
ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001 1

Measuring End-to-End Bulk Transfer Capacity
Mark Allman

BBN Technologies/NASA Glenn Research Center
mallman@bbn.com

Abstract— This paper provides a preliminary as-
sessment of the effectiveness of an application layer
tool that measures theBulk Transfer Capacity (BTC)
of a network path. BTC is roughly defined as the
throughput that a flow using standard congestion con-
trol techniques would obtain across a given network
path at a given time. We utilize the NIMI mesh of mea-
surement hosts to compare stock BSD TCP with a new
BTC measurement tool,cap. While BTC tools have
been around for some time, no systematic evaluation
of their accuracy with respect to standard TCP con-
gestion control across a wide variety of network paths
has been conducted. The goal of this paper is to pro-
vide such an empirical evaluation of a BTC tool and
therefore assess the reliability of the measurements ob-
tained using BTC tools.

Keywords— TCP, Bulk Transfer Capacity, Conges-
tion Control, Bandwidth Measurement

I. I NTRODUCTION

This paper examines a tool for measuring a net-
work path’sBulk Transfer Capacity(BTC). BTC is
loosely defined as the rate that a transmitting entity
implementing standard congestion control can attain
over a given network path [MA01]. We gave con-
ducted experiments across the NIMI mesh of mea-
surement hosts [PMAM98], [PAM00] using BSD
TCP and a newly developed tool calledcap. The
BTC tool, cap, can operate in one of two modes. In
the first mode,cap’s sending process communicates
with a receiving process (capd) on the destination
host. In the second mode of operationcap commu-
nicates withcapd, but ignores any cumulative infor-
mation offered by the receiving process (such as cu-
mulative acknowledgments). In this mode,cap in-
fers this information from unique packet numbers
returned by the receiver. This mode is meant to
emulate a BTC tool that induces ACKs in the form
of ICMP messages from a non-cooperating receiver
(ala TReno[Mat96]). (Note: Due to space con-
straints the one-way emulation mode is not further
discussed in this paper, but rather will be discussed

in an extended version in the future.)

In this paper, “standard congestion control” means
the algorithms standardized in RFC 2581 [APS99]
for TCP (the only form of congestion control cur-
rently standardized by the IETF). While BTC tools
have been around for some time, no wide-scale in-
vestigation of their accuracy has been conducted
over a wide range of network paths. Our focus in this
paper is on determining the extent to which a tool
can determine the BTC of a given network path. Our
motivations behind developing and evaluating BTC
tools are as follows.

� A tool that can accurately measure the BTC of a
network path can be used to find and diagnose prob-
lems in the network. For instance, periodic BTC
measurements could be used to detect changes in the
network path and determine the cause of the change
(e.g., sudden increase in the packet loss rate).
� A tool that measures BTC in a uniform manner
without regard to the underlying operating system’s
TCP implementation is useful for comparing mea-
surements from various networks taken with various
host platforms. Of course, it is nearly impossible
to completely factor out the impact of the operating
system due to items beyond the control of the appli-
cation (e.g., CPU scheduling policy). However, an
application-level tool such ascapis likely to produce
more uniform results across operating systems than
just using the OS’s stock TCP implementation to
measure the BTC, since TCP implementations have
been shown to vary greatly [Pax97].
� A BTC measurement tool implements standard
congestion control algorithms and is therefore an at-
tractive method for researching new congestion con-
trol mechanisms. Traditionally, such research has in-
volved detailed kernel development followed by at-
tempting to secure a number of hosts around the net-
work whose administrators are willing to run an ex-
perimental kernel. Using an application-layer tool
makes development easier, as well as simplifying de-



ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001 2

ployment for testing purposes (and, hence, encour-
aging wide-scale measurement studies). As an ex-
ample, theTRenoBTC tool has been used to de-
velop advanced loss recovery algorithms [MM96]
based on TCP’s selective acknowledgment option
[MMFR96]. Finally, we believe that finding and fix-
ing bugs in an application-level program is likely to
be easier than doing so inside the kernel.
� Several tools exist to determine the “available
bandwidth” of a network path (seex II for a brief out-
line of related work). However, using standard con-
gestion control techniques, a flow may not be able
to fully utilize the available bandwidth of the net-
work path. The hope is that the BTC is closer to the
throughput an application can expect than an avail-
able bandwidth estimate will predict.
� A BTC tool can provide a safe way to measure de-
tails about a network path in addition to the BTC. For
instance, a BTC tool can measure the loss rate along
a given path. Using a congestion aware tool provides
a safe way to measure path properties. For exam-
ple, some researchers have used floods of packets to
measure some path property such as packet reorder-
ing [BPS99] or the burst capacity [AHO98]. How-
ever, a BTC tool that uses standard congestion con-
trol makes such assessment more network friendly.
In addition, using a BTC tool to measure path prop-
erties allows us to assess the prevalence of certain
events (e.g., loss or reordering) on timescales that
matter to real applications (most of which currently
use TCP [MC00]).

