
On the Performance of Middleboxes

Mark Allman
BBN Technologies

mallman@bbn.com

ABSTRACT
This paper presents a preliminary performane analysis of

a omplex middlebox infrastruture in a real-world produ-

tion environment that serves several thousand people. While

prevalent, middleboxes (�rewalls, NATs, et.) have yet to

be systematially measured. This paper makes two ontri-

butions: (i) we outline several methodologies and metris

by whih to measure middleboxes and (ii) we o�er prelimi-

nary appliation-layer measurements of one partiular pro-

dution middlebox system. We show that the middlebox

infrastruture in question o�ers a mixed bag of performane

impliations (both positive and negative). In addition, we

quantify several failure modes introdued by the middlebox

infrastruture.

Categories and Subject Descriptors
C.4 [Computer Systems Organization℄: Performane of

Systems; C.4 [Computer Systems Organization℄: Per-

formane of Systems; C.2.0 [Computer-Communiation

Networks℄: General

General Terms
Measurement, Performane, Experimentation, Seurity

Keywords
�rewalls, middleboxes, TCP performane

1. INTRODUCTION
So-alled \middleboxes", suh as �rewalls, address trans-

lators and proxies (among others), are prevalent in today's

Internet arhiteture. [3℄ o�ers a disussion of the pros and

ons of suh devies. These smart network entities are used

for a variety of reasons, for example:

� Seurity. Among the most ommon middleboxes is a

�rewall that is used to ontrol traÆ to implement se-

urity poliy between networks. Firewalls range from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

simple devies that do not pass traÆ with given har-

ateristis (e.g., protool number or port number) be-

tween the onneted networks to omplex devies that

at as proxies for transport layer onnetions. Fire-

walls are not the only type of middlebox inserted into

a path for seurity purposes. For instane, traÆ nor-

malizers [6℄ an be used to remove ambiguities from

a traÆ stream so that an intrusion detetion system

an better predit the e�et of the traÆ on an end

host.

� Performane. A seond lass of middleboxes is used

to inrease the performane of standard networking

protools. For instane, web ahes or ontent delivery

networks (e.g., Akamai) are inserted into the network

suh that users do not have to retrieve ontent from its

original soure, but rather from a loser opy. In ad-

dition, various proposals and produts allow boxes in

the middle of the network to \assist" protools (e.g.,

by retransmitting dropped segments on the sender's

behalf [2℄ or ontrolling the sending rate by manipulat-

ing TCP's advertised window [7℄). Finally, some mid-

dleboxes split an end-to-end transport onnetion into

two (or more) onnetions in an attempt to shorten

the ontrol loop and enhane responsiveness on eah

stream (e.g., I-TCP [1℄).

� Address Translation. A �nal ommon example mid-

dlebox is a network address translator [4℄. These boxes

hange the network layer addresses and/or transport

layer port numbers in traÆ passing between two net-

works. One ommon use of this tehnology is to allow

multiple internal hosts to share one external IP ad-

dress. The need for this tehnique is sometimes due to

the lak of global address spae alloated to a parti-

ular network (and, hene, the desire to leverage that

address spae) or the desire to obfusate internal ad-

dresses for seurity reasons.

While the reasons middleboxes have been added to the In-

ternet's arhiteture are numerous the study of the impat

of these entities in prodution environments has not kept

up with deployment. For instane, several questions ome

into play when thinking about middleboxes, suh as: What

is the impat on performane (delay, appliation startup,

throughput, et.)? What is the impat on the reliability

of TCP/IP protools? What additional failure modes are

introdued and how prevalent are these? In this paper we

desribe initial measurements of one partiular middlebox

infrastruture with the goals of: (i) de�ning a methodology

for testing the impat of middleboxes using ative measure-

ments and (ii) gaining preliminary insight into the e�et a

large, prodution middlebox system has on traÆ.

This paper is organized as follows. x 2 details our method-

ology and environment. x 3 outlines experiments involving

small transations traversing the middlebox infrastruture.

x 4 disusses measurements of the delay involved in travers-

ing the middlebox. x 5 disusses the persistene of the state

required to be kept in middleboxes in the ontext of keeping

TCP onnetions alive. x 6 outlines our experiments involv-

ing transmitting large data �les. x 7 disusses measurements

involving the File Transfer Protool (FTP) [10℄. Finally, x 8

gives our onlusions and skethes future work in this area.

