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Abstract

This paper presents observations of traffic to and from acodat
World-Wide Web server over the course a year and a half. Tis p
per presents a longitudinal look at various network patiperies,
as well as the implementation status of various protocoloopt
and mechanisms. In particular, this paper considers howd#/or
Wide Web clients utilize TCP connections to transfer wekagdat
the deployment of various TCP and HTTP options; the range of
round-trip times observed in the network; packet sizes deed
WWW transfers; the implications of the measured advertigied
dow sizes; and the impact of using larger initial congestmdow
sizes. These properties/mechanisms and their implicatios ex-
plored. An additional goal of this paper is to provide infation

to help researchers better simulate and emulate realesticonks.

1 Introduction

This paper presents observations of traffic to and from dqopart
lar World-Wide Web (WWW) server over the course of 17 months.
This paper has several goals. First, we attempt to evalbatper-
formance impact and the deployment status of several fesatfr
network stacks as used in the Internet today. Second, waatite
to determine what protocol extensions or features mightseéuli
in the future, based on the observed traffic. Finally, we hihge
data presented in this paper will be useful for researchesigding
simulations of Internet traffic in answering key questiobew the
values of key parameters (e.g., What is a realistic valud @P’'s
advertised window for web clients?).

World-Wide Web traffic uses the HyperText Transfer Protocol
(HTTP) [FGM'97] application protocol to transfer data from web
servers to user’'s browsers. HTTP uses the TransmissiorrdCont
Protocol (TCP) [Pos81] as its transport protocol to enselialsle
delivery (to the extent possible [SP00]). The web server tve o

nasa. gov

system or the network on which the server is located. Seaéeat
native measurement methodologies could have been usedl- as f
lows.

e We could have monitored the WWW traffic traversing a link
closer to the center of the network. This would have pro-
duced traces of a large number of network paths with many
endpoints. However, tracing network connections in the-mid
dle of the network may make the analysis more difficult due
to the vantage point of the trace (for instance, determittieg
initial congestion window is more difficult). In additionps
many variables are at play in such traces that direct, mean-
ingful comparisons of the traffic are difficult. However, ghi
sort of measurement study often produces many useful sesult
(e.g., on the sizes of web transfers [TMW97]).

e We could have conducted an active measurement study by
tracing web connections from our lab to various WWW
servers. Such a study shares some of the problems with the
study presented in this paper. For instance, all transfenes
a portion of the network path, as well as a web client. This
type of study is quite useful for taking certain measurement
across a wide range of web servers (e.g., checking for web
server conformance with the HTTP standard [KA99]).

e Finally, we could have used a mesh of hosts (such as NIMI
[PMAM98, PAOQ]) to make active measurements. This mit-
igates some of the problems with taking measurements from
a single client machine or a single server. However, it is not
clear that such a mesh of hosts captures the true conngctivit
of a wide range of Internet web clients. Nor does such a mesh
enable the measurement of a range of client network stacks
used in the majority of traffic on the Internet.

While we may have been able to adapt one of the above ap-

served is at NASAs Glenn Research Center (GRC). The server proaches to our needs we feel that the strengths of our agproa

provides unofficial web pages for several Internet Engingefask
Force (IETF) working groups (PILC, TCP-IMPL, TCPSAT). Tkes
pages provide mailing list archives, meeting minutes, tdtatu-
ments, etc. to the community. The web server is also usedwy se
eral researchers for personal web pages, as well as sn@écpr
specific pages.

This study is mainly focused on the characteristics of the
client's networking stacks and the network paths between th
clients and our web server. Therefore, our results couldidsed
by some feature of the server we chose, the underlying opgrat

*This paper appears in ACM Computer Communication Revies)3@ctober
2000.

are ample and provided a rich variety of data about web dlitat
would not necessarily be available with other methodokgiehe
approach we chose does have several benefits. For instaace, w
were able to tweak the configuration of the web server and mea-
sure the effects (e.g., using a larger initial congestiondew, as
outlined in section 8). Also, our approach allows for the suze-
ment of properties of a large number of real clients (e.g.iclvh
TCP options are supported in their stacks). While our apros

not without flaw, we believe (as outlined in [AF99]) there sper-

fect way to assess Internet behavior and therefore belatehis
survey can provide valuable insight into the performandb®fveb

as seen from the user’s perspective (since all traffic stuclenes
from web browsing as it happens “in the wild”). Throughousth



study we have attempted to measure only properties whichaire
subject to large biases due to the use of observations frdynaon
single web server and note any biases we believe to be in the da
presented. An item for future work will be to take such datarfr

a number of web servers to gain a richer understanding of more
attributes of client behavior.

The rest of this paper is organized as follows. Section 2 out-
lines our data collection techniques and discusses sorimjorary
analysis of the data. Section 3 outlines our measuremetatfidn
web clients utilize TCP connections to transfer web objeStsc-
tion 4 discusses the deployment status of various TCP aptis
found in our data. Section 5 reports the round-trip timesiébin
our data. Section 6 discusses the distribution of packessaund
in our datasets. Section 7 reports our observations abewtdber-
tised window used by web clients and the possible impactsethe
window sizes have on performance. Section 8 gives an asaysi
our web server’s use of larger initial congestion windowisialy,
section 9 gives our conclusions and some future work in tigéa.a

2 Preliminary Analysis

2.1 Data Collection

The data presented in this paper was collected between Ni@rem
6, 1998 and March 24, 2000. For the large majority of our data c
lection period the server ran the NetBSD 1.3 operating sys@n
February 14, 2000, however, the operating system was updtad
NetBSD 1.4. Therefore, roughly the last month of data prieskn
used a slightly different network stack. We do not believis th-
fluences the results presented in this paper because themiil#? i
mentation was not drastically changed between the two omssi
The web server used during the entire data collection pewiasl
Apache 1.2.6.

