
On Estimating End-to-End Network Path Properties�

Mark Allman
NASA Glenn Research Center

and
GTE Internetworking

21000 Brookpark Rd. MS 54-2
Cleveland, OH 44135

mallman@grc.nasa.gov

Vern Paxson
AT&T Center for Internet Research at ICSI

and
Lawrence Berkeley National Labratory

1947 Center Street, Suite 600
Berkeley, CA 94704-1198
vern@aciri.org

Abstract

The more information about current network conditions available to
a transport protocol, the more efficiently it can use the network to
transfer its data. In networks such as the Internet, the transport proto-
col must often form its own estimates of network properties based on
measurements performed by the connection endpoints. We consider
two basic transport estimation problems: determining the setting of
the retransmission timer (RTO) for a reliable protocol, andestimating
the bandwidth available to a connection as it begins. We lookat both
of these problems in the context of TCP, using a large TCP measure-
ment set [Pax97b] for trace-driven simulations. For RTO estimation,
we evaluate a number of different algorithms, finding that the perfor-
mance of the estimators is dominated by their minimum values, and
to a lesser extent, the timer granularity, while being virtually unaf-
fected by how often round-trip time measurements are made orthe
settings of the parameters in the exponentially-weighted moving av-
erage estimators commonly used. For bandwidth estimation,we ex-
plore techniques previously sketched in the literature [Hoe96, AD98]
and find that in practice they perform less well than anticipated. We
then develop a receiver-side algorithm that performs significantly
better.

1 Introduction

When operating in a heterogeneous environment, the more informa-
tion about current network conditions available to a transport proto-
col, the more efficiently it can use the network to transfer its data.
Acquiring such information is particularly important for operation in
wide-area networks, where a strong tension exists between needing
to keep a large amount of data in flight in order to fill the bandwidth-
delay product “pipe,” versus having to wait lengthy periodsof time
to attain feedback regarding changing network conditions,especially
the onset of congestion.

In a wide-area network, such as the Internet, that does not pro-
vide any explicit information about the network path, it is up to the
transport protocol to form its own estimates of current network con-
ditions, and then to use them to adapt as efficiently as possible. A
classic example of such estimation and adaptation is how TCPin-
fers the presence of congestion along an Internet path by observing
packet losses, and either cuts its sending rate in the presence of con-
gestion, or increases it in the absence [Jac88].

In this paper we examine two other basic transport estimation
problems: determining the setting of the retransmission timer (RTO),
and estimating the bandwidth available to a connection as itbegins.
We look at both problems in the context of TCP, using trace-based
analysis of a large collection of TCP packet traces. The appeal of

�This paper appears in ACM SIGCOMM ’99.

analyzing TCP in particular is that it is the dominant protocol in use
in the Internet today [TMW97]. However, analyzing the behavior of
actual TCP implementations also introduces complications, because
there are a variety of different TCP implementations that behave in
a variety of different ways [Pax97a]. Consequently, in our analy-
sis we endeavor to distinguish between findings that are specific to
how different TCPs are implemented today, versus those thatapply
to general TCP properties, versus those that apply to general reliable
transport protocols.

Our analysis is based on theN
2

subset of TCP trace data col-
lected in 1995 [Pax97b]. This data set consists of sender-side
and receiver-side packet traces of 18,490 TCP connections among
31 geographically-diverse Internet hosts. The hosts were intercon-
nected with paths ranging from 64 kbps up to Ethernet speeds,and
each connection transferred 100 KB of data, recorded usingtcpdump.
We modifiedtcpanaly[Pax97a] to perform our analysis.

The rest of the paper is organized as follows. Inx 2 we look at the
problem of estimating RTO, beginning with discussions of the basic
algorithm and our evaluation methodology. We analyze the impact of
varying a number of estimator parameters, finding that the one with
the greatest effect is the lower bound placed on RTO, followed by the
clock granularity, while other parameters have little effect. We then
present evidence that argues for the intrinsic difficulty offinding op-
timal parameters, and finish with a discussion of the cost of retrans-
mitting unnecessarily and ways to detect when it has occurred. In
x 3 we look at the problem of estimating the bandwidth available to
a connection as it starts up. We discuss our evaluation methodology,
which partitions estimates into different regions reflecting their ex-
pected impact, ranging from no impact, to preventing loss, attaining
steady state, optimally utilizing the path, or reducing performance.
We then assess a number of estimators, finding that sender-side esti-
mation such as previously proposed in the literature is fraught with
difficulty, while receiver-side estimation can work considerably bet-
ter. x 4 summarizes the analysis and possible future work.

2 Estimating RTO

For an acknowledgment-based reliable transport protocol,such as
TCP, a fundamental question is how long, in the absence of receiving
an acknowledgment (ACK), should a sender wait until retransmit-
ting? This problem is similar to that of estimating the largest possible
round-trip time (RTT) along an end-to-end network path. However,
it differs from RTT estimation in three ways. First, the goalis not
to accurately estimate the truly maximal possible RTT, but rather a
good compromise that balances avoiding unnecessary retransmission
timeouts due to not waiting long enough for an ACK to arrive, ver-
sus being slow to detect that a retransmission is necessary.Second,
the sender really needs to estimate thefeedbacktime, which is the
round-trip time from the sender to the receiverplus the amount of

1

time required for the receiver to generate an ACK for newly received
data. For example, a receiver employing the delayed acknowledg-
ment algorithm [Bra89] may wait up to 500 msec before transmitting
an ACK. Thus, estimating a good value for the retransmissiontimer
not only involves estimating a property of the network path,but also
a property of the remote connection peer. Third, if loss is due to con-
gestion, it may behoove the sender to waitlonger than the maximum
feedback time, in order to give congestion more time to drainfrom
the network—if the sender retransmits as soon as the feedbacktime
elapses, the retransmission may also be lost, whereas sending it later
would be successful.

It has long been recognized that the setting of the retransmission
timer cannot be fixed but needs to reflect the network path in use, and
generally requires dynamic adaptation because of how greatly RTTs
can vary over the course of a connection [Nag84, DDK+90]. The
early TCP specification included a notion of dynamically estimating
RTO, based on maintaining an exponentially-weighted moving aver-
age (EWMA) of the current RTT and a static variation term [Pos81].
This estimator was studied by Mills in [Mil83], which characterizes
measured Internet RTTs as resembling a Poisson distribution over-
all, but with occasional spikes of much higher RTTs, and suggests
changing the estimator so that it more rapidly adapts to increasing
RTTs and more slowly to decreasing RTTs. (To our knowledge, this
modified estimator has not been further evaluated in the literature.)
[Mil83] also noted that the balance between responding rapidly in
the face of true loss versus avoiding unnecessary retransmissions ap-
pears to be a fundamental tradeoff, with no obvious optimal solution.

Zhang [Zha86] discusses a number of deficiencies with the stan-
dard TCP RTO estimator: ambiguities in measuring RTTs associated
with retransmitted packets; the conservative RTO policy ofretrans-
mitting only one lost packet per round-trip; the difficulty of choosing
an initial estimate; and the failure to track rapidly increasing RTTs
during times of congestion. Karn and Partridge [KP87] addressed
the first of these, eliminating ambiguities in measuring RTTs. The
introduction of “selective acknowledgments” (SACKs) [MMFR96]
addressed the second issue of retransmitting lost packets too slowly.
Jacobson [Jac88] further refined TCP RTO estimation by introducing
an EWMA estimate of RTT variation, too, and then defining:

RTO= SRTT+ k � RTTVAR (1)

whereSRTTis a smoothed estimate of RTT (as before) andRTTVAR
is a smoothed estimate of the variation of RTT. In [Jac88],k = 2, but
this was emended in a revised version of the paper tok = 4 [JK92].

While this estimator is in widespread use today, to our knowledge
the only systematic evaluation of it against measured TCP connec-
tions is our previous study [Pax97b], which found that, other than
for over-aggressive misimplementations, the estimator appears suf-
ficiently conservative in the sense that it only rarely results in an
unnecessary timeout.

The widely-used BSD RTO implementation [WS95] has several
possible limitations: (1) the adaptive RTT and RTT variation estima-
tors are updated with new measurements only once per round-trip,
so they adapt fairly slowly to changes in network conditions; (2) the
measurements are made using a clock with a 500 msec granular-
ity, which necessarily yields coarse estimates (though [Jac88] intro-
duces some subtle tricks for squeezing more precision out ofthese
estimates); and (3) the resulting RTO estimate has a large minimum
value of 1 second, which may make it inherently conservative.

With the advent of higher precision clocks and the TCP “times-
tamp” option [JBB92], all three of these limitations might be re-
moved. It remains an open question, however, how to best reengineer
the RTO estimator given these new capabilities: we know the current
estimator is sufficiently conservative, but is ittoo conservative? If
so, then how might we improve it, given a relaxation of the above
limitations? These are the questions we attempt to answer.

2.1 The Basic RTO Estimation Algorithm

In Jacobson’s algorithm, two state variablesSRTTandRTTVARes-
timate the current RTT and a notion of its variation. These values
are used in Eqn 1 withk = 4 to attain the RTO. Both variables are
updated every time an RTT measurement RTTmeasis taken. Since
only one segment and the corresponding ACK is timed at any given
time, updates occur only once per RTT (also referred to as once “per
flight”). SRTTis updated using an EWMA with a gain of�

1

:

SRTT (1� �

1

)SRTT+ �

1

RTTmeas (2)

and Jacobson [Jac88] recommends�

1

=

1

8

, which leads to efficient
implementation using fixed-point arithmetic and bit shifting. Simi-
larly, RTTVARis updated based on the deviationjSRTT�RTTmeasj
using�

2

=

1

4

.
Any time a packet retransmitted due to the RTO expiring is itself

lost, the TCP sender doubles the current value of the RTO. Doing so
both diminishes the sending rate in the presence of sustained conges-
tion, and ameliorates the possible adverse effects of underestimating
the RTO and retransmitting needlessly and repeatedly.