It should be noted that while we are using BSD
TCP as a benchmark in this study,cap does not
attempt to faithfully emulate this variant of TCP.
Rather,cap attempts to implement the congestion
control algorithms specified in [APS99], which al-
lows implementers discretion in some of the details
of the algorithms (as outlined in [MA01]). There-
fore, we do not expectcap and TCP will agree ex-
actly – just as we would not expect two independent
implementations of TCP to agree exactly.

This paper is organized as follows.x II discusses
related work.x III provides a detailed discussion of
the tools used in our investigation.x IV outlines our
experimental methodology.x V compares the BTC
tools performance with that of TCP. Finally,x VI
gives our conclusions and outlines future work in this
area.

II. RELATED WORK

Several researchers have defined methods for
measuring bandwidth for some definition of band-
width. Due to space constraints a detailed discus-
sion of these tools is not included. However, some
of these tools are:ttcp, netperf, cprobe [CC96],
pathchar[Jac97], [Dow99].

III. T OOLS

The following is a discussion of the tools em-
ployed in our investigation and their use in our ex-
periments.

A. NIMI

We utilized the NIMI measurement infrastructure
[PMAM98], [PAM00] to conduct our investigation.
NIMI is a generic system capable of running specific
measurements at future points in time, as scheduled
by the user. In addition, the request indicates where
the NIMI host should send the results after the mea-
surement is completed. As outlined in [PMAM98] a
mesh of hosts, such as NIMI, has good scaling prop-
erties. Utilizing a mesh ofn hosts we can measure
O(n

2

) network paths. Our investigation spans nearly
900 network paths yielding results without strong bi-
ases based on the network.

We installed two scripts on the hosts in the NIMI
infrastructure to conduct our tests (a script to execute
the sending process and another to initiate the receiv-
ing process). Each script performs two data trans-
fers (with the BTC tools discussed in the subsequent
subsections), as well as recording various other in-
formation about the test. For instance, we record
the time each measurement is initiated and the time
it is completed. Therefore, even if the data transfer
fails for some reason the NIMI host should still re-
turn something for each measurement. We consider
cases when this does not happen to be NIMI failures,
not transfer failures.

B. traffic/discardd

To make TCP transfers between a pair of hosts we
wrote two small programs to act as a data generator
(traffic) and a data receiver (discardd). A TCP con-
nection is established between these two user-level
programs and a memory-to-memory data transfer is
performed. Thetraffic program allows for sending



ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001 3

a given amount of data or transmitting an arbitrary
amount of data for a given length of time. In addi-
tion, the tools allow the user to configure the size of
the send and receiver socket buffers (and, hence the
advertised window). In our tests we set both buffers
to 195,480 bytes (135 segments, assuming each seg-
ment carries 1448 bytes of data). The use of window
sizes greater than 64 KB requires the use of the win-
dow scaling and timestamp TCP options [JBB92].
In the TCP implementations used in our experiments
the timestamp option is also used for theRound-Trip
Time Measurementalgorithm [JBB92]. Using this
algorithm, each ACK contains the timestamp found
in the data packet that triggered the ACK. Upon each
ACK arrival the TCP sender takes a round-trip time
(RTT) sample and updates its estimate of theretrans-
mission timeout(RTO) [PA00]. Finally, the BSD
TCP implementations used in our measurements em-
ploy delayed ACKs [Bra89], [APS99].

We could not use one of the standard tools, like
ttcp or netperf, in our TCP experiments because in
addition to sourcing or sinking data bothtraffic and
discarddcan use thelibpcap interface to the Berke-
ley Packet Filter [MJ93] to allow capturing of packet
traces of the data transmission. NIMI does not pro-
vide access to a general facility for packet tracing
and therefore we were required to build the feature
into the tool itself. Tracing packets may slow down
the data transfer on some slow machines and/or fast
networks. We transferred 100 MB of data between
two Pentium III NetBSD 1.3 machines connected
via a lightly loaded 10 Mbps Ethernet and found a
4% decrease in performance when packet level trac-
ing was enabled in bothtraffic anddiscardd. How-
ever, we note that the data transfer rate was over
800,000 bytes/second which is faster than the vast
majority of the connections in our dataset. Further-
more, we enabled packet level tracing in bothtraf-
fic anddiscarddfor all experiments presented in this
paper, therefore we expect any slight reduction in
throughput to be experienced by all transfers.