We used two main sources of information for the data predente
in this paper. The first set of data used, denafedonsists of the

[ Category
Total Hits/Cnns
Local Hits/Cnns
WAN Hits/Cnns
Zero Length
Valid Hits/Cnns

| £ ]
767,589
20,172
747,417
21,536
725,881

P__|
751,542
45,516
706,026
23,189
682,837

Table 1: Web server Hits

Therefore, before the data analysis is conducted we rembiviésa
received by the server from hosts on the GRC network. As slimwn
the table, the number of local hits is relatively small. Nbte num-
ber of local hits is greater in tHe dataset when compared to the
dataset due to the lenient filter usedtopdump The filter captured
all traffic to or from port 80. Therefore, roughly 25,000 rand
web transfers that occurred on the web server's network adt h
nothing to do with the web server in question were captured. W
additionally remove any connections that did not transtdeast
1 byte of data in each direction. Such connections indicamees
sort of failure in the client machine, the server host or teevork
between the two endpoints. While it is important to note thath
connections do exist, we will not analyze them further. Effane,
unless otherwise indicated, the remainder of this papdudes
analysis of only the valid wide-area hits. Finally, we ndtattthe
valid hits came from 50,194 distinct IP addresses. We exihéxt
indicates that the hits cross a wide-variety of network paéven
though all connections share a portion of the path to the weles

In several of the following sections the analysis could lag si
nificantly altered if a single host (or small group of hostgrev
involved in a large portion of the connections we examineeréh
fore, we created a second dataset from7hdataset by removing
any connection to a host that was involved in over 1% of the con
nections in theP dataset. We denote this second datdetWe

Apache generated logs of each request made to the server. Théemoved 185,005 connections involving 11 IP addressesttirob

second source of data is packet-level traces of the welcttaffind
from the server, denote@. The packet-level traces were taken with
tcpdump[JLM89] on the web server itself. We captured the first
100 bytes of 610,146,959 packets, witpdumpreporting another
1,799 packets, or roughly 0.003%, dropped by the kérng&Ve
consider this an acceptably low amount of kernel packet tluss
we did not attempt to correlate the kernel packet lossesspitiific
connections in the trace file, as any effects of kernel dropsils
have a very negligible, if any, effect on our results.

We begin our investigation by examining the overall traftit-p
tern of the web server and removing data from our analysis for
various reasons. The traffic patterns are unique to thecpéati
web server we observed and therefore we cannot make anyafjener
claims from the patterns observed. This section is provakedn
explanation of the datasets used and as background for dhesen
outlined in the remaining sections.

Most of the analysis in this section is done in terms of web
server hits. The number of hits is straightforward to obfaim
the £ dataset. However, without capturing the full packet corsten
(which we did not) and doing a good bit of analysis we cannot
directly get the number of hits from the dataset. So, for th@
dataset we report the number of TCP connections traced.

Table 1 shows the number of server hits (or connections) as
reported by each data set. For the purposes of this papereve ar
only interested in the web hits that traverse the wide-amearmet.

10ne of our trace files, consisting of 3,578,781 packetsdatib report the number
of kernel drops (probably due t@pdumpbeing shutdown improperly). However,
based on the likelihood of kernel drops in the other traces,de not believe this
presents a significant problem for the data analysis.

theP’ dataset consisting of 497,832 TCP connections.

We used a slightly modified version tafptrace5.2.2b [Ost97]
to analyze theP (andP’) dataset. The changes madedptrace
were to make the output easier to analyze or to make the teol re
port a particular piece of information that the standardsizer of
the program does not report. We will note any additions made t
tcptraceto do the analysis contained in the remainder of the paper.
The output fronmtcptrace as well as the data from sétis further
analyzed using several short Perl and Bourne shell scripts.

2.2 Overall Traffic Patterns

Figure 1 illustrates the server activity as a function ofdinThe
number of hits reported from thé dataset is greater than the num-
ber of TCP connections in th@ dataset. This is explored in greater
depth in section 3. As shown, the datasets are nearly idéritic
the number of bytes transmitted by the server. Both plots/siro
increase in traffic over the observation period. This isljikkie to
periodic addition of content to the server.

The server’s transfer sizes are dictated by the contentadlai
on the particular server we observed. For instance, theanedk
sponse size observed on our server is roughly two-thirdsitesof
the median response size reported in [Mah97], while the mean
sponse size in our dataset is more than twice the value ezbbyt
Mah's data. This illustrates that response sizes could behrdii-
ferent if another server was observed. However, they peosisne
context for the results in the following sections. Figuré@wss the
mean and median transfer sizes over time. As illustratedyitan
transfer size is an order of magnitude greater than the meitia.
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Figure 1: Web server activity over time.
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Figure 2: Web transfer sizes over time.
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Figure 3: Distribution of transfer sizes for March 2000.

Meanwhile, the median transfer size is on the order of 1-kqiac
Figure 3 shows the distribution of transfer sizes for thé iasnth
of the dataset. As shown, over 90% of the transfer sizes ase le
than the mean transfer size reported in the previous figuiso A
note that nearly 30% of the transfers are between 100-2G&s byt
long. These transfers mostly consist of HTTP headers and sho
HTML pages that indicate errors (file not found, forbiddete, )e
While we do not delve into the reasons behind some of the
spikes and dips in the above plots because we expect that such
phenomena are a property of this particular server and itteog,
rather than based on some general network behavior. Hoyfaver
ture studies should consider a more diverse set of web seatar
to verify this assumption.