SRTTandRTTVARare initialized by the first RTTmeasmeasure-
ment usingSRTT RTTmeasandRTTVAR 1

2

RTTmeas. Prior
to the first measurement, RTO= 3 sec.

Two important additional considerations are that all measure-
ment is done using a clockgranularity of G seconds, i.e., the
clock advances in increments ofG,1 and the RTO isboundedby
RTOmin and RTOmax. In the common BSD implementation of
TCP,G = 0:5 sec, RTOmin = 2G = 1 sec, and RTOmax= 64 sec.
As will be shown, the value of RTOmin is quite significant. Also,
since the granularity is coarse, the code for updatingRTTVARsets a
minimum bound onRTTVARof G, rather than the value of 0 sec that
can often naturally arise.

Three oft-proposed variations for implementing the RTO estima-
tor are to time every segment’s RTT, rather than only one per flight;
use smaller values ofG; and lower RTOmin in order to spend less
time waiting for timeouts. RFC 1323 [JBB92] explicitly supports the
first two of these, and our original motivation behind this part of our
study was to evaluate whether these changes are worth pursuing.

2.2 Assessing Different RTO Estimators

There are two fundamental properties of an RTO estimator that we
investigate: (1) how long does it wait before retransmitting a lost
packet? and (2) how often does it expire mistakenly and unnecessar-
ily trigger a retransmit? A very conservative RTO estimatormight
simply hardwire RTO= 60 sec and never make a mistake, satisfy-
ing the second property, but doing extremely poorly with regards to
the first, leading to unacceptable delays; while a very aggressive es-
timator could hardwire RTO= 1 msec and reverse this relationship,
flooding the network with unnecessary retransmissions.

Our basic approach to assess these two properties is to use trace-
driven simulation to evaluate different estimators, usingthe follow-
ing methodology, which mirrors the RTO estimator implementation
in [WS95]:

1. For each data packet sent, if the RTO timer is not currently
active, it is started. The timer is also restarted when the data
packet is the beginning of a retransmission sequence.

2. For each data packet retransmitted in the TCP trace due to a
timeout, we assess whether the timeout wasunavoidable, mean-
ing that either the segment being retransmitted was lost, orall

1The BSD timer implementation also uses a “heartbeat” timer that expires
everyG seconds with a phase independent of when the timer is actually set.
We included this behavior in our simulations.

2

ACKs sent after the segment’s arrival at the receiver (up un-
til the arrival of the retransmission) were lost. This checkis
necessary because some of the TCPs in theN

2

dataset used ag-
gressive RTO estimators that often fired prematurely in the face
of high RTTs [Pax97a], so these retransmissions are not treated
as normal timeout events.

3. If the timeout was unavoidable, then the retransmission is clas-
sified as a “first” timeout if this is the first time the segment is
retransmitted, or as a “repeated” timeout otherwise. The estima-
tor is charged the current RTO setting as reflecting the amount
of time that passed prior to retransmitting (consideration(1)
above), with separate bookkeeping for “first” and “repeated”
timeouts (for reasons explained below). The RTO timer is also
backed off by doubling it.

4. If the timeout was avoidable, then it reflects a problem with
the actual TCP in the trace, and this deficiency is not charged
against the estimator we are evaluating.

5. For each arrival of an ACK for new data in the trace, the ACK
arrival time is compared with the RTO, as computed by the
given estimator. If the ACK arrived after the RTO would have
fired we consider the expiration a “bad” timeout, reflecting that
the feedback time of the network path at that moment exceeded
the RTO.

If the ACK covers all outstanding data the RTO timer is turned
off.

If the ACK also yielded an RTT measurement (because it ac-
knowledged the segment currently being timed, or because ev-
ery segment is being timed),SRTTand RTTVARare updated
based on the measurement and the RTO is recomputed.

Finally, the RTO timer is restarted.

6. The sending or receiving of TCP SYN or FIN packets is not
assessed, as these packets have their own retransmission timers,
and if interpreted as simple ACK packets can lead to erroneous
measurements of RTT.

Note this approach contains a subtle but significant difficulty. Sup-
pose that in the trace packetP is lost and 3 seconds later the TCP’s
real-life RTO expires andP is retransmitted. We treat this as a “first
timeout,” and charge the estimator with the RTO,R, it computed for
P . SupposeR = 100 msec. From examining the trace it is im-
possible to determine whether retransmittingP after waiting only
100 msec would have been successful. It could be that waitingany
amount of time less than 3 seconds was in fact too short an interval
for the congestion leading toP ’s original loss to have drained from
the network. Conversely, supposeP is lost after being retransmitted
3 seconds later. It could be that the first loss and the second are in
fact uncorrelated, in which case retransmitting after waiting onlyR
seconds would yield a successful transmission.

The only way to assess this effect would be to conduct live experi-
ments, rather than trace-driven simulation, which we leavefor future
work. Therefore, we assessnot whether a given retransmission was
effective, meaning that the retransmitted packet safely arrived at the
receiver, but only whether thedecisionto retransmit wascorrect,
meaning that the packet was indeed lost, or all feedback fromthe re-
ceiver was lost. Related to this consideration, only the effectiveness
of an RTO estimator at predicting timely “first” timeouts is assessed.
For repeated timeouts it is difficult to gauge exactly how many of the
potential repeated retransmissions would have been necessary.

Given these considerations, for a given estimator and a trace i let
T

i

be the total time required by the estimator to wait for unavoid-
able first timeouts. Letg

i

be the number of “good” (necessary) first
timeouts, andb

i

the total number of “bad” timeouts, including multi-
ple bad timeouts due to backing off the timer (since we can soundly

Minimum RTO W

f

W B

1,000 msec 144,564 8.4 0.63%
750 msec 121,566 6.5 0.76%
500 msec 102,264 4.8 1.02%
250 msec 92,866 3.5 2.27%

0 msec 92,077 3.1 4.71%
RTO = 2,000 msec 229,564 15.6 2.66%
RTO = 1,000 msec 136,514 8.2 6.14%

RTO = 500 msec 85,878 4.5 12.17%

Table 1: Effect of varying RTOmin,G = 1 msec

assess that all of these repeated retransmissions were indeed unnec-
essary). Ifb

i

+ g

i

> 0, that is, tracei included some sort of timeout,
then define�

i

=

b

i

b

i

+g

i

, the normalized number of bad timeouts in
the trace; otherwise define�

i

= 0. Note that�
i

may not be a par-
ticularly good metric when considering transfers of varying length.
However, this study focuses only on transfers of 100 KB.

For thejth good timeout, let RTOj
i

be the RTO setting of the ex-
piring timer, and RTTj

i

be the most recently observed RTT (even
if it was not an RTT that would have been measured for pur-
poses of updating theSRTT and RTTVARstate variables). Let
�

j

i

= RTOj

i

=RTTj
i

, so �j
i

reflects the cost of the timeout in units
of RTTs. We can then define an average, normalized timeout cost of

i

= E

j

[�

j

i

], or 0 if tracei does not include any good timeouts.
For a collection of traces, we then defineW =

P

i

T

i

as the total

time spent waiting for (good) first timeouts;fW = E

i:g

i

>0

[

i

] as
the mean normalized timeout cost per connection that experienced at
least one good timeout; andB = E

i

[�

i

] as the mean proportion of
timeouts that arebad, per connection, including connections that did
not include any timeouts (because we want to reward estimators that,
for a particular trace, don’t generate any bad timeouts).
W can be dominated by a few traces with a large number of time-

out retransmissions, for which the total time waiting for first time-
outs can become very high, so it is biased towards highlighting how
bad things can get.fW is impartial to the number of timeouts in a
trace, and so better reflects the overall performance of an estimator.
B likewise better reflects how well an estimator avoids bad timeouts
overall. For some estimators, there may be a few particular traces
on which they retransmit unnecessarily a large number of times, as
noted below.

Finally, of the 18,490 pairs of traces inN
2

, 4,057 pairs were elim-
inated from our analysis due to packet filter errors in recording the
traces, the inability to pair packets across the two traces (this can
occur due to packet filter drops or IP ID fields changed in flightby
header compression glitches [Pax97c]), ortcpanaly’s inability to de-
termine which retransmissions were due to timeouts. This leaves us
with 14,433 traces to analyze, with a total of 67,073 timeoutretrans-
missions. Of those, 53,110 are “first” timeouts, and 34% of the traces
have no timeout retransmissions.

2.3 Varying the Minimum RTO

It turns out that the setting of RTOmin, the lower bound on RTO,
can have a major effect on how well the RTO estimator performs,
so we begin by analyzing this effect. We first note that the usual
setting for RTOmin is two clock “ticks” (i.e., RTOmin = 2G), be-
cause, given a “heartbeat” timer, a single tick translates into a time
anywhere between0 andG sec. Accordingly, for the usual coarse-
grained estimator ofG = 0:5 sec, RTOmin is 1 sec, which we will
see is conservative (since a real BSD implementation would use a
timeout between 0.5 sec and 1 sec). But forG = 1 msec, the two-
tick minimum is only 2 msec, and so setting RTOmin to larger values
can have a major effect.