2. EXPERIMENTAL SETUP AND METHOD-
OLOGY

To measure the performane of a set of middle boxes at

one faility we setup two lient hosts at Site1

1

, whih is

a prodution network serving several thousand people. In

addition, we setup a server host at Site2, whih is roughly

550 miles from Site1. The \inside lient" is loated inside

the middlebox infrastruture (MBI) at Site1 while the \out-

side lient" is on the WAN side of the MBI. The lients

are idential Intel Pentium 4 mahines running Linux 2.4.9,

while the server is an Intel Pentium 3 running FreeBSD 4.6.

The server is loated on the WAN side of the �rewall in-

frastruture at Site2. This initial study only onsiders TCP

[9℄ traÆ. The networking staks of all mahines are left

in their default on�guration (e.g., TCP option usage, ad-

vertised window size, et.). All experiments outlined in this

paper were run onurrently inside and outside the MBI at

Site1.

Hub InternetRouterLB1 LB2

FW1

FW2MeasBox1 MeasBox2

Dest

Figure 1: Simpli�ed diagram of middlebox infras-

truture.

Figure 1 shows the rough setup of the network (with

\MeasBox1" and \MeasBox2" being the inside and outside

lients, respetively). The MBI at Site1 onsists of several

idential �rewalls (\FW" boxes in the �gure) attahed to the

loal and wide-area networks by load balaners (\LB" boxes

in the �gure). The �rewalls are stateful and proxy TCP on-

netions. Therefore, the load balaners are also required to

keep state (to always route the same TCP onnetion to the

same �rewall). We measured Site1 's MBI from Otober 14,

2002 { January 27, 2003 (roughly 105 days). The fous of

this paper is not on the raw measurement values obtained

in our experiments, but rather on the omparison between

1

The sites involved in the measurements onduted for this

paper have requested anonymity.

the measurements taken inside the MBI and those taken

outside.

Also, note that in the desriptions of the experiments in

the following setions we have hosen a number of onstants

(e.g., timeouts). These onstants were hosen to be rea-

sonable, but are largely arbitrarily. We believe this is �ne

beause both lients share these onstants and so the impat

of the hoie is likely to impat both lients. By hoosing

timeouts that are too short we may be biasing the measure-

ments (e.g., if we had wathed a little longer we might have

seen a measurement omplete, but rather we reorded it as a

failure). However, we believe the hosen onstants are large

enough that we are not likely oering a large number of

these sorts of situations.

3. TRANSACTION DELAY
The �rst experiment's goal is to assess the impat of the

MBI on the transation time of a small request/response

protool. To measure the transation time we use the �nger

protool [11℄. In our experiments the lient opens a TCP

onnetion to the server and sends a arriage-return and

linefeed. The server then responds by sending two haraters

bak to the lient. The lient veri�es the returned haraters

and then loses the TCP onnetion. If the lient does not

reeive a response within 30 seonds this is noted and the

transation is terminated. We use ustom-written lient and

server ode that timestamps eah event in the transation.

We insert a delay between �nger transations of roughly

2 minutes (the atual time is determined using a Poisson

proess with a mean of 2 minutes).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Response Time (sec)

Outside
Inside

Figure 2: Distribution of response times for �nger

transations.

Figure 2 shows the distribution of the response time for

both lients. The dataset ontains over 75,000 transations

for eah lient. The median transation time outside the

MBI is roughly 52 mse, while it takes roughly 253 mse

from inside the MBI. The next setion shows that the MBI

adds minimal delay to data owing through an already open

TCP onnetion. Therefore, the �ve-fold inrease in the

�nger transation time shown in �gure 2 is likely aused by

the time required to instantiate onnetion state within the

MBI.

We reorded 42 failures

2

on the inside lient and 12 fail-

2

There are several ways to look at the \failures" reported in

ures on the outside lient. All the problems outside the MBI

are failures to onnet to the server. Meanwhile, nearly all

the problems inside the �rewall are reorded as timeouts.

Sine the �rewall is proxying TCP onnetions this likely

translates into problems onneting to the server or inter-

nal problems in the MBI

3

. Sine there are 3.5 times more

failures inside the MBI we believe the majority of the prob-

lems are atually aused by the MBI. Finally, note that the

overall failure rate both inside and outside the middle box

infrastruture is quite low (under 0.1% in both ases).

