
On Estimating End-to-End

Network Path Properties

Mark Allman, NASA GRC/BBN

Vern Paxson, ACIRI/LBNL

ACM SIGCOMM

September, 1999

'
&

$
%

1



Overview

Overview

� General transport problem: adapting to current conditions.

E.g., congestion control.

E.g., estimating how long to wait before retransmitting.

E.g., estimating bandwidth available when connection

begins.

� Methodology:

- trace-driven simulation of N

2

dataset [Pax97]

- 18,490 connections, 100 KB each, 31 hosts

- compare adaptive algorithms' decisions : : :

- : : : with what actually happened.

'
&

$
%

ACM SIGCOMM

September, 1999

2



How Long to Wait Before Retransmitting

How Long to Wait Before Retransmitting

� Tension: wait long enough for any tardy ACK to arrive : : :

: : : but no longer.

� RTO estimation algorithm [Jac88] uses:

RTO = SRTT+ k �RTTVAR; k = 4

� For every RTT measurement, SRTT and RTTVAR

updated via EWMA:

SRTT (1� �

1

)SRTT+ �

1

RTT

meas

; �

1

=

1
8

:

� RTTVAR updated based on deviation jSRTT�RTT

meas

j

using �

2

=

1
4

.

'
&

$
%

ACM SIGCOMM

September, 1999

3



Additional Issues

Additional Issues

� Clock measurements are done using a granularity G.

BSD default: G = 500 msec.

� Clock measurement done using \heartbeat" timer.

� RTO bounded by RTO

min

= 2G = 1 sec.

� Q: What about measuring more often than once per RTT?

(A�ects EWMA constants.)

� Q: What about using �ne-grained clocks?

'
&

$
%

ACM SIGCOMM

September, 1999

4



Assessing Di�erent RTO Estimation

Algorithms

Assessing Di�erent RTO Estimation

Algorithms

� For each unavoidable data packet retransmission, charge

the estimator with the current RTO.

� For each ACK of new data, if arrived after RTO, charge

the estimator with a bad timeout. If ACK is for a segment

being timed, update SRTT and RTTVAR.

� For each ACK of new data, restart the RTO timer.

� Let:

W = total time spent waiting for necessary timeouts.

f

W = per-connection time waiting, normalized in RTTs.

B = mean proportion, per connection, of bad timeouts.

'
&

$
%

ACM SIGCOMM

September, 1999

5



Varying the Minimum RTO

Varying the Minimum RTO

Minimum RTO W

f

W B

1,000 msec 144,564 8.4 0.63%

750 msec 121,566 6.5 0.76%

500 msec 102,264 4.8 1.02%

250 msec 92,866 3.5 2.27%

0 msec 92,077 3.1 4.71%

RTO = 2,000 msec 229,564 15.6 2.66%

RTO = 1,000 msec 136,514 8.2 6.14%

RTO = 500 msec 85,878 4.5 12.17%

G = 1 msec.

'
&

$
%

ACM SIGCOMM

September, 1999

6



Varying the Clock Granularity

Varying the Clock Granularity

Granularity W

f

W B

500 msec 272,885 19.2 0.36%

[WS95] (500 msec) 245,668 15.4 0.23%

250 msec 167,360 10.2 0.67%

100 msec 142,940 8.4 0.95%

50 msec 143,156 8.4 0.84%

20 msec 143,832 8.4 0.70%

10 msec 144,175 8.4 0.67%

1 msec 144,564 8.4 0.63%

RTO

min

= 1 sec.

'
&

$
%

ACM SIGCOMM

September, 1999

7



Varying EWMA Parameters

Varying EWMA Parameters

G = 1 msec, RTO

min

= 0 sec

Parameters W

f

W B

[WS95] 245,668 15.4 0.23%

[WS95]-every 241,100 14.7 0.25%

take-�rst (�

1

; �

2

= 0;RTO

min

= 1 s) 158,199 8.5 0.74%

take-�rst (�

1

; �

2

= 0) 131,180 4.4 2.93%

very-slow (�

1

=

1

80

; �

2

=

1

40

) 113,903 3.9 3.97%

slow-every (�

1

=

1

32

; �

2

=

1

16

) 102,544 3.4 4.28%

slow (�

1

=

1

16

; �

2

=

1
8

) 96,740 3.4 3.84%

std (�

1

=

1
8

; �

2

=

1
4

) 92,077 3.1 4.71%

std-every (�

1

=

1
8

; �

2

=

1
4

) 94,081 3.1 5.09%

fast (�

1

=

1
2

; �

2

=

1
4

) 90,212 3.0 7.27%

take-last (�

1

; �

2

= 1) 93,490 3.3 19.57%

take-last-every (�

1

; �

2

= 1) 97,098 3.5 20.20%

take-last (�

1

; �

2

= 1;RTO

min

= 1 s) 145,571 8.5 1.30%

'
&

$
%

ACM SIGCOMM

September, 1999

8



Extra Waiting Time Necessary to

Avoid Bad RTO

Extra Waiting Time Necessary to

Avoid Bad RTO

Ratio of Extra Wait Necessary : X

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

10^-4 10^-2 10^0 10^1 10^2 10^3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTTVAR
MAX RTT
RTO

'
&

$
%

ACM SIGCOMM

September, 1999

9



Final RTO Thoughts

Final RTO Thoughts

� What matters: min. RTO; timer gran. � 100 msec.

� What doesn't: EWMA parameters; how often you time.

� Is RFC 1323's timestamp option worth the hassle?

� Is retransmitting unnecessarily really all that bad?

- There's enough capacity : : : just need to undo

cwnd/ssthresh changes.