3

Granularity W

f

W B

500 msec 272,885 19.2 0.36%
[WS95] (500 msec) 245,668 15.4 0.23%

250 msec 167,360 10.2 0.67%
100 msec 142,940 8.4 0.95%
50 msec 143,156 8.4 0.84%
20 msec 143,832 8.4 0.70%
10 msec 144,175 8.4 0.67%
1 msec 144,564 8.4 0.63%

Table 2: Effect of varying granularityG, RTOmin = 1 sec

Table 1 showsW ,fW andB for different values of RTOmin, for
G = 1 msec. We see thatW runs from 144,564 seconds for a mini-
mum of 1 sec to about 64% as much when using no minimum. The
column forfW shows that the 1 sec minimum means that a typical
RTO costs a bit more than 8 RTTs, but much of this expense dis-
appears as we decrease the minimum.B, on the other hand, shows
that for a 1 sec minimum, on average only about 1 in 150 timeouts is
bad, while for no minimum, nearly 1 in 20 is (these bad timeouts are
not clustered among a particular small subset of the traces). Clearly,
adjusting the minimum RTO provides a “knob” for directly trading
off timely response with premature timeouts, with no obvious “sweet
spot” yielding an optimal balance between the two.

As noted above, “delayed” acknowledgments in TCP can result
in elevating RTTs by up to 500 msec, and in a number of com-
mon implementations, frequently elevate RTTs by up to 200 msec.
Accordingly, it is not clear that a minimum RTO of two ticks for
G = 1 msec is sound. However, for the bulk of our subsequent anal-
ysis, we consider estimators with no minimum bound, both to high-
light the contribution to estimator efficiency of factors other than the
quite-dominant minimum RTO, and to keep in mind that transport
protocols different from TCP might not introduce such a minimum.

For comparison, we include three static timers that use a constant
setting for RTO (except they double the RTO on repeated timeouts).
The table highlights the heavy cost of not using an adaptive timer.
The constant estimators generate about 10 times as many bad time-
outs as the adaptive estimators with similar relative performance fig-
ures (fW). The values ofB don’t tell the whole story for the static
timers, however, because their bad timeouts are clustered among rel-
atively few traces. For example, RTO = 2,000 msec results in abad
timeout in 538 traces, while for RTOmin = 250 msec, which has a
similar value ofB, spreads its bad timeouts over more than twice as
many traces.

2.4 Varying Measurement Granularity

With the above caution regarding the considerable importance of
RTOmin in mind, we now look at the effect of varyingG. In Table 2,
G ranges from 500 msec down to 1 msec. In order to compare the
different granularities on an even footing, we hold RTOmin = 1 sec
constant, rather than having the relative differences between the
granularities overwhelmed by using RTOmin = 2G. We include one
additional row, “[WS95],” which is the estimator as implemented in
[WS95]. This implementation includes fixed-point arithmetic and
bit-shifting in order to estimateSRTTat an effective granularity of
62.5 msec andRTTVARat a granularity of 125 msec, though RTO
itself is computed with a granularity of 500 msec.

We first note that forG � 100 msec, the performance for good
timeouts, both absolute (W) and relative (fW) is essentially identical,
regardless of how fine the granularity becomes. But we steadily gain
in avoiding bad timeouts (minimizingB) as the granularity becomes
finer. The reason for the gain is that the more coarse granularities
will often take no action in the face of a minor change in RTT, while
the finer granularity estimator will adapt to reflect the change, and

Parameters W

e

W B

[WS95] 245,668 15.4 0.23%
[WS95]-every 241,100 14.7 0.25%

take-first(�
1

; �

2

= 0;RTOmin = 1 s) 158,199 8.5 0.74%
take-first(�

1

; �

2

= 0) 131,180 4.4 2.93%
very-slow(�

1

=

1

80

; �

2

=

1

40

) 113,903 3.9 3.97%
slow-every(�

1

=

1

32

; �

2

=

1

16

) 102,544 3.4 4.28%
slow(�

1

=

1

16

; �

2

=

1

8

) 96,740 3.4 3.84%
std (�

1

=

1

8

; �

2

=

1

4

) 92,077 3.1 4.71%
std-every(�

1

=

1

8

; �

2

=

1

4

) 94,081 3.1 5.09%
fast (�

1

=

1

2

; �

2

=

1

4

) 90,212 3.0 7.27%
take-last(�

1

; �

2

= 1) 93,490 3.3 19.57%
take-last-every(�

1

; �

2

= 1) 97,098 3.5 20.20%
take-last(�

1

; �

2

= 1;RTOmin = 1 s) 145,571 8.5 1.30%

Table 3: Effect of varying EWMA parameters�
1

; �

2

this gives it a slight edge.
AboveG = 100 msec, however, we start trading off reduced per-

formance for avoiding bad timeouts. We can cut the average rate of
bad timeouts by nearly a factor of two by usingG = 500 msec, but at
a cost of more than a factor of two in performance. We also notethat
the [WS95] estimator clearly performs better thanG = 500 msec,
with bothfW andB lower. It gains by performing better on some
very-large-RTT traces, because it is able to better reflect relatively
small RTT changes due to its finer effective granularities for SRTT
andRTTVAR.

2.5 Varying the EWMA Parameters

Table 3 shows the estimator’s performance when varying�

1

(per
Eqn 2) and�

2

, holdingG = 1 msec and RTOmin = 0 msec fixed,
except where noted. The first two rows are the [WS95] implemen-
tation, which usesG = 500 msec, with the second row reflecting a
variant that derives an RTT measurement from every ACK arriving
at the sender. We see that the more frequentSRTTandRTTVARup-
dates have little effect on the estimator’s performance, only making
it slightly more aggressive.

The remaining estimators all useG = 1 msec. Thetake-firstex-
treme of�

1

= �

2

= 0 simply uses the first RTT measurement
to initialize bothSRTT RTT andRTTVAR 1

2

RTT, yielding
RTO 3RTT. It never changesSRTT, RTTVAR, or RTO again
(other than to back off RTO in the face of repeated retransmis-
sions, and undo the backing off when the retransmission epoch ends).
The first variant of it reflects using RTOmin = 1 sec, the second,
RTOmin = 0 sec. At the other extreme, we havetake-last, which
always setsSRTT RTT andRTTVAR jSRTTprev� RTTj.
The take-last-everyvariant is the same except every packet is timed
rather than just one packet per round trip, and the final variant raises
the minimum RTT to 1 sec.

In between these extremes we run the gamut fromvery-slow,
which uses one-tenth the usual parameters (which are given for the
std estimator), tofast, which uses twice the parameters, with some
time-every-packet variants.

From the table we see that the settings of the EWMA parameters
make little difference in how well the estimator performs. Indeed,
if our goal is to minimize the rate of bad timeouts and still remain
aggressive, we might pick the exceedingly simpletake-firstestima-
tor, which only barely adapts to the network path conditions;2 or we
might pick slow, which on average incurs 25% less normalized de-
lay per timeout, and occupies a sweet spot that locally minimizes

2Even thoughtake-first and take-lastshow overall decent performance
compared to the other RTO estimators, these RTO estimators could perform
extremely poorly over network paths that exhibit large, sudden changes in
RTT.

4

RTTVAR factor W

f

W B

k = 16 168,002 7.0 0.59%
k = 12 144,053 5.7 0.81%
k = 8 118,858 4.4 1.52%
k = 6 105,681 3.8 2.43%
adapt 94,220 3.2 4.44%
k = 4 92,077 3.1 4.71%
k = 3 85,264 2.8 7.68%
k = 2 78,565 2.5 13.64%
RTOmin = 750 msec,k = 6 128,266 6.7 0.50%
RTOmin = 750 msec 121,566 6.5 0.76%
take-first

250msec, k = 6 163,799 6.4 0.70%
RTOmin = 500 msec,k = 6 112,514 5.1 0.69%
RTOmin = 500 msec 102,264 4.8 1.02%
RTOmin = 250 msec,k = 6 106,139 4.0 1.29%
RTOmin = 250 msec 92,866 3.5 2.27%

Table 4: Effect of varyingRTTVARfactor,k

B. As we found for [WS95], timing every packet makes little dif-
ference over timing only one packet per RTT, even though by timing
every packet we run many more measurements through the EWMAs
per unit time. This in turn causes the EWMAs to adaptSRTTand
RTTVARmore quickly to current network conditions, and to more
rapidly lose memory of conditions further in the past, similar in ef-
fect to using larger values for�

1

and�
2

.
We note that as the timer more quickly adapts,B steadily in-

creases, withtake-last-everygenerating on average one bad timeout
in every five, indicating correlations in RTT variations that span mul-
tiple round-trips. We can greatly diminish this problem by raising
RTTmin to 1 sec, but only by losing a great deal of the estimator’s
timely response, and we are better off instead using the correspond-
ing take-firstvariant.

We also evaluated varying the EWMA parameters for RTOmin =

500 msec. We find thatfW increases by roughly 50%, with the vari-
ation among the estimators further diminishing, whileB falls by a
factor of 4–8, further illustrating the dominant effect of the RTO min-
imum.

Finally, a number of the paths inN
2

contain slow, well-buffered
links, which lead to steady, large increases in the RTT (up tomany
seconds). We might expecttake-first to do quite poorly for these
connections, since the first measured RTT has little to do with subse-
quent RTTs, but in facttake-firstdoes quite well. The key is the last
part of step 5 inx 2.2 above: the RTO timer is restarted with each
arriving ACK for new data. Consequently, when data is flowing,
the RTO has an implicit extra RTT term [Lud99], and fortake-first
this suffices to avoid bad timeouts even for RTTs that grow by two
orders of magnitude. Indeed,take-firstdoesbetterfor such connec-
tions than estimators that track the changing RTT! It does sobecause
more adaptive estimators wind up waiting much longer after the last
arriving ACK before RTO expires, whiletake-firstretransmits with
appropriate briskness in this case. But this advantage is particular to
the highly-regularized feedback of such connections. It does, how-
ever, suggest the notion of a “feedback timeout,” discussedbriefly in
x 4.