4. FEEDBACK TIME
The last setion fouses on small transations and on the

osts assoiated with initiating suh transations. This se-

tion fouses on delay through the MBI one a onnetion

has been established. To aomplish this we wrote a \TCP

ping" lient and server. The lient sends a small message

with a sequene number to the server, whih ehoes the mes-

sage bak to the lient via an already-established TCP on-

netion. The lient reords when the request is sent and

when the response arrives. After eah request/response a

delay is inserted before the next request is transmitted. Our

dataset onsists of �ve parallel pinging onnetions eah us-

ing a di�erent mean delay, x: 0, 30, 300, 1800 and 3600 se-

onds. The atual delay is determined using a Poisson proess

with a mean of x seonds. In addition, if a response does

not arrive within 20 seonds the onnetion is losed and a

new onnetion started in its plae. In this paper we fous

only on the experiments involving the onnetion that uses

x = 30 seonds due to spae onstraints. The onnetions

that used di�erent granularities show the same basi results.

We note that the measured values are not neessarily round-

trip times, but rather appliation-level feedbak times (FT).

Sine the pinging proess is using TCP as its transport the

requests and responses are sent reliably and therefore may

inur retransmission delays if lost.

Figure 3 shows the distribution of FTs from inside and

outside the MBI with a mean inter-ping time of 30 seonds.

The dataset onsists of over 303,000 pings from eah lient.

As the plot shows, the FT experiened on either side of the

MBI is nearly the same. The outside lient experiened a

roughly 1 mse shorter FT on median and just over 2 mse

shorter FT on average then the inside lient. This inrease in

delay through the MBI is likely explained by the additional

number of loal hops required to traverse the MBI.

Finally, we found only two types of errors: setting up

the TCP onnetion and the onnetion being losed due

to a timeout. We disuss the timeouts in the next setion.

The inside lient failed to make a onnetion 51 times in our

dataset ompared to 46 times on the outside lient. Sine the

instanes of failure onnetion failure is roughly the same in

this paper. We lump all problems experiened by the lient

together as \failures". However, this does not take into a-

ount that some failures are expeted (aused by routine

and sheduled maintenane of the MBI). However, we feel

that suh maintenane is part of the ost of using middle-

boxes and thus whether the failure was expeted or not is

not reported in our data.

3

The MBI at Site1 ompletes TCP's three-way handshake

with the lient before ensuring that a onnetion an be

made with the server. Therefore, the inside lient an �nish

its portion of the transation before the MBI �nishes the

TCP 3-way handshake to start a onnetion to the server.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-05 0.0001 0.001 0.01 0.1 1 10 100

C
D

F

RTT (sec)

R = 30

Outside
Inside

Figure 3: Distribution of feedbak time when sam-

pling roughly every 30 seonds.

Metri Inside Outside

Number of Connetions 42 21

Mean Length (hr) 58.82 114.99

Median Length (hr) 19.99 43.45

Max Length (hr) 425.98 593.08

Table 1: Connetion length statistis for onnetions

that sampled FT roughly every 30 seonds.

both lients the likely explanation is that the network path

between Site1 and Site2 beame temporarily unusable.

5. CONNECTION LENGTH
In this setion we disuss the length of the \ping" onne-

tions used for the FT measurements desribed in the last

setion. We are attempting to assess how often the MBI

state gets internally unsynhronized, ushed or in some way

makes an established onnetion unusable. Again, we an-

alyzed all the onnetions with varying sending rates and

the results ome out onsistent. Therefore, as in the last

setion, we only present the results of the onnetion that

sends a request approximately every 30 seonds.

Table 1 provides the results of our analysis. We note that

the inside lient used twie as many onnetions as the out-

side lient. The median onnetion length on the outside

lient is roughly twie as long as on the inside lient. In addi-

tion, we note that the maximum onnetion length reorded

on the inside lient is roughly 21 times longer than the me-

dian onnetion reorded on the inside lient, indiating that

a lient behind the MBI an sustain long onnetions. Also,

the distribution of onnetion lengths reorded on the inside

lient does not suggest any sort of onnetion timeout in the

MBI biasing the measurements

4

.

