Web Timeouts and Their Implications*

Zakaria Al-Qudah', Michael Rabinovich!, and Mark Allman?

1 Case Western Reserve University, Cleveland, Ohio 44106
2International Computer Science Institute, Berkeley, CA 94704

Abstract. Timeouts play a fundamental role in network protocols, con-
trolling numerous aspects of host behavior at different layers of the pro-
tocol stack. Previous work has documented a class of Denial of Service
(DoS) attacks that leverage timeouts to force a host to preserve state
with a bare minimum level of interactivity with the attacker. This paper
considers the vulnerability of operational Web servers to such attacks
by comparing timeouts implemented in servers with the normal Web
activity that informs our understanding as to the necessary length of
timeouts. We then use these two results—which generally show that the
timeouts in wide use are long relative to normal Web transactions—to
devise a framework to augment static timeouts with both measurements
of the system and particular policy decisions in times of high load.

1 Introduction

One of the historic tenets of networking that has served the Internet well over
the past 30 years is that components of the system should be both conservative
and liberal at the same time. That is, actions should only be taken as they are
strictly necessary—therefore acting conservatively. Furthermore, wide tolerance
for a range of behavior from other components in the system is also desirable—or
acting liberally. Another fundamental notion within the Internet is that the only
thing we can absolutely count on is the passage of time. This notion naturally
led to timeouts as a fundamental fallback mechanism to ensure robust operation.
Adhering to the above stated principles tends to make timeouts long such that we
can tolerate a range of behavior and the timer only expires when a gross anomaly
occurs as opposed to when some task simply happens slower than expected.

Unfortunately, the above narrative becomes muddled in the presence of ma-
licious actors as it creates an opening for the so-called claim-and-hold denial of
service attacks [13], where an attacker can claim server resources without us-
ing them thus preventing the server from utilizing these resources on legitimate
activities.

In this paper, we consider the issue of timeouts in the modern Internet within
the context of the Web. We conduct an empirical investigation that seeks to
understand (¢) how timeouts are currently set on Web servers and (ii) how
those settings relate to normal user-driven Web traffic. Our key finding is that

* This work is supported in part by NSF grants CNS-0615190 and CNS-0433702.

timeout settings are extremely conservative relative to actual traffic patterns and
expose Web servers to easy DoS attacks. While this suggests that servers could
take a more aggressive posture with respect to timeouts, doing so would run
counter to the general tenet mentioned earlier (i.e., would result into dropping
legitimate anomalies even at times when enough resources are available to serve
them). Instead, we propose an adaptive approach whereby the timeouts are only
reduced at times of measured stress. In fact, we observed a small number of Web
sites that exhibit a behavior which indicates that they might be already varying
their timeouts dynamically. We believe other sites, large or small, would benefit
from similar reactions in the face of claim-and-hold attacks. Unfortunately, such
timeout adaption is not available out-of-the-box in popular Web servers. As part
of this project we have implemented and make available a simplified adaptive
mechanism as a modification of the Linux kernel and Apache Web server [1].

2 Related Work

Qie, et.al. [13] studied, verified, and classified DoS attacks into busy attacks
and claim-and-hold attacks. Web server administrators have reported encoun-
tering claim-and-hold attacks [7,6] and server software vendors seem cognizant
of these attacks and typically recommend tuning Web server timeouts [4,8].
However, as we show in this paper, a large number of Web sites use default
timeout values. Barford et. al. observed the negative effect of excessive persis-
tent connections on busy Web servers and recommended an early close policy
whereby Web clients close persistent connections after downloading a page and
all its embedded objects [5]. Rabinovich et. al. suggested adaptive management
of persistent connections at Web servers, where a server closes idle connections
once it runs out of the connection slots [14]. We argue for a similar but more
general approach in Section 4. Park, et.al. also point out the danger of inactive
or slow Web clients and propose an independent component to filter and con-
dition external connections for the Web server [12]. In contrast, we suggest an
adaptive timeout strategy on the Web server itself.