2.6 Varying the RTTVAR Factor

The last RTO estimation parameter we consider isk, the multiplier of
RTTVARwhen computing RTO, per Eqn 1. For the standard imple-
mentation,k = 4. Table 4 shows the effects of varyingk from 2–16,
for G = 1 msec and RTOmin = 0 sec. Theadaptestimator starts
with k = 4 but doubles it every time it incurs a bad timeout.
k clearly provides a knob for trading off waiting time for unnec-

essary timeouts, with no obvious sweet spot. This balance changes a

Ratio of Extra Wait Necessary : X

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

10^-4 10^-2 10^0 10^1 10^2 10^3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTTVAR
MAX RTT
RTO

Figure 1: Extra waiting time necessary to avoid bad RTO

bit, however, when we increase RTOmin, as shown in the second half
of the table. For example, we find that RTOmin = 250 msec,k = 4

performs strictly better than the no-minimumk = 6 variant, and
RTOmin = 250 msec,k = 6 performs better than thek = 8 vari-
ant. Even the extremely simpletake-firstestimator, if usingk = 6

and RTOmin = 250 msec, performs a bit better than the regular
RTOmin = 750 msec estimator.

2.7 Can We Estimate RTO Better?

Having evaluated the effects of different estimator parameters and,
for the most part, only found tradeoffs and little in the way of com-
pelling “sweet spots,” we now turn to the question of whetherthere
are indeed opportunities to devise still better estimators. A key con-
sideration for answering this question is: when we underestimate, by
how much is it? If, for example, underestimates tend to be offby less
than RTT, then that would suggest a modification to Eqn 1 in which
SRTThas a factor of 2 applied to it.

Let A denote the amount of additional waiting time needed to
avoid a bad RTO. Figure 1 plots the cumulative distribution of the
ratio ofA to RTTVAR(solid), the maximum RTT seen so far (dot-
ted), and RTO (dashed), for the usualG = 1 msec estimator. The
ratio ofA to RTTVARranges across several orders of magnitude, in-
dicating that finding a particular value ofk in Eqn 1 that efficiently
takes care of most of the remaining bad timeouts is unlikely.

Also shown is thatA is generally less than the current RTO and
also the maximum RTT seen so far; this suggests adding one of those
values to RTO to make it sufficiently conservative to avoid bad time-
outs. However, doing so has much the same effect as other estimator
variants that wait longer based on other factors (e.g., the value ofk).
For example, changing the standardk = 4 estimator shown in Ta-
ble 4 to use twice the computed RTO (i.e., add in an additionalRTO
term) lowersB from 4.71% to 0.57%, but increasesfW from 3.1 to
5.7—a bit better than just usingk = 12, but not compellingly better.

For RTOmin = 0:5 sec, the plot is very similar, with slightly
more separation between the RTO and MAX RTT lines. Thus, Fig-
ure 1 suggests a fundamental tradeoff between aggressiveness and
suffering bad timeouts.

A related question is: if a packet is unnecessarily retransmitted,
does it reflect a momentary increase in RTT, or a sustained increase?
We find that about 62% of the bad timeouts were followed by RTTs
less than the current RTO, so the bad timeout reflected a transient
RTT increase. Another 24% were followed by exactly one more ele-
vated RTT, though a bit more than 2% were followed by 10 or more
elevated RTTs. Thus, most of the time a significant RTT increase is
quite transient—but there is non-negligible tail-weight for sustained
RTT increases.

5

2.8 Impact of Bad Timeouts

We finish our study of RTO estimators with brief comments concern-
ing the impact of bad timeouts.

Any time a TCP times out unnecessarily, it suffers not only a loss
of useful throughput, but, often more seriously, unnecessarily cuts
ssthreshto half the current, sustainable window, and begins a new
slow start. In addition, because the TCP is now sending retransmit-
ted packets, unless it uses the TCP timestamp option, it cannot safely
measure RTTs for those packets (per Karn’s algorithm [KP87]), and
thus it will take a long time before the TCP can adapt its RTT esti-
mate in order to improve its broken RTO estimate. (See [Pax97a] for
an illustration of this effect.)

Bad timeouts can therefore have a major negative impact on a TCP
connection’s performance. However, they donot have much of an
adverse impact on thenetwork’s performance, because by definition
they occur at a time when the network is not congested to the point
of dropping the connection’s packets. This in turn leads to the ob-
servation that if we could undo the deleterious effects uponthe TCP
connection of cuttingssthreshand entering slow start, then a more
aggressive RTO estimator would be more attractive, as TCP would be
able to sustain bad timeouts without unduly impairing performance
or endangering network stability.

When TCP uses the timestamp option, it can unambiguously de-
termine that it retransmitted unnecessarily by observing alater ACK
that echoes a timestamp from a packet sent prior to the retransmis-
sion. (A TCP could in principle also do so using the SACK option.)
Such a TCP could remember the value ofssthreshandcwndprior to
the last retransmission timeout, and restore them if it discovers the
timeout was unnecessary.

Even without timestamps or SACK, the following heuristic might
be considered: whenever a TCP retransmits due to RTO, it measures
�T , the time from the retransmission until the next ACK arrives. If
�T is less than the minimum RTT measured so far, then arguably the
ACK was already in transit when the retransmission occurred, and
the timeout was bad. If the ACK only comes later than the minimum
RTT, then likely the timeout was necessary.

We can assess the performance of this heuristic fairly simply. For
our usualG = 1 msec estimator, a total of 8,799 good and bad
timeouts were followed by an ACK arriving with�T less than the
minimum measured RTT. Of these, fully 75% correspond togood
timeouts, indicating that, surprisingly, the heuristic generally fails.
The failure indicates that sometimes the smallest RTT seen so far
occurs right after a timeout, which we find is in fact the case,per-
haps because the lull of the timeout interval gives the network path a
chance to drain its load and empty its queues.

However, if the threshold is insteadf =

3

4

of the minimum RTT,
then only 20% of the corresponding timeouts aregood (these com-
prise only 1% of all thegood timeouts). Forf =

1

2

, the proportion
falls to only 2.5%. With these reduced thresholds the chanceof de-
tecting a bad timeout falls from 74% to 68% or 59%, respectively.

We evaluated the modified heuristic and found it works well: for
f =

1

2

,B drops from 4.71% to 2.39%, a reduction of nearly a factor
of two, and enough to qualify the estimator as a “sweet spot.”

3 Estimating Bandwidth

We now turn to the second estimation problem, determining the
amount of bandwidth available to a new connection. Clearly,if a
transport protocol sender knows the available bandwidth, it would
like to immediately begin sending data at that rate. But in the ab-
sence of knowing the bandwidth, it must form an estimate. ForTCP,
this estimate is currently made by exponentially increasing the send-
ing rate until experiencing packet loss. The loss is taken asan im-
plicit signal that the rate had grown too large, so the rate iseffectively
halved and the connection continues in a more conservative fashion.

In the context of TCP, the goal in this section is to determinethe ef-
ficacy of different algorithms a TCP connection might use during its
start-up to determine the appropriate sending rate withoutpushing
on the network as hard as does the current mechanism. In a more
general context, the goal is to explore the degree to which the timing
structure of flights of packets can be exploited in order to estimate
how fast a connection can safely transmit.

We assume familiarity with the standard TCP congestion control
algorithms [Jac88, Ste97, APS99]: the state variablecwnd bounds
the amount of unacknowledged data the sender can currently inject
into the network, and the state variablessthreshmarks thecwndsize
at which a connection transitions from the exponential increase of
“slow start” to the linear increase of “congestion avoidance.” Ideally,
ssthreshgives an accurate estimate of the bandwidth available to the
connection, and congestion avoidance is used to probe for additional
bandwidth that might appear in a conservative, linear fashion.

A new connection begins slow start by settingcwndto 1 segment,3

and then increasingcwndby 1 segment for each ACK received. If the
receiver acknowledges everyk segments, and if none of the ACKs
are lost, thencwnd will increase by about a factor of = 1 +

1

k

every RTT. Most TCP receivers currently use a “delayed acknowl-
edgment” policy for generating ACKs [Bra89] in whichk = 2 and
hence =

3

2

, which is the value we assume subsequently.
Note that if during one round-trip a connection hasN segments

in flight, then during slow start it is possible, during the next RTT, to
overflow a drop-tail queue along the path such that(�1)N = N=k

segments are lost in a group, if the queue was completely fullcarry-
ing theN segments during the first round-trip. Such loss will in gen-
eral significantly impede performance, because when multiple seg-
ments are dropped from a window of data, most current TCP imple-
mentations will require at least one retransmission timeout to resend
all dropped segments [FF96, Hoe96]. However, during congestion
avoidance, which can be thought of as a connection’s steady-state,
TCP increasescwndby at most one segment per RTT, which ensures
thatcwndwill overflow a queue by at most one segment. TCP’s fast
retransmit and fast recovery algorithms [Jac90, Ste97, APS99] pro-
vide an efficient method for recovering from a single droppedseg-
ment without relying on the retransmission timer [FF96].

Hoe [Hoe96] describes a method for estimatingssthreshby mul-
tiplying the measured RTT with an estimate of the bottleneckband-
width (based on the packet-pair algorithm outlined in [Kes91]) at the
beginning of a transfer. [Hoe96] showed that correctly estimating
ssthreshwould eliminate the large loss event that often ends slow
start (as discussed above). Given that Hoe’s results were based on
simulation, an important follow-on question is to explore the degree
to which these results are applicable to actual, measured TCP con-
nections.