C. cap

As outlined inx I we developed a BTC tool called
cap. This tool actually consists of two programs – a
sender (cap) and a receiver (capd). The tools send
UDP “data” and “acknowledgment” (ACK) packets
that contain a sequence/ACK number and a unique

packet identifier to facilitate the tools emulating TCP
behavior (as well as careful analysis of the trans-
fers). In addition, each segment contains a flags field
and possibly a number of options (e.g., selective ac-
knowledgment information). The operation of each
program is controlled using a large number of com-
mand line options that allow for the modification of
various algorithms and constants used by the conges-
tion control algorithms (e.g., the initial value of the
congestion window).

One advantage ofcap is that the user has control
over both the sender and receiver. For instance, the
user can opt to use a larger initial congestion win-
dow [AFP98] on the sender side and delayed ACKs
[Bra89], [APS99] with a given ACK interval on the
receiver side. This allows researchers to test the im-
pact of new algorithms and their interactions with
current mechanisms. In addition, having measure-
ment tools on both the sender and receiver side of
the “connection” allows for packet-level traces to be
collected at two vantage points allowing for more ro-
bust analysis of the transfer’s behavior. A disadvan-
tage ofcap is that it must be installed on the two
end-points of the connection and therefore must be
used between cooperating machines.

In our measurements, we set the maximum con-
gestion window (essentially a sender-imposed adver-
tised window) to 135 segments, just as for our TCP
transfers. In addition, we enabled to use of times-
tamps (and the RTTM algorithm) in ourcap mea-
surements in order to mimic our TCP transfers. Note
that window scaling is not needed incap. Finally, we
configuredcapdto use delayed ACKs.

IV. M ETHODOLOGY

We scheduled measurements on NIMI hosts us-
ing a Poisson process with a mean of 30 seconds
between measurements. Each measurement con-
sisted of executing a script that makes two back-to-
back BTC measurements using eithercapor TCP. In
this preliminary presentation we do not discuss any
results involvingcap’s one-way emulation mode.
These results will be presented in an expanded ver-
sion of this paper. The transfers are conducted be-
tween two randomly chosen NIMI hosts. The tool
used to make each of the two transfers is chosen
at random (with replacement). Each transfer con-
sists of 1,049,800 bytes (or 725 segments carrying



ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001 4

1448 bytes of data each). We combine the measure-
ments usingcapfor the first transfer and TCP for the
second transfer with the measurements that use TCP
for the first transfer andcap for the second trans-
fer. After scrubbing the bad data from the dataset we
collected1 we ended up with 104 measurements that
use TCP for both transfers, 109 measurements that
usecapfor both transfers and 181 measurements that
usecapfor one of the transfers and TCP for the other
and.

V. RESULTS

First, we examine the experiments and the degree
to which each tool delivers consistent results. Obvi-
ously, an exact match between two transfers is not
possible due to differences in the network condi-
tions. However, by observing the distribution of the
difference in the transfer rate between two transfers
made with the same tool the differences betweencap
and TCP should become apparent.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 100001000001e+06 1e+07

C
D

F

Throughput Difference (bytes/second)

TCP
cap

Fig. 1. Stability of the BTC tools used in our study.

Figure 1 shows the stability of both TCP andcap.
That is, the ability of each BTC tool to deliver con-
sistent results across the two transfers. We expect
some variation in the throughput observed due to
changing network conditions, as indicated by the dis-
tribution of the percent difference in throughput TCP
is able to achieve. The measurements involving only

1We omit the details of this scrubbing due to space constraints,
but will include all such details in an extended version of this pa-
per in the near future. Measurements were removed for various
reasons including NIMI failures, clocks that were not synchro-
nized, and general mysterious failures that resulted in not all
results being returned to us.

cap have a similar distribution of percent difference
in throughput when compared to the measurements
involving only TCP transfers. We therefore conclude
thatcap is roughly equivalent to TCP in its ability to
make consistent measurements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

C
D

F

Throughput (bytes/second)

TCP
cap

Fig. 2. Distribution ofcapand TCP throughput.

Figure 2 shows the distributions of throughput ob-
tained bycap and BSD TCP during the measure-
ments involving one transfer of each type. As shown,
the throughput distribution across allcap transfers is
similar to that of all TCP transfers. While we can-
not expect these lines to match exactly due to chang-
ing network conditions the trend shown is clearly
that cap obtains slightly more throughput that TCP.
While we cannot conclusively say why this is hap-
pening we believe that it may be caused by the dif-
ference in the congestion avoidance algorithm em-
ployed by each tool. While BSD TCP increases
cwndby 1/cwnd for each incoming ACK,capwaits
for an entirecwnd to be acknowledged and then in-
creasedcwnd by 1 segment. Therefore, in the face
of delayed ACKs and ACK losscap is slightly more
aggressive than TCP (but, still within the specifi-
cation [APS99]). We believe this may explain the
difference in throughput, but are continuing the in-
vestigation into this phenomenon. Further, we have
changedcap to use the algorithm used by BSD TCP
and are conducting experiments.

