustness to
networks.

The remainder of this paper is structured as follows. We sketch related work in § 2.
In § 3 we present the architecture of a prototype REM system that we have developed to
support diverse measurement needs by providing the “glue” with which to tie together
arbitrary active and passive network measurement tools. We briefly summarize in § 4.

2 Related Work

First, we note that the wealth of work the community has put into developing active
and passive measurement tools forms a necessary component of the REM framework.
As outlined in this paper, the reactive measurement system conducts no measurements
itself. Rather, it leverages the results from independent active measurement tools and
passive traffic monitors as input into a decision process as to what subsequent measure-
ments are required to uncover the cause(s) of a given network phenomenon.

Many past studies have employed multiple measurement techniques in an attempt
to gain broader insight on a particular problem than can be obtained when using a
single measurement method. For instance, [9] uses both traceroute and BGP routing
table analysis to determine the AS path between two given hosts. The key difference
between these kinds of studies and the REM framework outlined in this paper is in
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REM’s automated coupling of measurements. REM specifically defines dependencies
between the output of a measurement tool and what (if any) additional measurements
are required. We note that REM is orthogonal to and does not obviate the usefulness of
studies like [9] that leverage information from multiple independent measurements.

The literature also has examples of researchers utilizing the reactive measurement
notion. For instance, [3] uses traceroute measurements to followup on the detection of
possible “missing routes” found by analyzing BGP routing tables. Another example is
discussed in [2], whereby incoming email is first classified as spam or ham and then the
URLs within the spam are followed in an effort to characterize various scams. While
researchers have used REM techniques in the past for specific purposes, what has been
missing is to systematize these mechanisms in order to make REM broadly available to
the research community as a general approach.

In addition, we note that our framing of measurement as a process rather than an
event shares some properties with PDA [5] (which is mainly focused on host problems,
but does touch on connectivity issues as well), ATMEN [8] (which is largely concerned
with coordinating distributed triggered measurements across organizations), and the
general idea of “trap directed polling” via SNMP information. All of these systems
in some fashion make use of one measurement to drive another measurement (and/or
ultimately make a conclusion), but all focus on different aspects of the problem.

Reactive measurement shares some of the goals of the “knowledge plane” (KP)
proposed in [4]. The KP envisions continuously gathering information about the net-
work. When particular behaviors need further investigation the KP can be queried to
gain a breadth of relevant information. One immediate and practical problem with the
KP approach is the immense task in gathering and sifting through information about
the entire network. REM proposes essentially the opposite approach: rather than syn-
thesizing from already-gathered information, REM aims to adaptively gain insight into
particular observed behaviors by running a series of measurements in response to a
given phenomena. REM thus has the advantage that it can be conducted locally. No
distributed data substrate—with the attendant difficulties of scaling, privacy, security,
trustworthiness—needs to be constructed. That said, we note that REM in some sense
is also orthogonal to ambitious approaches such as KP. The two could be coupled, such
that facts learned by REM activity are fed into the KP data substrate, and REM itself
could incorporate facts extracted from the substrate to drive its local decision process
(as discussed in more detail in § 3.4).

Finally, we note that intrusion detection systems (IDS) share some high-level no-
tions with REM [18, 13]. IDS systems passively observe traffic to draw observations
regarding network activity. These observations can be hooked to a “reaction”, ranging
from logging an event to resetting a TCP connection to adding a firewall rule to block
traffic from a host that is port scanning the network. The REM concept of a reaction is
much broader than the security-related reactions that popular IDS systems incorporate.
In addition, IDS systems offer a passive view of the network, while reactive measure-
ment allows for active probing to determine the state of the network. However, the abil-
ity of some IDS’s to sift through large traffic streams to find specific types of high-level
activity offers great promise of leverage within the REM framework (see § 3).
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3 REM Architecture

This section presents an architecture for a generic, reusable reactive measurement sys-
tem suitable for a broad array of measurement efforts. Our aim is to both explicate the
approach and solicit input from the community while the effort is in its formative stages.
We begin with a discussion of incorporating external measurement tools into the sys-
tem. We then present the internal machinery that drives the measurement procedures,
briefly delving into some of the details. Finally, we discuss possibilities for integrating
the REM system with other external resources.

External Meas.
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Fig. 1. Conceptual layout of the reactive measurement system.

3.1 External Interactions

Fundamentally, the REM system couples measurements with reactions. Figure 1 illus-
trates the system’s basic structure: arbitrary measurement tools glued together using a
daemon, remd, that can be run on any general purpose computer connected to the net-
work to be measured. remd provides an interface to and from traditional measurement
tools, as well as a method for specifying the relationships between the measurements
(outlined in the next subsection). First, we outline the various measurements shown in
Figure 1 with which remd interacts:

– Active Measurements. remd can initiate independent active measurements based
on a run-time-configured schedule and incorporate their results as input into
whether or not to follow up with a reactive measurement, and in what form. For in-
stance, a simple ping measurement may be executed every N seconds, with various
pieces of information returned (e.g., success/failure, loss rate, presence of reorder-
ing, etc.) to remd. These results could then trigger additional measurements in an
attempt to determine the reason behind the initial observations.