There are several other mechanisms which mitigate the problems
caused by TCP’s slow start phase, and therefore lessen the need to
estimatessthresh. First, routers implementing Random Early Detec-
tion (RED) [FJ93, BCC+98] begin randomly dropping segments at
a low rate as their average queue size increases. These dropsimplic-
itly signal the connection to reduce its sending rate beforethe queue
overflows. Currently, RED is not widely deployed. RED also does
not guarantee avoiding multiple losses within a window of data, es-
pecially in the presence of heavy congestion. However, RED also
has the highly appealing property of not requiring the deployment of
any changes to current TCP implementations.

Alternate loss recovery techniques that do not rely on TCP’sre-

3Strictly speaking,cwndis usually managed in terms of bytes and not seg-
ments (full-sized data packets), but conventionally it is discussed in terms of
segments for convenience. The distinction is rarely important. Also, [APS99]
allows an initial slow start to begin withcwndset to 2 segments, and an ex-
perimental extension to the TCP standard allows an initial slow start to begin
with cwndset to 3 or possibly 4 segments [AFP98]. We comment briefly on
the implications of this change below.

6

transmission timer have been developed to diminish the impact of
multiple losses in a flight of data. SACK-based TCPs [MM96,
MMFR96, FF96] provide the sender with more complete informa-
tion about which segments have been dropped by the network than
non-SACK TCP implementations provide. This allows algorithms to
quickly recover from multiple dropped segments (generallywithin
one RTT following loss detection). One shortcoming of SACK-based
approaches, however, is that they require implementation changes
at both the sender and the receiver. Another class of algorithms,
referred to as “NewReno” [Hoe96, FF96, FH99], does not require
SACKs, but can be used to effectively recover from multiple losses
without requiring a timeout (though not as quickly as when using
SACK-based algorithms). In addition, NewReno only requires im-
plementation changes at the sender. The estimation algorithms stud-
ied in this paper all require changes to the sender’s TCP implemen-
tation. So, we assume that the sender TCP implementation will have
some form of the NewReno loss recovery mechanism.

3.1 Methodology

In this section we discuss a number of algorithms for estimating
ssthreshand our methodology for assessing their effectiveness. We
begin by noting a distinction betweenavailable bandwidthandbot-
tleneck bandwidth. In [Pax97b] we define the first as the maximum
rate at which a TCP connection exercising correct congestion control
can transmit along a given network path, and the second as theupper
bound on how fastanyconnection can transmit along the path due to
the data rate of the slowest forwarding element along the path.

Our ideal goal is to estimateavailable bandwidthin terms of the
correct setting ofssthreshsuch that we fully utilize the bandwidth
available to a given connection, but do not exceed it (more precisely:
only exceed it using the linear increase of congestion avoidance).
Much of our analysis, though, is in terms of bottleneck bandwidth,
as this is both an upper bound on a goodssthreshestimate, and a
quantity that is more easily identifiable from the timing structure of
a flight of packets, since for any two data packets sent back-to-back
along an uncongested path, their interarrival time at the receiver di-
rectly reflects the bottleneck bandwidth along the path.4

Note that in most TCP implementationsssthreshis initialized to
an essentially unbounded value, while here we concentrate on lower-
ing this value in an attempt to improve performance by avoiding loss
or excessive queueing. Thus, all of the algorithms considered in this
section areconservative, yet they also (ideally) do not impair a TCP’s
performance relative to TCPs not implementing the algorithm. How-
ever, if an estimator yields too small a value ofssthresh, then the TCP
will indeed perform poorly compared to other, unmodified TCPs.

As noted above, one bottleneck bandwidth estimator is “packet
pair” [Kes91]. In [Pax97b] we showed that a packet pair algo-
rithm implemented using strictly sender-side measurements per-
forms poorly at estimating the bottleneck bandwidth using real traf-
fic. We then developed a more robust method, Packet Bunch Mode
(PBM), which is based on looking for modalities in the timingstruc-
ture of groups of back-to-back packets [Pax97b, Pax97c]. PBM’s
effectiveness was assessed by running it over the NPD datasets (in-
cluding theN

2

dataset referred to earlier), arguing that the algorithm
was accurate because on those datasets it often produced estimates
that correspond with known link rates such as 64 kbps, T1, E1,or
Ethernet.

PBM analyzes an entire connection trace before generating any
bottleneck bandwidth estimates. It was developed for assessing net-
work path properties and is not practical for current TCP implemen-
tations to perform on the fly, as it requires information fromboth the
sender and receiver (and is also quite complicated). However, for our
purposes what we need is an accurate assessment of a given network

4Providing the path isn’t “multi-channel” or subject to routing changes
[Pax97b].

path’s bottleneck bandwidth, which weassumethat PBM provides.
Thus, we use PBM to calibrate the efficacy of the otherssthreshes-
timators we evaluate.

Of the 18,490 traces available inN
2

, we removed 7,447 (40%)
from our analysis for the following reasons:

� Traces marred by packet filter errors [Pax97a] or major clock
problems [Pax98]: 15%. Since these problems most likely do
not reflect network conditions along the path between the two
hosts in the trace, removing these traces arguably does not in-
troduce any bias in our subsequent analysis.

� Traces in which the first retransmission in the trace was “avoid-
able,” meaning had the TCP sender merely waited longer, an
ACK for the retransmitted segment would have arrived: 20%.
Such retransmissions are usually due to TCPs with an initial
RTO that is too short [Pax97a, PAD+99]. We eliminate these
traces because the retransmission results inssthreshbeing set
to a value that has little to do with actual network conditions,
so we are unable to soundly assess how well a largerssthresh
would have worked. Removing these traces introduces a bias
against connections with particularly high RTTs, as these are
the connections most likely to engender avoidable retransmis-
sions.

� Traces for which the PBM algorithm failed to produce a single,
unambiguous estimate: 4%. We need to remove these traces
because our analysis uses the PBM estimate to calibrate the dif-
ferent estimation algorithms we assess, as noted above. Remov-
ing these traces introduces a bias against network conditions
that make PBM itself fail to produce a single estimate: multi-
channel paths, changes in bottleneck bandwidth over the course
of a connection, or severe timing noise.

After removing the above traces, we are left with 11,043 connec-
tions for further analysis. We use trace-driven simulationto assess
how well each of the bandwidth estimation algorithms perform. We
base our evaluation on classifying the algorithm’s estimate for each
trace into one of severalregions, representing different levels of im-
pact on performance.

For each trace, we define three variables,B, L andE. B is the
bottleneck bandwidth estimate made using the PBM algorithm. L is
the loss point, meaning the transmission rate in effect when the first
lost packet was sent (so, if the first lost segment was sent with cwnd
corresponding toW bytes, thenL = W=RTT bytes/second). If the
connection does not experience loss,L

0 is the bandwidth attained
based on the largestcwnd observed during the connection.5 When
L > B orL0 > B, the network path is essentially free of competing
traffic, and the loss is presumed caused by the connection itself over-
flowing a queue in the network path. Conversely, ifL or L0 is less
thanB, the path is presumed congested. Finally,E is the bandwidth
estimate made by thessthreshestimation algorithm being assessed.

In addition, define seg(x) = (x � RTT)=segment sizerepresenting
the size of the congestion window, in segments, needed to achieve a
bandwidth ofx bytes/second, for a given TCP segment size and RTT.
(Note that as defined, seg(x) is continuous and not discrete.)

3.1.1 Connections With Loss

Given the above definitions, and a connection which containsloss,
we assess an estimator’s performance by determining which of the
following six regions it falls into. Note that we analyze theregions in
the order given, so an estimate will not be considered for anyregions
subsequent to the first one it matches.

5Strictly speaking, it’s the largest flight observed during the connection,
which might be smaller thancwnddue to the connection running out of data
to send, or exhausting the (32-64KB) receiver window.

7

No Estimate Made. The estimator failed to produce anssthresh
estimate before the first segment loss occurred in the trace.

No Impact. The estimate satisfiesE � L. This means thatE is
a sufficiently large overestimate that the connection will behave
no differently using that estimate than it would if no estimate
were made.

Some Loss Prevention. WhenL � E < L holds, the given
ssthreshestimate prevents some, but not all, loss of data pack-
ets. While the estimate is greater than the loss point, it reduces
the size of the last slow start flight byN

s

= seg(L�E) seg-
ments. Therefore, up toN

s

segment drops may be prevented.

Steady-State. When L

2

� E < L holds, we classify thessthresh
estimate as “steady-state.” During congestion avoidance,which
defines TCP’s steady-state behavior [Jac88, MSMO97],cwnd
decreases by half upon loss detection and then increases lin-
early until another loss occurs. So, given the loss point ofL,
cwnd can be expected to oscillate betweenL

2

andL after the
connection’s second loss event.6 By making an estimate be-
tweenL

2

andL, the estimator has found the range about which
the connection will naturally oscillate, assuming the losspoint
is stationary.

Optimal. When the analysis reaches this point, we know that
E <

L

2

since none of the above conditions hold. If seg(E) �

seg(B) � 1 also holds, then thessthreshestimate reduces the
queueing requirement, as follows. SinceE is very close to or
larger than the bottleneck bandwidth, yet less thanL

2

, we know
that the loss point is greater than the bottleneck bandwidth, yet
thessthreshestimate is no less than the bottleneck bandwidth or
one segment less than the bottleneck bandwidth. (We consider
one segment less than the bottleneck bandwidth to be within
the range because both slow start and congestion avoidance will
take a single RTT to increasecwndto correspond withB—and
we prefer to reach that point via congestion avoidance rather
than slow start, so we don’t overshoot it.)