3 HTTP Connection Usage

HTTP utilizes TCP connections in several different waysmg8o
HTTP browsers usparallel TCP connections to transfer the vari-
ous objects that make up a web page (HTML code, graphic3, etc.
Using this method the browser opens several connectionseat t
same time and requests different objects on each connedion
other method that is supported in the HTTP protocol is foientl
and server to uspersistenfTCP connections [Mog95]. Using this
method, a TCP connection can be used to transfer multipleolyeb
jects. In this section we attempt to quantify the degree ticlvpar-
allel and persistent connections are being utilized tosfeandata
from our web server. Our web server supports HTTP/1.1 dersis
connections, as well as pipelining. However, this does roes-
sarily mean that web clients will request these features.

The use of HTTP connections can have performance, conges-
tion control and resource utilization implications. Fostance,
using persistent connections with the pipelining optios baen
shown to improve web transfer speeds over satellite channel
[KAGTO00]. Meanwhile, using parallel connections can haveg-
ative impact on end-to-end congestion control [BP8, FF99].
Specifically, a single loss causes one TCP connection toceedu
cwndby half. However, a single loss within a group §fconnec-
tions causes the aggregatendto by reduced byl /2N yielding
a more aggressive congestion control response. Finakly, \web
servers have to manage system resources effectively. §anice,

a web server may not want to keep an idle, persistent commmecti



around as the connection requires memory and may slow ¢ontro ticular client considered. In other words, the far rightitidoar on

block lookups.
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Figure 4: Percent difference betwegrreported hits and number
of TCP connections if? dataset.

the chart includes only data from clients that took part iteast

7 TCP connections in tHB’ dataset. Thg-axis shows the percent-
age of clients using a particular DOP. The first thing to neténat
nearly all connections used a DOP of 4 or fewer TCP connextion
(although, we observed DOPs as high as 25 conned)ioAs il-
lustrated in the figure, the DOP increases as the numbentsfes

to a given client increases. This may indicate that clierd&ing a
small number of connections to the server (e.g., 2—3 coromsjt
may do so at wide intervals and thus cannot make use of paralle
connections. However, as clients transfer more objectsikai-

hood of using multiple parallel connections increases, aentte

we note an increase in the percentage of connections usii@fa D
of more than 1 connection. From figure 5 we can see that approx-
imately two-thirds of web clients use parallel TCP conrmtdito
download web pages, with the most popular DOP being 2 connec-
tions.

We found that quantifying the use of persistent and parallel
HTTP connections was difficult with our datasets. The anglys
above is tentative and all of our questions could not be areive
conclusively by our data. We are currently modifying our web
server’s logging routines to include more information, rstiat fu-
ture analysis will be more straightforward and more aceur@ne

Figure 4 shows the percent difference between the number of particular addition to the logs will be a uniquennection identifier

hits reported in theC dataset and the number of TCP connections

found in the? dataset. The figure indicates that persistent connec-

tions are being used to transfer multiple web objects on &nees
TCP connection. While noisy the figure seems to indicatettiet
use of persistent connections is reducing over time. Howewk
ditional data from a diverse set of web servers is needed ke ma
stronger conclusion.

Next we discuss the use of parallel HTTP connections. We
define thedegree of parallelisnDOP) as the maximum number of
TCP connections open at the same time between the web sadrer a
a particular client over the course of our observation eriGur
server communicated with 50,194 clients (IP addresse@glour
observation period. Of these, 27,954 clients56%) made only a
single connection with our server. These have been remowed f
further analysis in this section as there is no chance foclteet to

use parallel TCP connections.
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Figure 5: Use of parallel HTTP transfers.

Figure 5 shows the use of parallel TCP connections as a func-

tion of the least number of transfers between the server grad-a

(CID) that will be logged with each object request. The CIDI wi
allow for correlation of exactly which connections weregistent
and which were utilized in parallel.

4 Use of TCP Options

As TCP has evolved, several options have been added to the pro
tocol to make it perform better in certain environments. gbal

of the analysis presented in this section is to assess theydegnt
status of various TCP options. This serves two purposest, Rir
gives network engineers a good idea about the features thgype
able to expect from end hosts in the Internet. In additiois,dhal-

ysis sheds light on what options researchers may want tdatenu
when investigating TCP.

Note that the discussion of TCP's maximum segment size
(MSS) option is deferred until section 6.

The features supported on a particular connection in oaseat
are likely to be largely determined by what operating systeen
user is running. [Mah99] provides a list of which features suip-
ported in current operating systems. Therefore, the datsepted
in this paper may also indicate the proportion of hosts usarg
ous operating systems or how up-to-date user’s OS verskepis
While interesting, we do not delve into this topic furthertins
paper.

In this section we analyze several TCP options by looking at
the percentage of connections and bytes transmitted byetirers
to clients that support the given option. The number of birss-
mitted using a given option may be somewhat biased by theoize
content provided by our web server. Likewise, the percentsg
connections may also be biased by the number of hits reqtored
load the web pages on our server (which could be different tie
make-up of pages on different servers). In addition, if gdarum-
ber of connections come from a relatively small number aras,
the P dataset could be biased. Hence, we also measure the the per-
centage of hosts using the given option which should not &scli
by our particular web server. Our results could be biasetiaf t

2The web server logs indicate that the use of a large numbearaflpl TCP con-
nection is usually caused by a client harvesting a large eurobe-mail messages
from our web archives of various mailing lists.



sample of clients found in our dataset is not representatil@v-
ever, our dataset is large enough that we do not believedHis t
the case.