– Reactive Measurements. These are measurements that remd executes in response
to previously-measured network phenomenon. For instance, if a tool reports to remd
that the loss rate between the local host and a given remote host exceeds a thresh-
old, then a reactive measurement can be triggered to attempt to determine the cause
of the increased loss rate or how long it persists. The results of reactive measure-
ments are fed back to remd and are then used to determine whether further reactive
measurements are needed. Reactive measurements can be active or passive mea-
surements.

5



– External Measurements. These are measurement results delivered to remd with-
out remd initiating them itself. These measurements could come from SNMP mon-
itoring systems, routers, intrusion detection systems (IDS), system log analyzers or
custom built monitors. Each of these entities potentially has a unique and useful
vantage point from which to assess certain network conditions and attributes.

The various components of the system interact by passing structured messages be-
tween the remd and the measurement tools. We can incorporate arbitrary tools into
the system by writing simple wrapper scripts1 that (i) understand and process requests
formed by the remd, (ii) evaluate the output of the given tool(s) (return codes, output
files, standard output), and (iii) form responses in the format remd requires. We use
XML for requests and responses to ensure an extensible message structure that can
accommodate communication with arbitrary measurement tools (their diverse set of ar-
guments and result types). In addition, XML parsers are widely available allowing users
to construct wrapper scripts without building complicated parsers and in a wide variety
of languages. Finally, we note that while the contents of the messages passed between
the remd and the various measurement tools must be well-formed, the meaning of the
information and its relationship within the overall experiment is defined at run-time
by the remd configuration, allowing a great degree of flexibility and leaving remd as
neutral glue.

3.2 Internal Architecture

Internally, the REM system has three basic components: a measurement scheduler, an
event receptor, and a state machine to capture the linkages between measurements. The
measurement scheduler runs measurement tools at prescribed times. For instance, the
user may want to run a simple measurement to assess a path periodically, along with
successive reactive measurements as dictated by the results of the first measurement.
Or, upon detecting a failure the user may wish to run the reactive measurements after a
given amount of time, rather than immediately (e.g., to test DNS resolution N seconds
after observing a failed lookup). The event receptor receives notifications from external
monitors (e.g., an SNMP monitor) that then may initiate a chain of reactive measure-
ments, and from the activity of the reactive measurements themselves. Finally, the state
machine manages the transitions between various measurements.

Figure 2 gives an example of an REM state machine. It codifies that REM should
start a ping measurement based on an internal timer. Based on the results of the ping
measurement, REM will execute zero, one, or two reactive measurements. If the loss
rate measured by ping exceeds a threshold T , REM executes treno [10] in an attempt to
determine where in the path the congestion occurs. If the ping measurement observes
packet reordering on the path, REM uses cap [1] to assess the impact of reordering on
TCP’s congestion control algorithms. Note: if the ping indicates a loss rate that exceeds
T and packet reordering is present both treno and cap will be executed (bringing up a
number of coordination issues that we discuss in more detail below). In the case where

1 The NIMI measurement infrastructure [15, 14] has successfully used a similar wrapper script
technique to incorporate arbitrary measurement tools.
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TIMER
ping

REORDERING?

LOSS RATE > T ?
treno

Fig. 2. Simple state machine whereby all measurements are invoked by remd.

the ping measurement indicates both a loss rate below T and no reordering, then no
further measurements are executed. In other words, an implicit terminal state follows
each state in the machine. If, after executing a measurement, none of the transitions are
valid, then the current measurement chain ends. Finally, the treno and cap states could,
of course, also have transitions to additional measurements.

(60 SECOND DELAY)

dig
DNS QUERY FAILURE

remd

Bro

DNS QUERY FAILURE

Fig. 3. Simple state machine of a reactive measurement triggered by an external monitor.