Thus, assuming the connection lasts long enough, the queue
will still be filled to L. However, we will fill the queue more
slowly and smoothly than with slow start. Furthermore, when
we exceed the queue during congestion avoidance, it is only by
one segment, whereas during slow start we will exceed the ca-
pacity of the queue by as much as times the capacity.7 When a
connection falls into this region, the queue length is initially re-
duced byN

q

= (L�E) �RTT bytes. Since this region reduces
queueing, prevents loss, yet fully utilizes the network path, we
deem it “optimal.”

Reduce Performance. Finally, if none of the above conditions hold
thenE <

L

2

andE < B (these bounds are not tight). We there-
fore setssthreshtoo low and forcecwnd growth to continue
linearly, rather than exponentially. When an estimator under-
estimates min(L

2

; B) by more than half in 50+% of the con-
nections in which performance would be reduced, we consider
this to be an especially bad estimate. In this case, the reported
percentage of connections experiencing reduced performance is
marked with a “*”.

6The size ofcwnd when detecting the first loss event is roughlyL.
Therefore, the first halving ofcwndcauses it to be approximately

2

L. Each
subsequent loss event should only overflow the queue slightly and therefore
cwndwill be reduced toL

2

.
7Some implementations of congestion avoidance add a constant of

1

8

times the segment size tocwnd for every ACK received during conges-
tion avoidance. This non-standard behavior has been shown to lead to some-
times overflowing the queue by more than a single segment every time cwnd
approachesL [PAD+99].

Algorithm No No Prv. Stdy. Opt. Tot. Red.
Est. Imp. Loss State Perf.

PBM0 23% 46% 9% 10% 11% 31% 0%
TSSF 42% 1% 1% 3% 0% 4% 52%�

CSA�=0:1
n=3

62% 20% 6% 9% 2% 17% 2%
CSA�=0:05

n=2

53% 37% 5% 4% 0% 9% 1%�

CSA�=0:1
n=2

45% 32% 8% 10% 2% 19% 4%�

CSA�=0:2
n=2

38% 24% 9% 13% 3% 25% 13%
TCSA 62% 14% 6% 11% 1% 19% 5%
TCSA0 70% 10% 6% 9% 2% 17% 2%
Recvmin 11% 32% 6% 13% 4% 23% 34%�

Recvavg 11% 52% 10% 14% 9% 34% 3%
Recvmed 11% 48% 10% 14% 10% 34% 7%�

Recvmax 11% 65% 7% 8% 8% 23% 0%�

Table 5: Connections with Loss (8,257 traces)

3.1.2 Connections Without Loss

The following regions useL0 to assess the impact ofssthreshestima-
tion on connections in the dataset that do not experience loss. Each
trace is placed into one of the following four regions. (Again, note
that we analyze the regions in the order given, so an estimatewill not
be considered for any regions subsequent to the first one it matches.)

No Estimate Made. The estimator failed to produce anssthresh
estimate.

Unknown Effect. WhenE � L0 holds, the estimate does not limit
TCP’s ability to opencwnd, as it is above the maximumcwnd
used by the connection. Since we do not have a good measure
of the limit of the network path, nothing more can be assessed
about the performance of the estimator.

Optimal. When seg(E) � seg(B)�1 holds, the estimate is greater
than the bottleneck bandwidth and therefore does not limit per-
formance. However, we also know thatE < L

0 due to the
above region. Therefore, the estimate reduces the initial queue-
ing requirement similar to the “optimal” region inx 3.1.1.

Reduce Performance. At this point,E < min(L

0

; B� seg�1(1))
holds, indicating that the estimate failed to provide exponen-
tial window growth toL0, which is a known safe sending rate.
Furthermore, our failure to reachL0 is not excused by provid-
ing exponentialcwnd growth long enough to fill the pipe (B
bytes/second). We again mark with a “*” those connections for
which the reduction is often particularly large.

3.2 Benchmark Algorithm

As noted above, we use PBM as our benchmark in terms of accu-
rately estimating the bottleneck bandwidth. Forssthreshestimation,
we use a revised version of the algorithm, PBM0, to provide some
sort ofupper boundon how well we might expect any algorithm to
perform. (It is not a strong upper bound, since it may be that other al-
gorithms estimate theavailablebandwidth considerably better than
does PBM0, but it is the best we currently have available.) The differ-
ence between PBM0 and PBM is that PBM0 analyzes the trace only
up to the point of the first loss, while PBM analyzes the trace in its
entirety. Thus, PBM0 represents applying a detailed, heavyweight,
but accurate algorithm on as much of the trace as we are allowed to
inspect before perforce having to make anssthreshdecision.

As shown in Tables 5 and 6, the PBM0 estimate yieldsssthresh
values that rarely hurt performance, regardless of whetherthe con-
nection experiences loss. Each column lists the percentageof traces
which, for the given estimator, fell into each of the regionsdiscussed
in x 3.1.1. TheTot. column gives the percentage of traces for which
the estimator improved matters by attaining either theprevent loss,

8

Algorithm No Unk. Opt. Red.
Est. Imp. Perf.

PBM0 0% 56% 44% 0%
TSSF 13% 2% 2% 82%�

CSA�=0:1
n=3

24% 42% 13% 22%
CSA�=0:05

n=2

19% 59% 11% 10%
CSA�=0:1

n=2

14% 48% 11% 27%
CSA�=0:2

n=2

13% 34% 11% 43%�

TCSA 24% 25% 8% 44%
TCSA0 27% 33% 11% 28%
Recvmin 1% 15% 2% 83%�

Recvavg 1% 46% 23% 31%�

Recvmed 1% 45% 28% 26%
Recvmax 1% 71% 27% 1%

Table 6: Connections without Loss (2,786 traces)

steady-state, or optimal regions. This column can be directly com-
pared with the last column (reduce performance) to assess how a
given estimator trades off improvement in some cases with damage
in others.

We see that PBM’ provides some benefit (steady state, prevention
of loss, or optimal) to 31% of the connections that experience loss,
and, when no loss occurs, the estimate falls in the optimal region
for 44% of the connections. The remaining estimates are overesti-
mates, in the case when the connection experiences loss, or have an
unknown impact (but, do not harm performance) in the connections
that do not have dropped segments. This indicates that much of the
time theavailablebandwidth is less than the raw bottleneck band-
width that PBM measures, which accords with the finding givenin
[Pax97b].

3.3 Sender-Side Estimation Algorithms

The following is a description of the sender-side bandwidthestima-
tion algorithms, and the correspondingssthreshestimates, investi-
gated in this paper. TCP’s congestion control algorithms work on the
principle of “self-clocking” [Jac88]. That is, data segments are in-
jected into the network and arrive at the receiver at the rateof the bot-
tleneck link, and consequently ACKs are generated by the receiver
with spacing that reflects the rate of the bottleneck link. Therefore,
sender-side estimation techniques measure the rate of the returning
ACKs to make a bandwidth estimate. These algorithms assume that
the spacing injected into the data stream by the network willarrive
intact at the receiver and will be preserved in the returningACK flow,
which may not be true due to fluctuations on the return channelal-
tering the ACK spacing (e.g., ACK compression [ZSC91, Mog92]).
These algorithms have the advantage of being able to directly adjust
the sending rate. In the case of TCP, they can directly set thessthresh
variable as soon as the estimate is made. However, a disadvantage
of these algorithms is their reliance on the ACK stream accurately
reflecting the arrival spacing of the data stream.

3.3.1 Tracking Slow Start Flights

The first technique we investigate is a TCP-specific algorithm that
tracks each slow start “flight.” The ACKs for a given flight areused
to obtain an estimate ofssthresh. While this algorithm is TCP spe-
cific, the general idea of measuring the spacing introduced by the
network in all segments transmitted in one RTT should be applica-
ble to other transport protocols. We parameterize the algorithm by
n, the number of ACKs used to estimate the bottleneck bandwidth.
For our analysis, we usedn = 3. LetF be the current flight size, in
segments. The Tracking Slow Start Flights (TSSF) algorithmis then:

� Initialize the current segmentS to the first data segment sent,
andF to the initial value ofcwndin segments.

Time

Se
qu

en
ce

 #

1.5 2.0 2.5 3.0 3.5 4.0

0
50

00
10

00
0

15
00

0

Figure 2: Delayed ACK leading to timing “lull”

� For the currentS andF , check whetherS’s ACK and then�1

subsequent arriving ACKs are all within the sequence range of
the flight. If so, then we use this flight to make an estimate.
Otherwise, we continue to the next flight. However, if any of
the ACKs arrive reordered or are duplicates, the algorithm ter-
minates. When looking forward for then�1 subsequent ACKs,
the algorithm ignores any ACKs for a single segment, as they
were presumably delayed.

� To find the next flight, advanceS by F segments. IfN
a

is the
number of ACKs for new data that arrive between the old value
of S and its new value, then the size of the next flight isF +N

a

(the slow start increase).

� When we find a suitable flight, we estimate the bandwidth as
the amount of data ACKed between the first and thenth ACK,
divided by the time between the arrivals of these ACKs.

As the second rows of Tables 5 and 6 show, the performance of
the TSSF algorithm is quite poor. The overwhelming problem with
this estimator is underestimating the bandwidth, which would cause
a reduction in performance.