We an further assign the blame of unneessarily short-

ened onnetions to the MBI by noting that while there are

twie as many onnetions used inside the MBI the instanes

of not being able to onnet to the server (as outlined in

the last setion) are roughly equivalent aross lient. This

4

In addition, the operational seurity team at Site1 veri�ed

that there is no intentional timeout on�gured into the MBI

that would e�et these tests.

indiates that, in many ases, simply making a new TCP

onnetion (and, hene starting over with fresh state in the

MBI) to the server �xed the problem. These results sug-

gest that something within the MBI was ushed or beame

unsynhronized.

6. BULK DATA TRANSFER
We wrote a simple lient and server to test the raw TCP

transfer speed through the MBI. The lient sends 1 MB of

data from memory to the server. The server disards the

data upon reeipt. In our experiments, we ondut bulk

transfer measurements roughly every 10 minutes (where the

atual inter-measurement time is ditated by a Poisson pro-

ess with a mean of 10 minutes).

The last four bytes of data transmitted by the lient on-

tain a random number that the server ehoes bak. The

transmission time is de�ned as the time between when the

lient appliation sends the �rst byte of data to the operating

system for transmission until the lient appliation reeives

the random number ehoed by the reeiver.

Waiting until the ehoed random number is reeived is key

to orretly measuring the end-to-end throughput. Clients,

suh as ttp, that measure TCP transfer speed by onsider-

ing the transfer \done" when the last byte of data is sent

from the appliation to the operating system or even wait-

ing on the lose() all to return (after setting the soket

to LINGER) may overestimate the end-to-end throughput at-

tained. The problem is that the MBI proxies onnetions

on behalf of the end-host. So, the end host's transmission of

data bytes and their aknowledgment have no relationship

with the ultimate reipient of the data (the server at Site2).

Therefore, we introdue an appliation layer aknowledg-

ment in an e�ort to measure the time required to atually

transmit all the data to the ultimate reeiver.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200000400000600000800000 1e+06 1.2e+061.4e+06

C
D

F

Throughput (bytes/sec)

Outside
Inside

Figure 4: Distribution of throughput from bulk

transfer experiments.

Figure 4 shows the distribution of throughput obtained in

our bulk transfer experiments. Our dataset ontains over

15,000 transfers from eah lient. The �gure o�ers two

immediate results. First, we note that the distribution of

throughput attained (by both lients) is bi-modal. In ad-

dition, we observe that the inside lient ahieves higher

throughput than the outside lient.

The bi-modal distribution of throughput likely omes from

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 2000 4000 6000 8000 10000120001400016000

T
hr

ou
gh

pu
t (

by
te

s/
se

c)

Transfer Number

Figure 5: Throughput over time for transfers from

the inside lient.

hanges in the path between Site1 and Site2. Figure 5 is a

satter plot of the throughput for eah transfer onduted

from the inside lient as a funtion of the transfer number.

The plot learly shows distint hanges in the maximum

throughput attained during various periods of our dataset.

The distint hanges in the upper bound on performane

ould be aused by hanges in the route between Site1 and

Site2 or a hange in some rate-limiting poliy along the

path. Without further measurements (e.g., traeroutes) we

annot say with ertainty exatly what aused the hange.

(A like plot from the outside lient shows the same pattern

in throughput hanges.)

The seond item we notie from �gure 4 is that the in-

side lient obtains better throughput than the outside lient.

Looking at roughly the midpoint of eah part of the distri-

bution we see a di�erene in throughput of roughly 3.4% (at

the 33

rd

perentile) and 16.0% (at the 85

th

perentile). This

e�et is diÆult to explain without rih paket-level traing

at numerous points throughout the MBI. However, we of-

fer a ouple of possibilities. First, di�erent variants of TCP

o�er di�erent performane harateristis (e.g., see [5℄ for a

omparison of loss reovery tehniques and their impat on

performane). Without paket-level traes we annot quan-

tify the impat of any di�erenes that exist in the end-host

TCP and the MBI's TCP implementation, however we be-

lieve the di�erene ould explain some of the di�erene in

the throughput measured. In addition, we note that the

TCP model [8℄ o�ers insight into the throughput attained

by onatenated TCP onnetions.

For our omparison the TCP model for throughput, T ,

distills down to:

T /

1

R

p

p

(1)

where R is the round-trip time and p is the loss rate. The

rest of the parameters in the model (e.g., the MSS) are stati

aross onnetions in our experimental setup. From equa-

tion 1 it follows that redutions in either the RTT or the

loss rate inrease the throughput. For onatenated TCP

onnetions we an use the model for eah onnetion be-

tween the lient and the server with the ultimate throughput

ditated by the minimum of the throughputs alulated.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06 1e+07 1e+08

C
D

F

Throughput (bytes/sec)

Outside
Inside

(a) File retrieval.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

C
D

F

Throughput (bytes/sec)

Outside
Inside

(b) File transmission.