3 Timeout Measurements

In this section, we assess timeout periods in operational Web servers and com-
pare them with the time needed by Web clients to perform the corresponding
activities that these timeout periods control. To this end, we probe two groups
of Web servers: (i) Alexa’s top 500 sites [3] denoted as “high volume” sites and
(1) 15,445 sites collected using the Link Harvester tool [15] denoted as “regu-
lar” sites. The list of these sites is available from [1]. In the high volume group,
53% of sites reported some version of Apache Web server in the “Server:” re-
sponse header, 12% Microsoft-1IS, 10% GWS (Google), and the rest reported
some other server or nothing at all. Among the regular sites, 68% were Apache,
19% Microsoft-IIS, and the rest other /unknown. As described below, we actively
probe these sites for various timeouts. Inevitably for each experiment a small

0.9 1: Ir;p#f[:} regular sites
: (FIN =----e- top 500 sites =--==--
0.8 3: RST weeeeeees 1 P =
07r e
4 o5 4
] 0.4]
0.3
0.2
0.1 Fa
0 = 0
0.1 1 10 100 1000 10000 0 100 200 300 400 500 600 700
timeout (sec) timeout (sec)
(a) TCP timeout (b) Application timeout
regular sites regular sites
1 top 500 sites ===--- 1 1 top 500 sites =-=----
0.8 1 0.8 _ﬂ.’
& 06 a -
e °°r] 5 o6
0.4 S e 1 0.4 -
i g
0.2 1 0.2
0 0
0 200 400 600 800 1000 10410°10210" 1 10* 10? 10°
timeout (sec) timeout (sec)
(c) Request timeout (d) Keep-Alive timeout

Fig. 1. Distribution of Web server timeouts.

number of sites are unavailable and so the precise number of sites used varies
and is reported for each experiment.

To assess the time consumed by Web clients to perform various normal activ-

ities, we analyze a week long packet trace of Web traffic collected at the border
of International Computer Science Institute (ICSI) captured between August
11-18 2009. The trace contains nearly 1.6M HTTP connections involving nearly
14K servers and 25K clients. We note that Web clients in our trace are generally
well-connected. While it would be desirable to verify our results directly in a
qualitatively different environment, we do not expect dial-up clients to affect
our findings (as discussed later).
TCP Timeout: The TCP timeout represents the length of time a TCP imple-
mentation will attempt to retransmit data before giving up on an unresponsive
host. We assess this timeout by opening a TCP connection to a given server,
sending an HTTP request and disappearing—i.e., sending no further data, ACK,
FIN or RST packets. Some sites respond with an HTTP redirection and a FIN
(either with the data or closely thereafter). We exclude these sites from fur-
ther analysis because the timeout we experience in this case is the FIN_.WAIT
state timeout, not the retransmission timeout. This reduces the number of sites—
437 high volume and 13,142 regular sites—involved in this experiment compared
to other experiments.

We monitor the server’s retransmissions and find three distinct ways for
connections to end: (7) implicitly with the retransmissions eventually ceasing, (i%)

explicitly with the server sending a FIN or (#i¢) explicitly with a server sending a
RST. We measure the TCP timeout as the interval between the arrival of the first
data transmission and the arrival of either the last retransmission or a packet
with a FIN or RST bit set (note, this FIN case is distinct from the redirection
case discussed above). Figure 1(a) shows the distribution of timeouts measured
for each termination method for the high volume sites (the regular sites are
omitted due to space constraints but show the same general behavior). In case
(1)—encompassing 61% of the servers in both sets—the observed timeout is over
100 seconds for two-thirds of the servers. Note that in this case there is no wire
event indicating the server has dropped a connection, and we expect that the
server waits for some time for an ACK after the last retransmission. Therefore,
the measurements represent a lower bound. In case (i4)—encompassing 9% of the
servers in each set—we believe the FIN transmission is generally triggered by the
overall application giving up on the connection rather than TCP terminating the
connection itself. Therefore, at best these measurements also represent a lower
bound on the length of the TCP timeout, which is illustrated by the order of
magnitude difference between cases (i) and (ié) in Figure 1(a). In case (i4i)—
encompassing 30% of the servers in each set—we observe that servers that send
a RST show the longest timeouts by a small margin over servers that silently
terminate. We believe this is likely the best representation of the TCP timeout as
it encompasses both the entire retransmission process and the additional waiting
time that goes unseen in case ().