The underestimation is caused in part by TCP’s delayed acknowl-
edgment algorithm. RFC 1122 [Bra89] encourages TCP receivers
to refrain from ACKing every incoming segment, and to instead ac-
knowledge every second incoming segment, though it also requires
that the receiver wait no longer than 500 msec for a second segment
to arrive before sending an ACK. Many TCP implementations use
a 200 msec “heartbeat” timer for generating delayed ACKs. When
the timer goes off, which could be any time between 0 and 200 msec
after the last segment arrived, if the receiver is still waiting for a sec-
ond segment it will generate an ACK for the single segment that has
arrived. Using this mechanism can fail to preserve in the returning
ACK stream the spacing imposed on the data stream by the bottle-
neck link. The time the receiver spends waiting on a second segment
to arrive increases the time between ACKs, which is assumed by the
sender to indicate the segments were further spaced out by the net-
work, which leads to an underestimate of the bandwidth.

Furthermore, once a delayed ACK timer effect is injected into the
ACK stream, the flight is effectively partitioned into two mini-flights
for the duration of slow start, since data segments are sent in re-
sponse to incoming ACKs. The sequence-time plot in Figure 2 il-
lustrates this effect. In the plot, which is recorded from the sender’s
perspective, outgoing data segments are indicated with solid squares
drawn at the upper sequence number of the segment, while incoming
ACKs are drawn with hollow squares at the sequence number they
acknowledge.

The first flight shown, which consists of two segments, elicits a
single ACK that arrives at timeT = 2:0. But the flight of three
segments that this ACK triggers elicits two ACKs, one for twoseg-
ments arriving atT = 2:6, but another for just one segment at time

9

T = 2:8. The latter reflects a delayed ACK. The next flight of five
packets then has a lull of about 200 msec in the middle of it. This
lull is duly reflected in the ACKs for that flight, plus an additional de-
layed ACK occurs from the first sub-flight of three segments (times
T = 3:3 throughT = 3:5). The resulting next flight of 8 seg-
ments is further fractured, reflecting not only the lull introduced by
the new delayed ACK, but also that from the original delayed ACK,
and the general pattern repeats again with the next flight of 12 seg-
ments. None of the ACK flights give a good bandwidth estimate,nor
is there much hope that a later flight might.

This mundane-but-very-real effect significantly complicates any
TCP sender-side bandwidth estimation. While for other transport
protocols the effect might be avoidable (if ACKs are not delayed),
the more general observation is that sender-side estimation will sig-
nificantly benefit from information regarding just when the packets
it sent arrived at the receiver, rather than trying to infer this timing
by assuming that the receiver sends its feedback promptly enough to
generate an “echo” of the arrivals.

3.3.2 Closely-Spaced ACKs

Thessthreshestimation algorithms in [Hoe96] and [AD98] are based
on the notion of measuring the time between “closely spaced ACKs”
(CSAs). By measuring CSAs, these algorithms attempt to consider
ACKs that are sent in response to closely spaced data segments,
whose interarrival timing at the receiver then presumably reflects
the rate at which they passed through the bottleneck link. However,
neither paper defines exactly what constitutes a set of closely-space
ACKs.

We explore a range of CSA definitions by varying two parameters.
The first,�, is the fraction of the RTT within which the consecutive
ACKs of the closely-spaced group must arrive in order to be consid-
ered “close.” We examined� values of 0.0125, 0.025, 0.05, 0.1 and
0.2. The second parameter,n, is the number of ACKs that must be
close in order to make an estimate. We examinedn = 2; 3; 4; 5. The
bandwidth estimate is made the first timen ACKs arrive (save the
first) within � � RTT sec of their predecessors. This algorithm has
the advantage of being easy to implement. Also, it does not depend
on any of the details of TCP’s congestion control algorithms, which
makes the algorithm easy to use for other transport protocols. A dis-
advantage of the algorithm is that it is potentially highly dependent
on the above two constants.

Our goal was to find a “sweet spot” in the parameter space that
works well over a diverse set of network paths. Rows 3–6 of Tables 5
and 6 show the effectiveness of several of the points in the parameter
space. Values of� andn outside this range performed appreciably
worse than those shown.

We chosen = 3, � = 0:1 as the sweet spot in the parameter space.
However, the choice was not clear cut, as bothn = 2, � = 0:05 and
n = 2, � = 0:1 provide similar effectiveness. All of the parameter
values shown, including the chosen sweet spot, reduce performance
for a large number of connections that do not experience lossand
yield no performance benefit in over 60% of the connections that did
experience loss (due to an inability to form an estimate or overesti-
mating).

3.3.3 Tracking Closely-Spaced ACKs

The ssthreshestimation algorithm in [AD98] assumes that the ar-
rivals of closely-spaced ACKs are used to form tentativessthresh
estimates, with a final estimate being picked when these settle down
into a form of consistency. We used a CSA estimator withn = 3 and
� = 0:1 (the sweet spot above) to assess the effectiveness of their
proposed approach. For their scheme, we take multiple samples and
use the minimum observed sample to setssthresh. We continue esti-
mating until the point of loss, or we observe a sample within 10% of
the minimum sample observed so far (in which case we are presumed

to have converged). We show the effectiveness of using the “tracking
closely-spaced ACKs” (TCSA) algorithm in Tables 5 and 6. As with
the CSA method described above, the TCSA algorithm does not have
a performance impact on the connection in over 75% of the connec-
tions with loss. Furthermore, the number of connections forwhich
the performance would be reduced is increased by roughly a factor
of 2 for both connections that experienced loss and those that did not
when comparing TCSA with CSA.

Since TCSA shows an increase in the number of connections
whose performance would be reduced, it clearly often estimates too
low, so we devised a variant, TCSA0, that does not depend on the
minimum observation (which is likely to be an underestimate). We
compare each CSA estimate,E

i

, with estimateE
i�1

(for i > 1). If
these two samples are within 10% of each other, then we use theav-
erage of the two bandwidth estimates to setssthresh. Tables 5 and 6
show that TCSA0 is comparable to TCSA in most ways. The excep-
tion is that the number of underestimates that would reduce perfor-
mance is decreased when using TCSA0, so it would be the preferred
algorithm.

3.4 Receiver-Side Estimation Algorithm

The problems with sender-side estimation outlined above led to the
evaluation of the following receiver-side algorithm for estimating the
bandwidth. Estimating the bandwidth at the receiver removes the
problems that can be introduced in the ACK spacing by delay fluctu-
ations along the return path or due to the delayed ACK timer.

A disadvantage of this algorithm is that the receiver cannotprop-
erly control the sender’s transmission rate.8 However, the receiver
could inform the sender of the bandwidth estimate using a TCPop-
tion (or some other mechanism, for a transport protocol other than
TCP). For our purposes, we assume that this problem is solved, and
note that alternate uses for the estimate by the receiver is an area for
future work.

The receiver-side algorithm outlined below is TCP-specific. Its
key requirement is that the receiver can predict which new segments
will be transmitted back-to-back in response to the ACKs it sends,
and thus it can know to use the arrivals of those segments as good
candidates for reflecting the bottleneck bandwidth. Any transport
protocol whose receiver can make such a prediction can use a related
estimation technique. In particular, by using a timestamp inserted by
the sender, the receiver could determine which segments were sent
closely-spaced without knowledge of the specific algorithmused by
the sender. This is an area for near-term future work.

For convenience, we describe the algorithm assuming that se-
quence numbers are in terms of segments rather than bytes. Let A

i

denote the segment acknowledged by theith ACK sent by the re-
ceiver. LetD

i

denote the highest sequence number the sender can
transmit after receiving theith ACK. If we number the ACK of the
initial SYN packet as 0, thenA

0

= 0. Assuming that the initial con-
gestion window after the arrival of ACK 0 is one segment, we have
D

0

= 1. To accommodate initial congestion windows larger than
one segment [AFP98], we increaseD

0

accordingly.
The basic insight to how the algorithm works is that the receiver

knows exactly which new segments the arrival of one of its ACKs at
the sender will allow. These segments are presumably sent back to
back, so the receiver can then form a bandwidth estimate based on
their timing when they arrive at the receiver.

8The TCP receiver could attempt to do so by adjusting the advertised win-
dow to limit the sender to the estimatedssthreshvalue, even also increasing it
linearly to reflect congestion avoidance. But when doing so,it diminishes the
efficacy of the “fast recovery” algorithm [Ste97, APS99], because it will need
to increase the artificially limited window, and, accordingto the algorithm, an
ACK that does so will be ignored from the perspective of sending new data
in response to receiving it.

10

Any time the receiver sends thej + 1st ACK, it knows that upon
receipt of the ACK by the sender, the flow control window will slide
A

j+1

� A

j

segments, and the congestion window will increase by
1 segment, so the total number of packets that the sender can now
transmit will beA

j+1

� A

j

+ 1. Furthermore, their sequence num-
bers will beD

j

+ 1 throughD
j+1

, so it can precisely identify their
particular future arrivals in order to form a sound measurement. Fi-
nally, we take the firstK such measurements (or continue until a data
segment was lost), and from them form our bandwidth estimate. For
our assessment below, we usedK = 50.

(We note that the algorithm may form poor estimates in the face of
ACK loss, because it will then lose track of which data packets are
sent back-to-back. We tested an oracular version of the algorithm
that accounts for lost ACKs, to serve as an upper bound on the effec-
tiveness of the algorithm. We found that the extra knowledgeonly
slightly increases the effectiveness of the algorithm.)