Figure 6: Distribution of FTP throughput.

From the setup of the MBI we know that there are several

loal hops between the inside lient and the �rewall that

interepts the end-to-end TCP onnetion and initiates a

new onnetion to the server. And, from the FT analysis

presented in x 4 we know that the median RTT is roughly

25 mse. Therefore, eliminating several loal hops from the

RTT ould easily redue the RTT of the TCP onnetion

that ultimately onnets the MBI to the server at Site2 by

5{10% { thus yielding a like inrease in throughput. This

ould aount for muh of the di�erene in throughput ob-

served. However, future work in this area (using paket trae

information) to on�rm our sketh would be useful.

7. FTP
Next we look at a set of transfers made using FTP [10℄

between Site1 and Site2. The MBI transparently interepts

FTP sessions initiated inside the MBI and silently proxies

all onnetions. We used a modi�ed BSD FTP lient in our

experiments and the standard FreeBSD FTP daemon on the

server. The lient was instrumented to dump timestamps of

all events (request transmission, response arrival, et.) dur-

ing the session. In addition, we added a \sleep" ommand to

the FTP lient that sleeps for a random amount of time ho-

sen using a Poisson proess with a mean given by the user.

We initiated FTP sessions approximately every 5 minutes

(based on a Poisson proess). In addition, between eah

FTP ommand we slept for approximately 2 seonds. Eah

FTP session onsists of 35 ommands and 4 �le transfers

(of 100 KB eah). The lient used both data onnetions

opened atively and passively (using the \PORT" and \PASV"

FTP ommands) and both transmitted and retrieved �les.

The ommands issued on the FTP ontrol onnetion are as

follows:

1. The \USER" and \PASS" ommands to login to the FTP

server.

2. The following 6 ommands are issued (separated by ap-

proximately 2 seonds) prior to eah �le transfer: TYPE

A, CWD /, PWD, STAT, TYPE I, MDTM. The next om-

mand sets up the data onnetion (either a \PORT"

or \PASV" ommand), followed by either a \STOR" or

\RETR" ommand to initiate the �le transfer. This step

is repeated for eah �le transfer (i.e., 4 times).

3. The \QUIT" ommand to terminate the session.

Figure 6 shows the throughput distribution for the trans-

mission and reeption of �les via FTP inside and outside

the MBI. The \PASV" ommand is used to setup the data

onnetion

5

We make the following observations from the

plots:

� The �le retrievals perform omparably regardless of

the loation of the lient

6

.

� The throughput when transmitting �les is higher when

inside the MBI by nearly a fator of three at the me-

dian point. This is largely explained by the way FTP

works and the MBI proxying the TCP onnetions.

Sine the proxy terminates the onnetion to the lient

and starts a new onnetion to the server the transfer

beomes a LAN transfer from the lient's perspetive.

Further, FTP does not inlude an appliation level a-

knowledgment (as the tests in the last setion did).

Therefore, as soon as the FTP lient sends the last

byte of data it onsiders the transmission �nished even

though all of the data has not yet arrived at the re-

eiver.

� The throughputs obtained by the two sets of �le re-

trievals and the �le transmission from the outside lient

are omparable undersoring the fat that these trans-

missions are experiening dynamis based on travers-

ing the Internet while the �le transmission from the

inside lient is only experiening loal network dynam-

is.

� Finally, we note that in the FTP tests the throughput

obtained did not reah the upper bound of the lower

5

The results for using \PORT" to setup the data onnetion

are omitted due to spae onsiderations, but are onsistent

with the \PASV" results presented in this paper.

6

Unfortunately, our data is not rih enough to determine

the ause of the knee in the plot around y = 0:55.

mode of the available bandwidth shown in the last se-

tion. Therefore, the distribution does not show the bi-

model harateristi that the bulk transfer results illus-

trated. This is explained by the �le size di�erene for

the two transfers. In the FTP tests we used a 100 KB

transfer, as opposed to the the bulk throughput tests

that used a 1 MB transfer. The 100 KB tests did not

a�ord enough time or data to open TCP's ongestion

window to fully utilize the available bandwidth.