We contrast the above determined lower bounds with data from our previous
work [2]. In that work, we set up two servers: one configured with a normal
TCP timeout (default Linux timeout of 15 retransmissions, or ~13-30 minutes)
and one with a quick TCP timeout (3 retransmissions or roughly 600 msec). We
then used 59 Keynote [9] clients around the world to download a 2 MB file from
each server every 15 minutes for over a week. Reduced retransmissions increased
dropped connections due to timeouts by 0.16%, suggesting that continuing to
retransmit for long periods of time is often futile.

In summary, while Figure 1(a) shows that—excluding cases where we do not
believe TCP terminated the connection—80% of the surveyed servers have TCP
timeouts exceeding 57 seconds, and nearly two-thirds of the servers have TCP
timeouts exceeding 100 seconds, our preliminary data indicates that most Web
interactions would succeed with a sub-second TCP timeout.

Application Timeout: The application timeout is the time a server allows
between completing the TCP connection establishment and the arrival of the
first byte of an HTTP request. To measure the application timeout in opera-
tional Web sites, we open a TCP connection to a server without sending an
HTTP request using nc6 [11]. We then measure the time from the completion of
the TCP connection establishment until the connection is closed by the server
(giving up after 20min). We use 492 high volume sites and 14,985 regular sites
in this experiment. We find that just under 36% of sites in both groups do
not end the connection after 20min. Potential reasons for this behavior include
sites using the TCP_DEFER_ACCEPT Linux TCP option [16] (or like option

on other systems). With this option, TCP does not promote a connection from
the SYN_RCVD state to ESTABLISHED state—and thus hand it over to the
application—until data arrives on the connection. Therefore, the notion of ap-
plication timeout is not applicable for these sites. (Note however that these sites
can still accumulate pending connections in the SYN_RCVD state, which may
present a different attack vector.) Another explanation is these sites have an
application timeout which is longer than 20min.

Figure 1(b) shows the distribution of measured application timeouts for the
remaining ~264% of sites in the two groups. The figure shows significant modes in
both groups around 120s and 300s—the well-known defaults for IIS and Apache
respectively. We also observe that high volume sites generally have shorter appli-
cation timeouts than regular sites. Presumably these sites have determined that
shorter timeouts are better for resource management without disrupting users.
The figure also has a mode around 240s for the high volume sites which is mostly
due to Google’s sites (e.g., google.com, google.fr, google.co.uk, gmail.com, etc.).
Similarly, we find that the high volume sites responsible for the mode around
30s to be mostly Akamai-accelerated sites. Finally, we find a mode around 60s
which we cannot readily explain. Overall, around 54% of high-volume sites and
74% of regular sites have application timeouts of over 100s.

We now turn to our packet trace and measure the time between the last
ACK in TCP’s three-way handshake and the first packet with the client’s HT'TP
request. We find that 99% of the requests were sent within one second of com-
pleting the TCP connection establishment. However, the longest time a client in
our trace took to start sending the request after completing the TCP connection
establishment is 586 seconds.

Request Timeout: The request timeout is the time a Web server allots to a
request to completely arrive at the server after the first byte of the request has
arrived. To measure the request timeout we drip a 1000 byte request over the
network at a rate of one byte/sec and note when (or if) the server terminates the
connection. Transmitting the request at a byte/sec factors out a possible effect
of another timeout commonly applied to poll()/select() calls—which is usually
greater than one second. This experiment involves 492 high-volume and 15,033
regular sites.

Figure 1(c) shows the distribution of the measured request timeouts. The plot
indicates that 58% of the regular sites and 51% of the high volume sites keep
the connection open for the entire 1,000 seconds it took our client to send its
request, suggesting that the server does not impose a request timeout. Among
the sites that do set a smaller request timeout, high volume sites have generally
shorter timeouts than regular sites. Overall, 93% of the high volume sites and
96% of the regular sites have a request timeout period of over 30 seconds.

To assess how long Web clients normally take to transmit their requests, we
measure the time between the first and last packets of HTTP requests in our
trace. When the entire request fits in one packet, we report the time as zero.
We concentrate on HTTP GET requests in this experiment as they are typically
small. HTTP POST requests on the other hand could be arbitrarily large and

1 | Response transfer rate
08 |
Group |Impose(lIS with|IIS without L
Limit | limit limit 5 00
Top 500] 24.1% | 32.7% | 5.1% 04y
Regular| 23.5% | 59.0% 7.2% 02}
0
Fig. 2. Response timeout 1 10 10° 10° 10°

Throughput (Kbps)

Fig. 3. Response rate.

take longer to send. This suggests that these two request types should be handled
with different timeouts. We find that 85% of the requests fit into one packet.
Further, 99.9% of the requests are completed within 1 second. Still, the longest
time taken by a client in the trace is 592 seconds.