�

Detecting: using SACK, or timestamps.

�

Or: see whether ACK arrives within

3
4

RTT

min

.

� A possible di�erent approach: estimate the feedback time.

'
&

$
%

ACM SIGCOMM

September, 1999

10



Estimating Bandwidth: Goals

Estimating Bandwidth: Goals

� Estimate the appropriate sending rate without pushing the

network path as hard as the current mechanism does.

� Determine to what degree the timing structure of ights of

packets can be used to estimate the available bandwidth.

'
&

$
%

ACM SIGCOMM

September, 1999

11



Methodology

Methodology

� Ideally, we'd like to estimate available bandwidth, which we

combine with the measured RTT to estimate ssthresh.

� However, much of our analysis is in terms of bottleneck

bandwidth, as an upper bound on a good ssthresh estimate.

� PBM estimate of bottleneck bandwidth [Pax97] used for

\correct" ssthresh

- PBM is not appropriate for use \on the y".

- We used PBM' (only considers transfer up to loss point)

as \upper bound" on how well we can hope to estimate.

'
&

$
%

ACM SIGCOMM

September, 1999

12



Methodology (cont.)

Methodology (cont.)

� Connections with loss:

'
&

$
%

ACM SIGCOMM

September, 1999

13



Methodology (cont.)

Methodology (cont.)

� Connections without loss:

'
&

$
%

ACM SIGCOMM

September, 1999

14



Tracking Slow Start Flights (TSSF)

Tracking Slow Start Flights (TSSF)

� Sender-side, TCP speci�c algorithm.

� Watch for 3 ACKs within a ight and estimate from those.

� Results:

Case No No Prv. Stdy. Opt. Tot. Red.

Est. Imp. Loss State Perf.

With Loss 42% 1% 1% 3% 0% 4% 52%

Case No Unk. Opt. Red.

Est. Imp. Perf.

Without Loss 13% 2% 2% 82%

� Major problem is underestimate of bandwidth.

- Caused largely by delayed ACKs.

'
&

$
%

ACM SIGCOMM

September, 1999

15



Closely-Spaced ACKs (CSA)

Closely-Spaced ACKs (CSA)

� Sender-side, TCP independent algorithm [Hoe96].

� Watch for n ACKs within � �RTT seconds.

Case No No Prv. Stdy. Opt. Tot. Red.

Est. Imp. Loss State Perf.

Loss, CSA

�=0:1

n=3

62% 20% 6% 9% 2% 17% 2%

Loss, CSA

�=0:05

n=2

53% 37% 5% 4% 0% 9% 1%

Loss, CSA

�=0:1

n=2

45% 32% 8% 10% 2% 19% 4%

Loss, CSA

�=0:2

n=2

38% 24% 9% 13% 3% 25% 13%

Case No Unk. Opt. Red.

Est. Imp. Perf.

No Loss, CSA

�=0:1

n=3

24% 42% 13% 22%

No Loss, CSA

�=0:05

n=2

19% 59% 11% 10%

No Loss, CSA

�=0:1

n=2

14% 48% 11% 27%

No Loss, CSA

�=0:2

n=2

13% 34% 11% 43%

� Problems: No impact/estimate in many transfers with loss

and reduces performance in many no loss transfers.

'
&

$
%

ACM SIGCOMM

September, 1999

16



Tracking Closely-Spaced ACKs (TCSA)

Tracking Closely-Spaced ACKs (TCSA)

� Sender-side, TCP independent algorithm [AD98]

� TCSA: Wait until CSAs converge to minimum CSA sample.

� TCSA': Observe CSAs until subsequent samples converge.

Case No No Prv. Stdy. Opt. Tot. Red.

Est. Imp. Loss State Perf.

Loss, TCSA 62% 14% 6% 11% 1% 19% 5%

Loss, TCSA

0

70% 10% 6% 9% 2% 17% 2%

Case No Unk. Opt. Red.

Est. Imp. Perf.

No Loss, TCSA 24% 25% 8% 44%

No Loss, TCSA

0

27% 33% 11% 28%

� Problems:

- TCSA underestimates often { TCSA' helps

- Neither algorithm helps that often

'
&

$
%

ACM SIGCOMM

September, 1999

17



Tracking Burst of Data Segments

Tracking Burst of Data Segments

� Receiver-side, TCP speci�c algorithm

� Tracks which segments will be liberated by a given ACK.

Case No No Prv. Stdy. Opt. Tot. Red.

Est. Imp. Loss State Perf.

Loss, Recv

min

11% 32% 6% 13% 4% 23% 34%

Loss, Recv

avg

11% 52% 10% 14% 9% 34% 3%

Loss, Recv

med

11% 48% 10% 14% 10% 34% 7%

Loss, Recv

max

11% 65% 7% 8% 8% 23% 0%

Case No Unk. Opt. Red.

Est. Imp. Perf.

No Loss, Recv

min

1% 15% 2% 83%

No Loss, Recv

avg

1% 46% 23% 31%

No Loss, Recv

med

1% 45% 28% 26%

No Loss, Recv

max

1% 71% 27% 1%

� Problems: Overestimates or underestimates very often

� Winner: Recv

max

improves � 25%, almost never impairs

'
&

$
%

ACM SIGCOMM

September, 1999

18



Summary / Open Issues

Summary / Open Issues

� Receiver-side estimation a win because a lot less noisy.

� But only a win for 25% of connections | compelling?

� What about ramping up a connection's rate more quickly?

� Need to evaluate on more recent data and conduct live

experiments.

� E�ects of RED?

'
&

$
%

ACM SIGCOMM

September, 1999

19