4.1 High Performance Options

We first focus our attention on the options added to TCP by
RFC 1323 [JBB92] for high performance over network pathsiwit
large amounts of bandwidth and/or long delays. RFC 1323chdde
the window scaling and timestamp options. The window sgalin
option is used during the three-way handshake that startsTEaP
connection. Each host announces a scale factor. The semakitg
right shifts the desired advertised window by the scaleofautfore
transmitting the advertised window. The receiving host thién

left shift the advertised window in all incoming packets bg scale
factor before using the advertised window size. This allavz$
connections to utilize an advertised window of more thar6th&B
provided by the original TCP specification [Pos81], whichrés
quired for operation over long, high-bandwidth networkBg92].
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Figure 6: Use of window scaling option over time.

To gain an idea about the deployment of the window scaling
option we analyzed th@ dataset to determine prevalence of the
option. Figure 6 shows the use of the window scaling opticgr ov
the measurement period. As shown in the plot, the percemthge
hosts supporting the window scaling option was fairly stadter
the measurement period at 15-20%. The percentage of commect
using window scaling varies widely over the survey. Howeder-
ing the last three months of the survey the number of cormesti
supporting window scaling rose sharply to roughly 50%. Siwe
do not see similar percentages for the number of hosts stifpgor
window scaling the plot indicates that a relatively smalhnioer
of hosts have likely upgraded to support window scaling amed a
responsible for a disproportionate number of connectitvesver-
ified this by analyzing the trace files and noting that the mitgjo
of the connections using window scaling came from two ci¢R
addresses) that recently started using window scalingalliirthe
number of bytes transmitted by the server using the windahrsg
option varied somewhat during the measurement period.

tised window sizes found in th® dataset are explored further in
section 7.

RFC 1323 also introduces the timestamp option to be used in
conjunction with window scaling. Since a TCP with the window
scaling option can cycle through the sequence space prbyige
TCP much faster than when the advertised window is limited to
64 KB, TCP needs additional protection against passing atd
the application. The timestamp option calls for the sendéngert
a timestamp in each packet that is transmitted. In additi@most
recent timestamp received from the remote host is also ecfide
timestamp option has two purposes. First, timestamps & ins
conjunction with window scaling in thErotect Against Wrapped
SequencefPAWS) algorithm. Second, timestamps are used to ob-
tain better and more frequent RTT measurements (althowgh ih
recent evidence that this use of timestamps is not partigulaeful
[AP99]).
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Figure 7: Use of timestamp option over time.

Figure 7 shows the prevalence of the timestamp option in web
clients. The history of timestamp option use is similar @&t b the
window scale option. The percentage of connections usinggti
tamps varies widely and becomes quite large towards thefemd o
dataset. One of the two hosts that made the majority of theemn
tions to the server and started to support window scalingdemt
months (as discussed above) also started using timestanfis.
explains the increase in connections supporting the tangstop-
tion towards the end of the dataset. As with the window sgadjo+
tion, it appears as though the percentage of hosts usingtames
is roughly stable (or slowly increasing) throughout theestiation
period.

Finally, we note that in total, 11% of the web clients obsdrve
in our survey used both timestamps and window scaling, vemite
other 2.8% used only timestamps and 5.7% used only windolw sca
ing.

4.2 Selective Acknowledgments

Next we focus on the selective acknowledgment (SACK) opdien
fined in RFC 2018 [MMFR96]. SACKs are used to improve upon

Next, we analyzed the scale factor advertised by the web TCP’s original method of informing the sender about which-se

clients. We found that just over 84% of the clients advedtiae
scale factor of zero. This indicates that they are willingstale
their peer’s (the server’s) advertised window, but woulth®scal-
ing their own advertised window. Nearly all of the remainhasts
advertised a scale factor of one, however, we observed fecates
as high as 12 (in two hosts). Note the implications of the edve

ments have arrived at the receiver. As defined in [Pos81], U5&R
a cumulative acknowledgment that informs the sender of$igm-
order byte of data that has arrived at the receiver. UsingteK
option, the receiver can inform the sender about arbitregyrents
that have been received, regardless of the order in whighahe
rived. This allows the sender’s TCP to employ more advanass |
recovery and congestion control algorithms [FF96].



0.4 : —%= required to make such a claim.) Since the distribution of KT
c Bytes —— 5 not concentrated around the minimum RTT for a given dataset w
035 | onnections-—x E R . . .
HOSLS --x- believe that the shared portion of the network path is nobssly
biasing our measurements.

The second form of bias is frortptraces use of Karn's al-
gorithm [KP87] to take the RTT measurements. If a particular
segment was needlessly retransmitted we do not observeTthe R
associated with the original data packet and its correspgrat-
knowledgment. [AP99] shows that the standard BSD retrasismi
sion timeout (RTO) mechanism rarely causes needless setisn
sions. However, [BPS99] shows that reordering is not necigs
a rare occurrence in the Internet. Reordering can cause ®CP t
retransmit segments prematurely via the fast retransigdrishm
0 : : [Jac88]. However, we do not believe that such an event nacess

Dec/1998 May/1999  OcU1999  Feb/2000 ily triggers a change in RTT thatptracemisses by ignoring the
ambiguous RTT sample.
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Figure 8 shows the prevalence of the SACK option in the 0.8 1

dataset. Note that our web server does not support SACKeTher 07t i

fore, the percentages reported are the number of conne¢tiosts, o6l |
bytes) that would have used selective acknowledgments hed t W

server supported them. In other words, the number of cligratis 505 [/ 1

advertised “SACK permitted” in the three-way handshake. As 041l i
shown, the number of clients supporting SACK is steadilyagro /

ing from roughly 8% at the end of 1998 to nearly 40% by March, 03

2000. The number of connections and bytes utilizing SACKs | 0.2/ 1
ging behind the percentage of hosts supporting the optibis if- 0.1t/ All Connections 1
dicates that a number of the web crawlers that hit our seragym o ‘ ‘ Sanitized ——
times per month do not support the SACK option yet. We believe 0 500 1000 1500 2000
the SACK deployment shown in this plot is consistent withriae RTT (ms)

ommendation made in [AF99] that SACK should be a part of all

TCP investigations, as SACK is clearly steadily being dggtbin Figure 9: Distribution of average RTTS.