Response Timeout: The response timeout is the amount of time the server
allocates to delivering an HTTP response. This timeout guards against a client
that is alive (i.e., responds with TCP ACKs) but consumes data at a slow rate,
by either acknowledging few bytes at a time or advertising a small (or at the
extreme, zero) window. Since the client is responding the connection can only
be closed by the application and not by TCP.

We are aware of only one major Web server that enforces a response timeout—
alternatively presented as a minimum transfer rate—which is Microsoft’s IIS.
The default minimum transfer rate in IIS is 240 bytes/sec. Even though IIS no-
tationally imposes a minimum rate-based limit, internally this is converted to
a time-based limit. Specifically, IIS divides the response size by the minimum
transfer rate with the result used to arm a timer. If the timer fires and the
client has not fully consumed the response, IIS will close the connection [8].
This mechanism is efficient in that progress is checked only once. However, an
attacker can leverage this mechanism by finding a large object and retrieving it
at a low rate—which IIS will only detect after a long time.

To measure the response timeout, we open a connection to a Web server, send
a request for the home page, and consume the response at a low rate. Given the
IIS’s default rate limit of 240 bytes/sec, in our experiments we consume the
response at a lower rate of 100 bytes/sec. A site that delivers the entire response
at this rate is assumed to not impose a limit, otherwise a limit is in place. This
experiment involves 494 high volume sites and 15,034 regular sites. The table in
Figure 2 shows our results. We find that less than 25% of sites—regardless of
group—impose a limit on the transfer rate. Furthermore, 59% of the regular sites
that impose limits identify themselves as IIS, as expected. However, only 33% of
the high-volume sites that impose response time limits identify themselves as IIS
servers. There could be a myriad reasons that can explain the remaining sites,
including IIS servers obscuring their identities, servers behind transparent TCP
proxies that keep their own timers, custom built servers, intrusion prevention

systems impacting communication, etc. Interestingly, as shown in the last column
of the table, there is a small percentage of sites that identify themselves as IIS
servers and yet do not impose any response timeout. This could be caused by
site administrators disabling the response timeout or transparent TCP proxies
that obscure the actual Web server behavior.

We now consider the time needed by normal Web clients to consume re-
sponses. This time is determined mainly by the round trip time for small re-
sponses and by the available end-to-end bandwidth for large responses. There-
fore, while a low limit on the transfer rate such as IIS’s 240 byte/sec might be
appropriate for small responses (although whether one could tighten this limit
at times of stress is an interesting question for future work), we aim at assess-
ing whether such a low limit is appropriate for large responses, especially that
attacks against this timeout are particularly dangerous for large responses. To
assess that, we consider responses in the ICSI trace with size of at least 50 KB.
We approximate the end-to-end transfer rate as the response size divided by
the time between the first and last packet of the response. Figure 3 presents
the distribution of response transfer rates. The figure shows that nearly 99% of
the responses (whether the response was originated from an ISCI server or an
external server) were transferred at over 10 Kbps (that is 1,250 bytes/second
compared to the default of 240 bytes/second of IIS).

HTTP Keep-Alive: We next turn to persistent HTTP, which attempts to
make Web transfers efficient by keeping TCP connections open for more than one
HTTP request. The HTTP keep-alive timeout is defined as the time the server
will keep an idle connection open after successfully satisfying all requests. We
start by issuing requests for the home pages of the Web sites using nc6. We then
measure the time between receiving the last packet of the response and receiving
a FIN or RST from the server. This experiment involves 490 high volume and
14,928 regular sites Figure 1(d) shows the distribution of these times. The
problem of finding a cut-off point before which we assume servers do not maintain
persistent connections is relatively easy in this figure. Indeed, selecting the cut-
off point at 100ms or at 1 second produces similar results. Roughly, 65% of the
high volume sites and 76% of the regular sites maintain persistent connections.
These numbers indicate that the overall support of persistent connections has
not changed appreciably since Fall of 2000 [10]. Surprisingly, regular sites seem
to have shorter keep-alive timeouts than high volume sites. For instance, nearly
61% of the high volume sites that use persistent connections use a timeout over
30s while it is roughly 32% for the regular sites. We speculate that this is due
to the higher incidence of Apache with default configuration of 15s keep-alive
timeout among regular sites than it is among high volume sites.