Finally, we compare the distribution of loss rates
across the TCP andcap transfers, since research has
shown the loss rate to be a key contribution to TCP
performance [PFTK98]. We found that 85% of the
measurements indicate a loss rate agreement within
1% between TCP andcap. In addition, nearly all



ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001 5

measurements show a percent difference less than
10% between the tools. This indicates thatcap is
performing reasonably similar to TCP when using
loss rate as the metric.

VI. CONCLUSIONS ANDFUTURE WORK

This paper has outlined the benefits of using an ap-
plication layer BTC tool as well as some preliminary
results of one such tool. The early results presented
in the last section indicate thatcapis likely to be able
to measure the BTC of a network path with similar
accuracy to that of TCP.

ACKNOWLEDGMENTS

This work benefited from discussions with the fol-
lowing people: Andy Adams, Sally Floyd, Joseph
Ishac, Matt Mathis and Vern Paxson. In addition,
Andy Adams and Vern Paxson provided a large
amount of help in using the NIMI infrastructure. My
thanks to all!

REFERENCES

[AFP98] Mark Allman, Sally Floyd, and Craig Partridge.
Increasing TCP’s Initial Window, September 1998.
RFC 2414.

[AHO98] Mark Allman, Chris Hayes, and Shawn Oster-
mann. An Evaluation of TCP with Larger Ini-
tial Windows. Computer Communication Review,
28(3), July 1998.

[APS99] Mark Allman, Vern Paxson, and W. Richard
Stevens. TCP Congestion Control, April 1999.
RFC 2581.

[BPS99] Jon Bennett, Craig Partridge, and Nicholas Shect-
man. Packet Reordering is Not Pathological Net-
work Behavior. IEEE/ACM Transactions on Net-
working, December 1999.

[Bra89] Robert Braden. Requirements for Internet Hosts –
Communication Layers, October 1989. RFC 1122.

[CC96] Robert Carter and Mark Crovella. Measuring Bot-
tleneck Link Speed in Packet-Switched Networks.
Technical Report BU-CS-96-006, Boston Univer-
sity, March 1996.

[Dow99] Allen Downey. Using pathchar to Estimate In-
ternet Link Characteristics. InACM SIGCOMM,
September 1999.

[Jac97] Van Jacobson. Pathchar – A Tool to Infer Char-
acteristics of Internet Paths, April 1997. Talk at
MRSI.

[JBB92] Van Jacobson, Robert Braden, and David Borman.
TCP Extensions for High Performance, May 1992.
RFC 1323.

[MA01] Matt Mathis and Mark Allman. A Framework for
Defining Empirical Bulk Transfer Capacity Met-

rics, April 2001. Internet-Draft draft-ietf-ippm-
btc-framework-06.txt.

[Mat96] Matt Mathis. Diagnosing Internet Congestion with
a Transport Layer Performance Tool. InProceed-
ings of INET ’96, June 1996.

[MC00] Sean McCreary and K. Claffy. Trends
in Wide Area IP Traffic Patterns A View
from Ames Internet Exchange. May 2000.
http://www.caida.org/outreach/papers/AIX0005/.

[MJ93] Steven McCanne and Van Jacobson. The BSD
Packet Filter: A New Architecture for User-level
Packet Capture. InWinter USENX Conference,
January 1993.

[MM96] Matt Mathis and Jamshid Mahdavi. Forward Ac-
knowledgment: Refining TCP Congestion Con-
trol. In ACM SIGCOMM, August 1996.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and
Allyn Romanow. TCP Selective Acknowledge-
ment Options, October 1996. RFC 2018.

[PA00] Vern Paxson and Mark Allman. Computing TCP’s
Retransmission Timer, November 2000. RFC
2988.

[PAM00] Vern Paxson, Andrew Adams, and Matt Mathis.
Experiences with NIMI. InProceedings of Passive
and Active Measurement, 2000.

[Pax97] Vern Paxson. Automated Packet Trace Analysis
of TCP Implementations. InACM SIGCOMM,
September 1997.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and
Jim Kurose. Modeling TCP Throughput: A Sim-
ple Model and its Empirical Validation. InACM
SIGCOMM, September 1998.

[PMAM98] Vern Paxson, Jamshid Mahdavi, Andrew Adams,
and Matt Mathis. An Architecture for Large-Scale
Internet Measurement. IEEE Communications,
1998.