the Internet.
Figure 9 shows the distribution of average RTTs for each con-

5 Round-Trip Times nection in theP and P’ datasets. Note that the RTT reported is
composed of not only the time required for the data packetand

This section focuses on examining the distribution of rotrm responding ACK to traverse the network path, but also psiogs

times (RTT) between the server and the clients. We trggidaceto time at the receiver. For instance, a client using delayedK#\C

produce the average and median RTT for each connection iR the [Bra89, APS99] may refrain from transmitting an ACK for up to
dataset. The tool takes an RTT sample for each non-retrétesimi 500 ms, which would inflate the RTT. The delayed ACK mech-
segment and the corresponding ACK. Our purpose in investiga anism could, therefore, skew the average RTT reported. Many

the distribution of RTTs is twofold. First, such data praagdre- implementations use a 200 ms heartbeat timer to triggeyeela
searchers with realistic RTTs to build into their simulaso As ACKs. This causes a 100 ms delay on average when transmitting
suggested in [PF97, AF99] a range of parameters should ik use timer-based ACKs. We expect this effect to be small as thestea

in simulating networks. The data presented in this sectioniges size increases and we get a larger number of RTT samples. How-

some guidance on what a reasonable range of RTTs might look ever, most of our transfers are short and therefore the eelaZK
like. The second goal is to assess the degree that saving IRTTs timer may be skewing our data a bit, however quantifying &ess
transfers is important (i.e., if the RTT is negligible anchcat be is difficult with out dataset.

detected by a user maybe we do not need to spend time trying to  While both distributions shown in the figure have the same ba-
squeeze every possible extraneous RTT out of transportpid a  sic shape we note that the connections infhelataset have longer

cation layer protocols). RTTs than when considering all the connection$in This indi-
There are two instances of bias that may be introduced into ou cates that the connections removed frénto yield the?’ dataset
measurements. First, all transfers between the serverhencket were skewing the distribution towards smaller RTTs. Thet hos

mote clients share a portion of the network path. Thereffire, names of the IP addresses not included in fHedataset indi-
that portion of the path is congested or imposes a large delay  cate that the clients are web crawlers, surveying the cooteour
measurements will all be biased by the location of the sefké&r server for search engines. We expect such clients to enjogl go
note that we observed very few (less than 1%) RTT samplesrunde connectivity to the Internet, explaining why they have galg

15 ms in theP dataset. In thé’ dataset the minimum RTT appears lower RTTs than the rest of the clients. As indicated in the fig
to be approximately 40 ms. This indicates the the locatiothef ure, approximately 85% of the RTTs are between 15-500 ms. Thi
server generally imposes a modest minimum RTT on the samplesgives a nice range of RTT values for researchers constguictiar-
obtained. (Note: This may be true afiy server, but more data is  networking simulations.
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Figure 10: Comparison of the minimum and median RTTs a con-
nection observes.

Figure 10 provides a comparison of the minimum RTT ob-
served and the median RTT for each connection. 3Fhgis is the
minimum RTT in milliseconds, while thg-axis is the median RTT
for the same connection as a multiple of the minimum RTT. The
data from theP’ dataset is shown in this plot. To highlight the
behavior of the vast majority of the connections #hexis is lim-
ited to 2 second minimum RTTs, as in the last plot. While our
dataset shows median RTTs as high as 200 times the obsemed mi
imum RTT we limited they-axis to a factor of 20 to better illustrate
the behavior of the vast majority of the connections in thaskzt.
The median RTT was within a factor of 2 of the minimum RTT in
slightly over 90% of the connections when considering afire-
tions in theP’ dataset. However, the plot illustrates that for shorter
RTTs the variability within connections is sometimes quitege.
(We found one connection with a median RTT of 200 times the
minimum RTT!) One explanation for this decrease in varigbds
the RTT grows is the use of a network link with a high delay (e.g
a satellite channel) that has the effect of drowning out tréatbil-
ity in the rest of the network path. However, this cannot béhier
investigated without additional data.

Another note about this data is that the minimum RTT may
come from a short segment (e.g., a SYN). On slow links thestran
mission time of a short packet can be significantly shorten tihat
of a full-sized data segment, which could explain some of/tre
ability shown in the figure. However, most TCP implementadio
we are aware of do not take packet size into account when measu
ing RTTs. Therefore, we believe this figure presents an ateur
view of the network from the perspective of a TCP data sender.

We also note that as shown in section 2 the majority of thestran
fers from our web server are very short. Together with fig@réhis
indicates that RTTs can change significantly on short tinadesc
over some network paths. A possible area of future work isto a
sess the stationarity of RTTs in the network (much as has thees
for routes, loss rate and throughput [ZPS00]).

We now turn our attention to the second goal of this section.

sion timeouts [ABF0Q] can be important changes. As inditéte
the data, saving even several RTTs may represent a sigtifican
provement for users.

An additional note about the RTT distribution is that slight
over 2% of the connections in our dataset observed at lea@st on
RTT over 3 seconds. Furthermore, slightly more than 1% of the
connections averaged RTTs of over 3 seconds. This inditades
TCP’s minimum initial retransmission timeout (RTO) of 3 seds
as specified in [Bra89, PA0O] continues to be a conservativee.

