Web Timeouts and Their
Implications

Zakaria Al-Qudah* — CWRU
Michael Rabinovich — CWRU
Mark Allman — ICSI
April 9, 2010

* Now with Yarmouk University, Jordan

Timeouts and Claim-and-Hold Attacks

Timeouts are fundamental to the operation of
network protocols

Timeouts can be utilized to mount claim-and-hold
DoS attacks

— Attacker claims server’s resources and maintains
minimal level of interactivity with the server to

keep them held

Long timeouts help tolerating legitimate anomalies,
but make claim-and-hold attacks easier

Short timeouts raise the bar for the attacker, but limit
the tolerance to legitimate anomalies.

Questions:

 What are the values of various timeouts in today’s Web
servers?

e How these timeouts relate to the characteristics of actual
Web transactions?

* How Web servers can implement timeouts to better cope
with possible attacks?

Measurements Description

* Probe operational Web server for various
timeouts

— Top 500 high volume sites (from Alexa.com)

* 53% reported some version of Apache, 12% Microsoft IIS,
10% GWS (google), the rest others/unknown

— 15K regular sites collected using a link harvester tool
* 68% Apache, 10% Microsoft IIS, the rest others/unknown
* Compare results to actual times needed by Web
clients
— A week-long packet trace of Web traffic from ICSI
— Captured on August 2009

— Contains nearly 1.6M HTTP connections involving
nearly 14K servers and 25K clients

Considered Timeouts

Application Timeout: Time from completing connection
establishment to receiving the first byte of the HTTP request

Request Timeout: Time from receiving first byte of the
HTTP request to receiving last byte of the request

Response Timeout: Time for the client to consume the
entire response

TCP Timeout: Time for the server to receive acks from the
client for its data packets

HTTP Keep-Alive Timeout: Time for a server to receive a
subsequent HTTP request after finished serving the current
request on a persistent HTTP connection

Application Timeout

The time the server allows from
completing the connection
establishment to receiving the
first byte of the HTTP request

Operational timeout

— Open connection, observe when
the connection is closed

Actual transactions

— Measure the time from the last
ack of TCP 3WHS to the first
packet of HTTP request

Results:

- The transmission of 99 % of the
requests has started within 1
second of connection
establishment

CDF

Results:

- Nearly 36% of sites do
not terminate the connection
after 20 min of waiting
(TCP_DEFER_ACCEPT)

- Application timeout does not
apply to these servers

re'gular' sites
top 500 sites =--=----

0.8
0.6 r [t
0.4 ¢
0.2

0O 100 200 300 400 500 600 700
timeout (sec)

Request Timeout

Time from receiving first Relsu“s; | | | |
byte of the HTTP request to tLeg?,'(?é 2:{22 ______
receiving last byte of the T P
request 0.8 |
L
Focus on HTTP GET requests 8 0.6
Operational timeout 04 | R S ﬁ
— Open connection, send 02 |
1000-bytes HTTP GET
request, one byte/sec, and 0 0 2'00 460 660 860 1600
observe if (or when) the . t
connection is terminated imeout (sec)
Actual transactions Results:
— Measure time between the -85% of requests it into 1
packet

client sending first and last .
packets of an HTTP - 99.9% of requests take

less than 1 second to be
transmitted

connection

Response Timeout

e Time for the client to consume

the entire response Results:
* Operational timeout - Only about 24% of sites impose

, a limit on response rate
— Open a connection, send a
request, consume the
response at 100 bytes/sec

— Observe if the server

terminates the connection 1L RéSponée transfer rate

— Reasoning: we are aware of
only one major Web server 0.8 r
that impose a response
timeout (Microsoft IIS, default & 0.6 |
240 bytes/sec) O 0.4

e Actual transactions '

— Measure response transfer 02t

rate for large responses
(> 50KB) 0 '

110 10% 10° 10%
Throughput (Kbps)

Adaptive Web Timeouts

 How timeouts should be setup?

— Adaptive: when the server is busy, shorten the timeouts,
and when the server is under-loaded increase timeouts

* Prototype implementation

— Covers application, response and TCP timeouts
— Implemented in Linux Kernel and Apache Web server
1. The Web server communicates target rate to the kernel

2.Connection speed is monitored by the kernel: Every second, a
connection score is increased by the amount of transferred
data, and reduced by the target rate

3.If the send queue becomes empty, begin counting a new

4. When 90% of connection slots are claimed, the Web server
reduces application timeout to 3 seconds and signals to the
kernel to terminate under-performing connections

Mechanism Demonstration

* Experiment: (Attacker }
— Apache Web server with 256 *

concurrent connections

* One time with adaptive response
timeout that requires at least

Server

500bytes/sec at times of stress Monitor
* Another time without adaptive
timeout 5 without adaptive timeout —
— Attacker machine attempts to keep 2 4o | thadaptive timeout ===-
300 connections open to the server s I
o 80
and consumes responses at 200-300 2 50 |
>
bytes/.sec o 3 40l
Monitor machlne issues 100- 5 ol Monitor attempt #
requests in every attempt with 5s o 0

timeout (100 attempts,10 seconds "“"“'
: 0 10 20 30 40 50 60 70 80 90100
apart), and observe the denial rate
Attempt number

Summary

 Measured different kinds of Web timeouts in the Internet
* Compared measured timeouts to normal client activity
— Result: huge mismatch

* Proposed mechanisms for proper and secure provisioning of
Web timeouts

— Reduce timeouts only at times of high load

zma@case.edu

Questions?

PAM 2010

12