Timeout Adaption: To get a preliminary intuition as to whether Web sites
currently vary their timeouts over time, we performed periodic probing of the
request timeout for the high volume sites. Specifically, we probed each site every
12 minutes for a week. We define a site as having an adaptive timeout if at least
m% of the measurements to the server are at least m% different from the mean
timeout to the given site (i.e., m is an experimental parameter). This procedure

40

Potentially adapting sites (%) —s— without adaptive timeout
w B B with adaptive timeout ———--
L 30 s 100
£ 8
5 25 @ 80
S 20 € 60
g 15 g 40
s 10 =
2
o s < 0
o o -
0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 90100
Variability level (%) Attempt number
Fig. 4. Variability of request timeouts. Fig. 5. Performance of adaptive timeouts.

is clearly not conclusive given that we may simply not have observed adaption
for a particular site because there was no reason for the site to adapt during
our measurements. Further, a timeout change could be caused by reasons other
than adaptability such as different requests arriving at different servers with
various timeout configurations or a server crash during a connection lifetime.
The percentage of sites found to be using an adaptive timeout as a function
of m is shown in Figure 4. We find that roughly 3% of the sites tested exhibit
behavior suggestive of timer adaption, as shown by the range of m values for
which this finding holds.

Summary: our measurements indicate that normal web clients perform their
activities quickly as compared to the time allowed by Web servers. ! Long time-
outs leave a server vulnerable to claim-and-hold attacks. These attacks have
been reported in practice [7,6], and we will demonstrate a simple attack uti-
lizing these timeouts in the next section. Short of complex external intrusion
detection mechanisms, a naive way to counter these attacks would be to in-
crease the number of allowable concurrent connection slots at the server. But
this may cause performance degradation in case the slots are consumed by legit-
imate connections, since the number of concurrent connections is driven by the
server capacity. Furthermore, although our measurements show that current long
timeouts are generally unneeded by normal Web clients, slashing them blindly
would run counter to the general networking tenet of allowing liberal client be-
haviors. Therefore, we suggest slashing these timeouts only at the time of stress.?

! While clients in our trace are generally well-connected, the characteristics of dial-
up connections should not affect this finding. Indeed, dial-up connections offer a
last-mile bandwidth of 30-40 Kbps—well within the 99*" percentile we observe in
our trace and also well above the 240 bytes/sec IIS requires. Furthermore, the few
hundreds of milliseconds these connections add still leave the time needed by these
connections to perform activities much shorter than allowed by Web servers.

One can imagine applications, as possible with AJAX, where HTTP connections
could have long idle periods. Our trace accounts for all HT'TP interactions including
AJAX, and as discussed, did not encounter such connections in large numbers. We
note that the content provider controls both ends of the connection in these applica-
tions. Therefore, these connections could either be treated differently by the server
or the applications can be written to handle possible interruptions gracefully.

While our measurements suggest that a small fraction of sites might already be
varying their timeouts, popular Web servers such as Apache and IIS do not offer
such mechanisms—which would limit the spread use of these mechanisms.

4 Adaptive Timeouts

We now present our implementation of an adaptive timeout mechanism and
demonstrate its usefulness. Our implementation involves changes to the Linux
TCP stack and Apache web server (version 2.2.11). The kernel extension allows
an application to specify a target response transfer rate and to toggle the kernel
between a conservative (current behavior) and aggressive (close any connection
below the target transfer rate) modes. The kernel monitors the transfer rate of
connections only during periods of non-empty TCP send queue to avoid penal-
izing a client for the time the server has no data to send. Our modified Apache
sets the target transfer rate parameter (500 bytes/second in our experiments)
and monitors the connection slots. Once allocated slots reach a certain level
(90% of all slots in our experiments), it (a) reduces its application timeout from
its current default of 300s to 3s and (b) toggles the kernel into the aggressive
mode. While a complete implementation of our framework would consider all
timeouts, our current implementation covers application timeout, TCP timeout,
and response timeout.