This algorithm provides estimates for more connections than any
of the other algorithms studied in this paper, because everyACK
yields an estimate. Tables 5 and 6 show the receiver-based algo-
rithm using four different methods for combining theK bandwidth
estimates. The first “Recv” row of each table shows the effective-
ness of using the minimum of theK measurements as the estimate.
This yields an underestimate in a large number of the connections,
decreasing performance (34% of the time when the connectionexpe-
riences loss and 83% of the time when no loss is present). The next
row shows that averaging the samples improves the effectiveness
over using the minimum: the number of connections with reduced
performance is drastically reduced when the connection experiences
loss, and halved in the case when no loss occurs. However, theflip
side is the number of cases when we overestimate the bandwidth in-
creases when loss is present in the connection. Taking the median
of theK samples provides similar benefits to using the average, ex-
cept the number of connections experiencing reduced performance
increases by a factor of 2 over averaging when loss occurs. Finally,
using the maximum of theK estimates further increases the number
of overestimates for connections experiencing loss. However, using
the maximum also reduces the number of underestimates to nearly
none, regardless of whether the connection experiences loss. Of the
methods investigated here, using the maximum appears to provide
the most effectivessthreshestimate. However, we note that alternate
algorithms for combining theK estimates is an area for near-term
future work.

Finally, we varied the number of bandwidth samples,K, used to
obtain the average and maximum estimates reported above to deter-
mine how quickly the algorithms converge. We find that when aver-
aging the estimates, the effectiveness increases slowly but steadily as
we increaseK to 50 samples. However, when taking the maximum
sample as the estimate, little benefit is derived from observing more
than the first 5–10 samples.

4 Conclusions and Future Work

Our assessment of different RTO estimators yielded severalbasic
findings. The minimum value for the timer has a major impact on
how well the timer performs, in terms of trading off timely response
to genuine lost packets against minimizing incorrect retransmissions.
For a minimum RTO of 1 sec, we also realize a considerable gain
in performance when using a timer granularity of 100 msec or less,
while still keeping bad timeouts below 1%. On the other hand,vary-
ing the EWMA constants has little effect on estimator performance.
Also, an estimator that simply takes the first RTT measurement and
computes a fixed RTO from it often does nearly as well as more
adaptive estimators. Related to this finding, it makes little difference
whether the estimator measures only one RTT per flight or measures
an RTT for every packet. This last finding calls into questionsome
of the assumptions in RFC 1323 [JBB92], which presumes that there

is benefit in timing every packet. Given that such benefit is elusive,
the other goals of [JBB92] currently accomplished using timestamp
options should be revisited, to consider using a larger sequence num-
ber space instead. We finished our RTO assessment by noting that
timestamps, SACKs, or even a simple timing heuristic can be used
to reverse the effects of bad timeouts, making aggressive RTO algo-
rithms more viable.

Our assessment of various bandwidth estimation schemes found
that using a sender-side estimation algorithm is problematic, due to
the failure of the ACK stream to preserve the spacing imposedon
data segments by the network path, and we developed a receiver-side
algorithm that performs considerably better. A lingering question is
whether the complexity of estimating the bandwidth is worththe per-
formance improvement, given that only about a quarter of thecon-
nections studied would benefit. However, in the context of other uses
or other transports, estimating the bandwidth using the receiver-side
algorithm may prove compelling.

Our study was based on data from 1995, and would benefit con-
siderably from verification using new data and live experiments. For
RTO estimation, a natural next step is to more fully explore whether
combinations of the different algorithm parameters might yield a sig-
nificantly better “sweet spot.” Another avenue for future work is to
consider a bimodal timer, with one mode based on estimating RTT
for when we lack feedback from the network, and the other based
on estimating the variation in the feedback interarrival process, so
we can more quickly detect that the receiver feedback streamhas
stalled. For bandwidth estimation, an interesting next step would
be to assess algorithms for using the estimates to ramp up newcon-
nections to the available bandwidth more quickly than TCP’sslow
start. Finally, both these estimation problems merit further study in
scenarios where routers use RED queueing rather than drop-tail, as
RED deployment should lead to smaller RTT variations and a source
of implicit feedback for bandwidth estimation.

5 Acknowledgments

This paper significantly benefited from discussions with Sally Floyd
and Reiner Ludwig. We would also like to thank the SIGCOMM
reviewers, Sally Floyd, Paul Mallasch and Craig Partridge for helpful
comments on the paper. Finally, the key insight that the receiver can
determine which sender packets are sent back to back (x 3.4) is due
to Venkat Rangan.

References

[AD98] Mohit Aron and Peter Druschel. TCP: Improving
Startup Dynamics by Adaptive Timers and Congestion
Control. Technical Report TR98-318, Rice University
Computer Science, 1998.

[AFP98] Mark Allman, Sally Floyd, and Craig Partridge. In-
creasing TCP’s Initial Window, September 1998. RFC
2414.

[APS99] Mark Allman, Vern Paxson, and W. Richard Stevens.
TCP Congestion Control, April 1999. RFC 2581.

[BCC+98] Robert Braden, David Clark, Jon Crowcroft, Bruce
Davie, Steve Deering, Deborah Estrin, Sally Floyd, Van
Jacobson, Greg Minshall, Craig Partridge, Larry Peter-
son, K. Ramakrishnan, S. Shenker, J. Wroclawski, and
Lixia Zhang. Recommendations on Queue Manage-
ment and Congestion Avoidance in the Internet, April
1998. RFC 2309.

[Bra89] Robert Braden. Requirements for Internet Hosts – Com-
munication Layers, October 1989. RFC 1122.

11

[DDK+90] Willibald Doeringer, Doug Dykeman, Matthias Kaiser-
swerth, Bernd Werner Meister, Harry Rudin, and Robin
Williamson. A Survey of Light-Weight Transport Pro-
tocols for High-Speed Networks.IEEE Transactions on
Communications, 38(11):2025–2039, November 1990.

[FF96] Kevin Fall and Sally Floyd. Simulation-based Com-
parisons of Tahoe, Reno, and SACK TCP.Computer
Communications Review, 26(3), July 1996.

[FH99] Sally Floyd and Tom Henderson. The NewReno Modi-
fication to TCP’s Fast Recovery Algorithm, April 1999.
RFC 2582.

[FJ93] Sally Floyd and Van Jacobson. Random Early Detec-
tion Gateways for Congestion Avoidance.IEEE/ACM
Transactions on Networking, 1(4):397–413, August
1993.

[Hoe96] Janey Hoe. Improving the Start-up Behavior of a Con-
gestion Control Scheme for TCP. InACM SIGCOMM,
August 1996.

[Jac88] Van Jacobson. Congestion Avoidance and Control. In
ACM SIGCOMM, 1988.

[Jac90] Van Jacobson. Modified TCP Congestion Avoidance
Algorithm, April 1990. Email to the end2end-interest
mailing list. URL: ftp://ftp.ee.lbl.gov/email/
vanj.90apr30.txt.

[JBB92] Van Jacobson, Robert Braden, and David Borman. TCP
Extensions for High Performance, May 1992. RFC
1323.

[JK92] Van Jacobson and Michael Karels. Con-
gestion Avoidance and Control, 1992.
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

[Kes91] Srinivasan Keshav. A Control Theoretic Approach
to Flow Control. InACM SIGCOMM, pages 3–15,
September 1991.

[KP87] Phil Karn and Craig Partridge. Improving Round-Trip
Time Estimates in Reliable Transport Protocols. In
ACM SIGCOMM, pages 2–7, August 1987.

[Lud99] Reiner Ludwig. A Case for Flow-Adaptive Wireless
Links. Technical report, Ericsson Research, February
1999.

[Mil83] David Mills. Internet Delay Experiments, December
1983. RFC 889.

[MM96] Matt Mathis and Jamshid Mahdavi. Forward Acknowl-
edgment: Refining TCP Congestion Control. InACM
SIGCOMM, August 1996.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
Romanow. TCP Selective Acknowledgement Options,
October 1996. RFC 2018.

[Mog92] Jeffrey C. Mogul. Observing TCP Dynamics in Real
Networks. InACM SIGCOMM, pages 305–317, 1992.

[MSMO97] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and Teunis
Ott. The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm. Computer Communication Re-
view, 27(3), July 1997.

[Nag84] John Nagle. Congestion Control in IP/TCP Internet-
works, January 1984. RFC 896.

[PAD+99] Vern Paxson, Mark Allman, Scott Dawson, William
Fenner, Jim Griner, Ian Heavens, Kevin Lahey, Jeff
Semke, and Bernie Volz. Known TCP Implementation
Problems, March 1999. RFC 2525.

[Pax97a] Vern Paxson. Automated Packet Trace Analysis of
TCP Implementations. InACM SIGCOMM, September
1997.

[Pax97b] Vern Paxson. End-to-End Internet Packet Dynamics. In
ACM SIGCOMM, September 1997.

[Pax97c] Vern Paxson.Measurements and Analysis of End-to-
End Internet Dynamics. Ph.D. thesis, University of Cal-
ifornia Berkeley, 1997.

[Pax98] Vern Paxson. On Calibrating Measurements of Packet
Transit Times. InACM SIGMETRICS, June 1998.

[Pos81] Jon Postel. Transmission Control Protocol, September
1981. RFC 793.

[Ste97] W. Richard Stevens. TCP Slow Start, Congestion
Avoidance, Fast Retransmit, and Fast Recovery Algo-
rithms, January 1997. RFC 2001.

[TMW97] Kevin Thompson, Gregory Miller, and Rick Wilder.
Wide-Area Internet Traffic Patterns and Characteris-
tics. IEEE Network, 11(6):10–23, November/December
1997.

[WS95] Gary R. Wright and W. Richard Stevens.TCP/IP Il-
lustrated Volume II: The Implementation. Addison-
Wesley, 1995.

[Zha86] Lixia Zhang. Why TCP Timers Don’t Work Well. In
ACM SIGCOMM, pages 397–405, August 1986.

[ZSC91] Lixia Zhang, Scott Shenker, and David Clark. Obser-
vations on the Dynamics of a Congestion Control Al-
gorithm: The Effects of Two- Way Traffic. InACM
SIGCOMM, September 1991.

12