Figure 3 gives a second example of an REM state machine. Here, remd (everything
within the dotted line) receives a DNS failure notification from an external source,
namely an instance of the Bro IDS (which can perform extensive, application-layer
analysis of traffic). Upon receiving the message indicating a DNS failure occurred,
remd executes a dig measurement in an attempt to resolve the given hostname. Each
time the given hostname cannot be resolved, REM schedules another dig measurement
for 60 seconds into the future. In addition to setting a time between measurements, a
maximum number of attempts can be configured. For instance, inserting 60 seconds
between DNS queries and running a maximum of 10 queries may suffice for a given
experiment. Of course, a simple periodic timer will not suffice for all situations; our
prototype REM system also provides Poisson-based intervals and exponential backoff.
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The above examples are clearly simplistic, and the thorny problem of measurement
scheduling and collision remains. A user may wish to have two reactive measurements
run in parallel in one instance, and serially in another. In addition, a user may wish
to base a reaction on the output of multiple measurements. These situations greatly
complicate state machine construction. While this complexity can be hidden from the
user by providing a high-level interface from which the system then creates the actual
state machine, we may need a more powerful abstraction to cover all possible cases in
the future. For example, we could use the quite general framework of Petri Nets [16]
to codify the reaction path. Alternatively, we could directly employ Bro’s events and
timers. Our current prototype is based on a simple state machine. As we explore the
sorts of reactive measurements we find we want to express in practice we will look to
enhancing the system’s abstract model to support these sorts of richer couplings.

As indicated above, external notifications to the REM system can come from any
network monitoring system (IDS, SNMP, custom developed, etc.). Attempting to inter-
face remd with legacy systems may require a lightweight shim to provide the necessary
“plumbing”. For example, consider integrating the Bro IDS into the REM framework.
Since the Bro system includes a client library for transmitting Bro events and typed
values, to integrate it with REM we can devise a simple event receiver that understands
Bro events and translates them into remd notifications.

Note, as discussed thus far, the REM system has no particular provisions for security
mechanisms over and above those placed on the user-level tools by the underlying oper-
ating system. We believe this is the generally correct model. However, we clearly must
require access control for external notifications. A natural approach for doing so would
be to layer such notifications on top of SSL connections in order to leverage SSL’s
authentication capabilities. We could potentially augment this with an authorization ca-
pability allowing a researcher to define which external monitors can communicate with
remd and what sort of messages they can send.

3.3 Details

The high-level architecture sketched above is realized through a system whereby each
experiment keeps a variable list that can be arbitrarily populated with state informa-
tion by the experiment configuration and the measurement tools as they are executed.
For instance, a measurement tool’s argument list can be populated by the configuration
setting variables for the tool. Wrapper scripts consult the variable list and add to it infor-
mation about the outcome of a particular measurement. Once a measurement is finished
and the updated list returned, remd executes the transitions, which are specified using
arbitrary Python code that runs in the context of a given variable list. Using this scheme
the remd is only required to manage the overall measurement process and not have
any understanding of the measurements themselves. Thus, remd is charged with tasks
such as moving variable lists around, executing transition code from the configuration,
managing processes, and stopping processes that take too long.
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3.4 Interfacing to External Resources

A REM system such as described above would provide a solid foundation for conduct-
ing fundamentally new and different measurement studies. However, the system can
be more useful still if it were to contain the ability to interact with different types of
external resources. Below we sketch two possibilities.

Measurement Infrastructures. Often we can derive more information about a network
anomaly by probing the network from multiple vantage points. For instance, a DNS
failure may be a local problem to a given network or a more general global problem
with one of the root DNS servers. If we perform DNS lookups at only one point in the
network (i.e., where remd is running), we can fail to observe the full scope of the prob-
lem. However, by running the same DNS query from a number of distributed points in
the Internet, a more complete story about the failure might emerge. Thus, we should aim
to interface the REM system with distributed measurement systems such as scriptroute
[19] or DipZoom [17]. Such interfaces provide the ability to run reactive measurements
at many points in the network simultaneously to gather as much information as possible
about network anomalies. Note that by using wrapper scripts, the REM system can ac-
commodate such interfaces without any particular extensions to the general framework:
we simply write wrapper scripts invoked by remd that, for example, execute scriptroute
tools to run measurements on alternate hosts and gather the results.

Measurement Repositories. While reactive measurement offers a great deal of power,
one deficiency is that sometimes the overt trigger for a failure or anomaly comes late:
that is, by the time we observe the problem, we may have missed valuable precursors
that shed light on the problem’s onset. We envision a partial counter to this problem in
the form of interfacing to measurement repositories. For instance, wrapper scripts could
interface with the bulk packet recorder outlined in [7] in an attempt to try to build under-
standing about the precursors to some observed phenomena. Another obvious source of
information could be the RouteViews repository [11] of advertised routing tables.

4 Summary

Our two major—if preliminary—contributions are (i) developing the general notion
of reactive measurement as a paradigm that focuses on a measurement process as the
key to better understanding observed behaviors, and (ii) the design and prototyping
of a reactive measurement system to aid researchers in using the technique in their
own work. We believe that if the community absorbs and leverages this concept in
their experimental designs, it can lead to significant advances in better understanding
network behavior. We hope by exposing our initial design to the community we will get
feedback on important aspects to include in future versions of our framework.
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