6 Packet Sizes

Next we analyze the packet sizes used by the server wherferans
ing data to the clients in our dataset. We will use this ansls
draw conclusions in the next two sections. In addition, usided-
ing the packet sizes used in real networks will enable rebeas
to simulate wisely.
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Figure 11: Distribution of packet sizes.

Figure 11 shows the distributions of the maximum segmeet siz
(MSS) requested by the clients in the SYN exchange, thedarge
packet size used by a connection and the transfer size foPthe
dataset. As shown, nearly 90% of connections advertised$8 M
of roughly 1460 bytes in the SYN segment. Roughly 5% of the
connections advertised a lower MSS (around 500 bytes). @ppr
imately 6% of the transfers advertised maximum segmens size
around 4000 bytes. We found 27 connections that advertised a
MSS over 17,000 bytes (although, 15 connections were togesin
client host). We used SNMP [CFSD88] to query the last hopetout
to the clients advertising an MSS of over 17,000 bytes. The on
router that answered our query supported an MTU of 4,180sbyte
on two of its six interfaces and an MTU of 1,500 bytes on thé res
This does not explain the large advertised MSS. This sugggst
ther a bug in the TCP stack causing a large MSS to be advedised
that the network has changed between the time the conneutison
made and our SNMP query.

The figure shows that, as expected, the maximum packet size

RFC 1144 [Jac90] suggests 100-200 ms as the amount of timeand the total transfer size track quite well when the trarsitee is

that users can perceive in regards to responses from netwafe
note that figure 9 shows that nearly 75% of the connectionken t

less than 500 bytes. When transfer sizes exceed roughlyygés b
the transfer size no longer tracks the maximum packet size. W

P’ dataset experience average RTT delays over 100 ms and nearlysee that roughly 5% of the transfers use a maximum packet size

40% of the RTTs observed exceed 200 ms. This indicates tlat pa
ing careful attention to making transport and applicatiostqcols
use fewer RTTs (when possible) is important. For instanoe; p
posals such alémited transmitwhich allows TCP to transmit new
data segments on the first two duplicate ACKs to save retri@asm

of approximately 500 bytes, as expected from the MSS adeerti
ments. The remaining transfers use a maximum segment size of
roughly 1460 bytes (also, as predicted by the MSS options ob-
served). We note that no transfers use packet sizes gréater t



1500 bytes because the server is connected via a 10 MbpsEther of the study, in terms of average advertised window. Notédha
with a 1500 byte MTU and hence does not send larger packets.  analysis using th@®’ dataset yields nearly identical results.
We conclude that in our sample 1500 byte packets are used the  TCP uses the fast retransmit algorithm to quickly deteckgiac

vast majority of the time (when the transfer size is largeugihato loss [APS99, Jac88]. TCP receivers will sataplicate acknowl-
support their use). While this would be a stronger resultafhad edgmentsin response to segments arriving out-of-order. TCP
datasets from additional servers we believe researcherfaily senders use the receipt of 3 duplicate ACKs as an indicaltian t
safe using 1500 byte packets in simulations and emulations. a given segment has been lost. The segment is retransmitted a

cwnd is halved because the drop is assumed to indicate network
congestion. Therefore, @avnd of less than 4 segments prevents
TCP’s fast retransmit algorithm from being triggered. Fmtance
if cwndis 3 segments and one segment is dropped by the net-
work the sender will receive only two duplicate ACKs (assugni
o ACK loss) and will then wait for the retransmission timer t
expire to resend the dropped packet.

Morris [Mor00] extends to above argument further. In order

7 Advertised Windows

This section focuses on the advertised window size used by we
clients. The advertised window represents the data reteiveper
bound on the amount of outstanding data, or data that has bee
transmitted but for which an acknowledgment has not yevexari
Therefore, the advertised window can have a direct impad¢hen h
performance of a data transfer, as outlined in [SMM98, AE99] to stay out of the regime where TCP frequently uses the RTO to

In addition to the advertised window, tl®ngestion window recover from loss the minimumwr)d should be 4 segments. In
(cwnd is a sender-side state variable that represents the actualCrder to always have 4 segments in the networkctiiedneeds to

amount of outstanding data the sender is permitted to imget ~ P€ able to grow to at least 8 segments, such that when coogésti
the network. The value afwndis limited by the advertised win- detected andwndis halvedcwndis still at least 4 segments. From

dow. TCP uses thslow startalgorithm [Jac88, APS99] to increase (e data we have collected it seems that the advertised winalo
the value ofcwnd at the beginning of a transfer. The algorithm lIkely prevent thecwndfrom reaching 8 segments in the majority
starts by settingwndto 1 segment and then sending 1 segment (or, pf the cases. This argues that default advertised windoaddibe
sometimes a small number of segments, see the next seatidn) a ncreased.

waiting for the corresponding acknowledgment (ACK). Foctea Rather than increasing the advertised window size, several
ACK received during slow stadwnd s increased by 1 segment. searchers have suggested that TCP send new segments upan the