To demonstrate how such a simple mechanism can protect sites from claim-
and-hold attacks, we set up a Web site with Linux OS and Apache Web server,
both using out-of-the box configurations except with Apache configured to allow
a higher number of concurrent connections (256 vs. default 150). We then set up
a machine that launches an attack targeting the response timeout. In particular,
it attempts to keep 300 concurrent connections by requesting a 100 KB file and
consuming it at a rate of 200-300 bytes/second on each of these connections.
Another machine simulates legitimate traffic by probing the server once every
10 seconds by opening 100 connections to the server with a 5 second timeout
period (i.e., a request fails if not satisfied within 5 seconds). This process repeats
100 times. The solid line on Figure 5 shows the results. The attack starts around
probe number five. After a short delay (due to Apache’s gradual forking of
new processes) the attacking host is able to hold all the connection slots and
thus completely deny the service to legitimate connections. Further, the attacker
accomplishes this at the cost of consuming less than 1Mbps (300 connections with
at most 300 bytes/s each) of its own bandwidth—available to a single average
residential DSL user let alone a botnet. The dashed line in Figure 5 shows the
results of repeating the attack on our modified platform. As seen, our simple
mechanism allows the server to cope with the attack load without impinging on
legitimate connections by quickly terminating attack connections which leaves
open slots for legitimate traffic. Our intent in this experiment is to show that a
simple system can perform well. We consider a full study of a range of decision
heuristics out of scope for this paper. Further, such decisions can be a policy
matter and therefore cannot be entirely evaluated on purely technical grounds.

5 Conclusions

In this paper we study Internet timeouts from two perspectives. We first probe
the timeout settings in two sets of operational Web sites (high volume and regular
sites). We then study the characteristics of normal Web activity by analyzing
passively captured Web traffic. The major finding from these two measurements
is that there is a significant mismatch between the time normal Web transactions
take and that which Web servers allow for these transactions. While this reflects a
conservativeness on the Web server’s part it also opens a window of vulnerability
to claim-and-hold DoS attacks whereby an attacker claims a large fraction of
connection slots from the server and prevents their usage for legitimate clients.

Rather than reducing servers’ timeouts to match normal Web activity—a
solution that could reduce the tolerance of the server to legitimate activity—we
suggest a dynamic mechanism that is based on continuous measurements of both
connection progress and resource contention on the server. A decision to reduce
the timeouts and drop connections accomplishing little or no useful work is only
taken when the server becomes resource constrained. We demonstrate how this
simple mechanism can protect Web servers. Our mechanism is implemented in
a popular open source Web server and is available for download [1].

References

1. Project Downloads. http://vorlon.case.edu/~zma/timeout_downloads/.
2. 7. Al-Qudah, S. Lee, M. Rabinovich, O. Spatscheck, and J. V. der Merwe. Anycast-
aware transport for content delivery networks. In 18th International World Wide
Web Conference, pages 301-301, April 2009.
Alexa The Web Information Company. http://www.alexa.com/.
Apache HTTP server - Security tips. http://httpd.apache.org/docs/trunk/misc/security_tips.html.
5. P. Barford and M. Crovella. A performance evaluation of hyper text transfer
protocols. In SIGMETRICS, pages 188—-197, 1999.
6. objectmix.com/apache/672969-re-need-help-fighting-dos-attack-apache.html.
7. http://www.webhostingtalk.com/showthread.php?t=645132.
8. Microsoft TechNet Library. http://technet.microsoft.com/en-
us/library /cc775498.aspx.
9. Keynote. http://www.keynote.com/.
10. B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol compliance on the web: A
longitudinal study. In USENIX Symp. on Internet Technologies and Sys., 2001.
11. nc6 - network swiss army knife. http://linux.die.net/man/1/nc6.
12. K. Park and V. S. Pai. Connection conditioning: architecture-independent support
for simple, robust servers. In USENIX NSDI, 2006.
13. X. Qie, R. Pang, and L. Peterson. Defensive programming: using an annotation
toolkit to build DoS-resistant software. SIGOPS Oper. Syst. Rev., 36(SI), 2002.
14. M. Rabinovich and H. Wang. DHTTP: An efficient and cache-friendly transfer
protocol for web traffic. In INFOCOM, pages 1597-1606, 2001.
15. SEOBOOK.com. http://tools.seobook.com/link-harvester/.
16. TCP protocol - Linux man page. http://linux.die.net/man/7/tcp.

- w