The algorithm ends when congestion is detected (eitherrede  CePption of the first two duplicate ACKs [BPS8, LK98, ABFO0].
from observing packet drops or from Explicit Congestioniftot ~ 1his Will trigger additional duplicate ACKs (if appropregjt and

cation (ECN) [Flo94, RF99]) or whenwndreaches the advertised ~ therefore fast retransmit will be invoked. . .
However, the above algorithm does not aid short connections

windouw. that have no new data to transmit in response to duplicatesACK
16409 ‘ ECN [Flo94, RF99] provides a possible mitigation to thiskpem.
s Mean —— Rather than dropping the segments, the network could simphk
5 [ Median - ] them as experiencing congestion. This would allow the cctime
= 1le+08 Minimum - t . . .. .. .
= Maximum - 0 quickly complete without requiring a costly retransriosgime-
8 1e+07) . ] out. Another possibility is for TCP to detect th@j one duplicate
2 ACK has arrived(ii) there is no more data to send &féf) based
3 le+06; s BB - 4 on the number of outstanding segments 3 duplicate ACKs ¢anno
S I By be expected. In this case, the TCP would trigger fast ratmérm
< 100000 ? 1 a smaller number of duplicate ACKs.
3 w Semke [SMM98] argues for the use of an automatic socket
£ 10000 buffer tuning algorithm and the notion that the network dtialic-
g 1000 F ™ et e tate the performance of a TCP connection, rather than beimg |
< e ited by some arbitrary limit placed on the transfer by onehaf t
100 L o ‘ ‘ endpoints (i.e., the advertised window). (Note that theestibed
Dec/1998 May/1999 Oct/1999  Feb/2000 window is not always arbitrary, but we believe it often hatidito
Month do with the current network or host conditions).

As noted above, the advertised window can limit a connestion
performance. The maximum throughput a TCP can obtain isigive
by equation 1 [Pos81], wherE is the throughput}V is the ad-

. . . . vertised window size an®7'T is the round-trip time between the
Figure 12 shows the advertised window sizes from fhe sender and the receiver.

dataset over time. The advertised windows represent thenmax

advertised window during the connection, as reportetcptrace w

As shown, the mean and median advertised window size has re- T= RTT @
mained approximately the same over the course of our observa aq indicated by the equation, I is too small, such thal is
tion. The median transfer size is 8,760 bytes, or 6 packei®if |ess than the available bandwidth, the connection will rogble
use 1,460 byte segments, as suggested by the data presetited i 5 ygjlize the available resources of the network. Usingmattic

last section. Meanwhile, the average advertised windowuglily buffer tuning [SMM98] effectively removes the advertiseihdow

18 KB, or approximately 12 packets. The mean advertisedovind  |imitation in all cases except when the end host needs td thri
jumps noticeably in January and February, 2000. These tikesp | ffer size due to memory constraints.

are caused by 3 connections which use a very large advevtised Assuming no congestion indications, TCP is required to send
dow (as shown by the maximum advertised window line). When |east2. 117 bytes of data to open and fill a congestion window equal
these 3 connections are removed from the analysis, the twth®10 {5 an advertised window di bytes. Connections whose conges-

in question are no longer distinguishable from the other tiron tion window reaches the advertised window are likely lirditgy

Figure 12: Advertised windows used by web clients over time.



the end systems in the connection, rather than by the cgpafcit
the network. We are interested in assessing how often tpisemes.

Many of the transfers in th@ dataset are not long enough
for the advertised window to become a factor. This is likely
caused by the content our web server provides. However, e no
that [TMW97] shows typical web transfers are between 9-12 KB
which is also too small to fill and utilize the median advestis
window sizes. We found that 644,102 connections from %he
dataset failed to send enough data to become limited by ter-ad
tised window. Of the remaining 38,735 connections, we foilnad
27,066 connections, or nearly 70%, were limited by the athest
window size. This indicates that in the cases where TCP would
likely have been able to obtain better performance the &ideer
window size hindered the throughput obtained. We belieigerth
sult provides further evidence that default advertisecdain sizes
should be increased, or automatic buffer tuning [SMM98]utio
be employed.

In related work, [BP$98] reports that 14% of connections to
a busy web server are limited by the client’s advertised wind
size. In our sample, only 4% of the total number of connestion
are limited by the advertised window. However, looking &t tibtal
percentage of connections without regard to transfer sin@listort
the results.

8 Larger Initial Congestion Window

The current TCP congestion control specification [APS9@ja
TCP implementations to use an initial congestion windowpta

2 segments. Thewndis increased from this initial value using the
slow start algorithm. RFC 2414 [AFP98], an experimentaludoc
ment within the IETF, proposes allowing TCP to use initaind
values of up to 4 segments, depending on the segment sizeif-Spe
ically, [AFP98] proposes using equation 2 to set the init\ahd
size.

cwnd = min(4- MSS, maz(2- MSS, 4380 bytes))  (2)

NetBSD 1.3 implements larger initial congestion windows as
given in equation 2 as an option that can be enabled by themyst
administrator for experimentation. We enabled the optinroor
web server to investigate the impact of using a larger indvend
with realistic Internet traffic. We hope this provides somguit to
the IETF community if and when the proposal to use an initiatd
of 3—-4 segments moves onto the standards track.

NetBSD keepswnd in terms of bytes rather than segments.
This distinction is important because while the spirit ofiation 2
places an upper bound on the number of segments in the hnitisd
of data sent into the network, the NetBSD implementatiorschum
necessarily do so. An example we found in our data quite often
occurs when using an MSS of 1460 bytes. According to equation
this should yield an initiatwndof 4380 bytes (or 3 full-sized seg-
ments). But, the server uses thei t e() system call to write
2 chunks consisting of 2048 bytes each. This yields 4 segnient
the initialcwndrather than 3 segments. The first and third segments
are each 1460 bytes, while the second and fourth are 588 IStes
by not writing a large chunk of data initially, the server sas the
initial burst of data into the network to be more segments tia
lowed, yet less bytes than allowed by equation 2.

In addition, NetBSD 1.3 contains a well-known TCP bug,
whereby the ACK of the SYN-ACK in the three-way handshake
causexwndto be incremented as if the connection were in slow
start [All97, PAD"99]. This allows for initial congestion windows

of one segment more than allowed by equation 2. We found that

in our dataset the size of the initial value @indin bytes is al-
ways less than or equal to the value predicted by equation pl
one MSS, however the number of segments ranged between 1-7.
Assessing the performance impact of using a larger irgtiald
from our data is difficult. All connections had the opportyrtio
use a larger initiatwndif enough data was transmitted on the par-
ticular connection. So, the connections using small ihitiand
values also transferred a small amount of data. This makes fo
difficult comparison with connections using a larger inittsvnd
(and hence transfered more data). We are currently takirg-a s
ond set of data that only enables the larger initiehd option on
some of the transfers. This should allow us to more easilypeom
the performance of connections using various initiahd values
in future studies.

Initial cwnd | % Using | % With Loss In
(segments) cwnd Initial cwnd
0 1.9/2.5 N/A
1 40.0/28.9 11
2 13.7/17.2 2/3
3 13.6/15.4 2/2
4 8.4/8.4 2/2
5 20.8/25.7 3/3
6 1.6/1.8 5/5
7 0.0/0.0 3/3

Table 2: Initialcwndsizes and corresponding loss rates.

We can, however, analyze the amount of additional loss alarg
initial burst of data creates in the first burst of traffic. [Ead shows
the percentage of connections in the dataset that used ®itiah i
cwndsize. The first percentage given is the percentage of all con-
nections in theP dataset, while the second value is the percentage
from the P’ dataset (i.e., after removing the heaviest users of the
web server, as detailed in the previous sections). The tdstm
of the table shows the percentage of connections using tea gi
initial cwndvalue that retransmitted segments from the initial win-
dow of datd (again, percentages fét andP’ are given). The first
row of the table, reporting an initi@wndof zero indicates the per-
centage of connections in which the SYN is lost. The distrdu
of initial cwndvalues is determined by the segment sizes used (as
discussed in section 6), as well as by the amount of data Iseimtgy
on a particular TCP connection.

As shown in the table, we observed initad/ndsizes of more
than 4 segments due to the implementation issues disculseee. a
The table shows that 40% of the connectionsPiused an initial
window of 1 segment. This agrees with the transfer sizeidistr
bution shown in figure 11 in which roughly 40% of the transfers
are less than 1500 bytes (or 1 segment in most cases). Tlee tabl
shows that using initiatwndvalues of 2—4 segments, as suggested
in [AFP98], slightly increases the percentage of connestithat
experience loss in the first window of data transmitted wiem-c
pared to using a 1 segment initiavnd This is consistent with
previous studies (e.g., [AHO98]).

Finally, table 2 shows that using a 3—4 segment initial wimdo
does not increase the chance of loss in the initial burst taf deer
that of using 2 segments. This is an indication that usingBsmg-
ment initial windows is safe for general use in the Interriébw-
ever, initialcwndsizes of more than 4 segments seem to increase
the initial loss rate more when compared to a standard limiia
dow size. This indicates that using such initaindsizes may be

3Note thattcptracerequired modifications to report the number of retransmits i
the initial window of data.



inappropriate in shared networks. e Approximately 85% of the average RTTs observed are be-
tween 15-500 ms, giving researchers a nice range of RTTs to

use in simulations.

1 e WWW clients use of persistent connections seems to be de-
) clining, while the use of parallel TCP connections to transf
web objects has remained fairly stable. However, more data
would be useful in clarifying these points.

In addition, this paper has suggested several items foreutu
work, as follows.

CDF

e Collecting data from multiple web servers for analysis wioul
provide stronger results and allow more general conclgsion

) e A survey of many web servers for some of the same informa-
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Figure 13: Distribution of initiatwndin terms of bytes.

Figure 13 shows the distribution of the value of the initiaind

tion would be useful, as well.

e Instrumenting web servers to better study client use ofljgara
and persistent connections would be useful.
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plot, representing the initiadwnd obtained by using popular seg-
ment sizes with equation 2. As discussed above, there angrbhe
lems with this expectation. First, the sizes of the trarsstdten
dictated the initiacwnd utilized. Second, the web server’s use of
thewr i t e() system call to cause short segments to be transmitted
also influences the results.

We cannot say with certainty that Apache’s writing of small
chunks at the beginning of a transfer is common, given that we
only observed a single server (even though Apache is a popula
web server). However, we recommend that application dpeeto
send larger chunks of data to TCP, rather than writing dasach a
way that causes TCP to send small segments when more data is im
mediately available. This is especially important for thstfivrite
of the transfer, which should be at least 4380 bytes (whesilpie$
to handle larger initial congestion windows. Or, at a bareimum
roughly 3000 bytes to cover the initial congestion windolowaéd
by RFC 2581, when using the popular 1500 byte segment size.

[ABFO0]

[AF99]

[AFP98]

9 Conclusions and Future Work
[AHO98]
The following are the key results and recommendations frioen t
analysis performed for this paper.
e The SACK option is being steadily deployed in web client [All97]
TCP stacks. Researchers conducting TCP simulations should
include SACK based TCPs, as suggested in [AF99].

e Our data indicates that web client’s advertised windowssize [AP99]

are currently too small, in general. The small advertised wi
dows likely limit performance in roughly 70% of the transfer
that are long enough to fully utilize the advertised windénv.
addition, small advertised windows may hinder loss regover
This can be mitigated by increasing the advertised window
size or improving TCP’s loss recovery algorithms, as oatlin

in section 7 and [ABFO00].

[APS99]
[BPS98]

e Using larger initial congestion windows, as proposed in
[AFP98], does not drastically increase the number of TCP
connections that experience loss in the first burst of data, i
dicating that using larger initial values fowndis appropriate
in most network paths.

[BPS99]
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