Next we observe the time required for responses to om-

mands sent on the ontrol onnetion to arrive at the lient.

Figure 7 shows the distribution of the feedbak time. The

results are similar to the ping tests outlined in x 4, with both

lients showing largely the same delay distribution. We note

one glaring di�erene between the inside and outside lients

at the low end of the distribution, where the inside lient

shows lower delay than the outside lient. This anomaly is

aused by the FTP implementation in the MBI, whih does

not understand the \MDTM" ommand (used to determine

the modi�ation time of a given �le). Therefore, the inside

lient reeives an error from the MBI for these ommands {

whih experienes only loal network delays, while the out-

side lient reeives the orret response from the server {

inurring the Internet path delays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

C
D

F

Response Time (sec)

Outside
Inside

Figure 7: Distribution of time required for om-

mands on FTP ontrol onnetion.

The suess rate of both the inside and outside FTP trans-

fers is over 99.99% for over 121,000 �le transfers. The most

prevalent problem enountered was with the data onne-

tion not being available. This problem was enountered in

roughly the same number of ases for the inside and out-

side lient and so does not appear to be a problem with the

MBI. Finally, we note that eah lient issued just over one

million ommands on the ontrol onnetion. Every om-

mand issued ompleted suessfully on the outside lient.

Two ommands failed on the inside lient (not ounting the

\MDTM" failures disussed above).

8. CONCLUSIONS AND FUTURE WORK
From the results presented in this paper we �nd that

the measured MBI o�ers a mixed bag of performane osts

and bene�ts. For instane, we note that setting up a short

transation takes roughly 5 times longer when traversing the

MBI. However, one a TCP onnetion is setup, the added

delay required to traverse the MBI is small (1 to 2 mse).

Additionally, transmitting �les from inside the MBI to a

server aross the network is faster than transfering the data

from outside the MBI. Therefore, our onlusion is that the

impat of the MBI on performane is appliation depen-

dent. Finally, we note that the MBI generally inreases the

instanes of failures in the network aross all of our experi-

ments. However, the appliation suess rate is over 99.9%

in all of our experiments. So, even though the MBI in-

reases the failure rate by several times in some ases the

overall suess rate is high.

We see two major areas for future work in the area of

measuring middleboxes: (i) measuring a larger number of

prodution environments to assess whether the results from

Site1 's network are representative and (ii) apturing pakets

at eah step through an MBI and reonstruting the events

to determine the root auses of the performane osts and

bene�ts, as well as the failures noted in our results.

Acknowledgments
This paper has bene�ted from the ontributions of a number

of people. Engineers at Site1 and Site2 aided in the setup

and design of the experiments presented in this paper. In

addition, Vern Paxson provided enouragement and useful

onversation throughout the work. My thanks to all!

9. REFERENCES
[1℄ A. Bakre and B. R. Badrinath. I-TCP: Indiret TCP

for Mobile Hosts. In Proeedings of the 15th

International Conferene on Distributed Computing

Systems (ICDCS), May 1995.

[2℄ H. Balakrishnan, S. Seshan, E. Amir, and R. Katz.

Improving TCP/IP Performane Over Wireless

Networks. In ACM MobiCom, Nov. 1995.

[3℄ J. Border, M. Kojo, J. Griner, G. Montenegro, and

Z. Shelby. Performane Enhaning Proxies Intended to

Mitigate Link-Related Degradations, June 2001. RFC

3135.

[4℄ K. B. Egevang and P. Franis. The IP Network

Address Translator (NAT), May 1994. RFC 1631.

[5℄ K. Fall and S. Floyd. Simulation-based Comparisons

of Tahoe, Reno, and SACK TCP. Computer

Communiations Review, 26(3), July 1996.

[6℄ M. Handley, V. Paxson, and C. Kreibih. Network

Intrusion Detetion: Evasion, TraÆ Normalization,

and End-to-End Protool Semantis. In Proeedings of

USENIX Seurity Symposium, 2001.

[7℄ S. Karandikar, S. Kalyanaraman, P. Bagal, and

B. Paker. TCP Rate Control. ACM Computer

Communiation Review, 30(1):45{58, Jan. 2000.

[8℄ J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.

Modeling TCP Throughput: A Simple Model and its

Empirial Validation. In ACM SIGCOMM, Sept. 1998.

[9℄ J. Postel. Transmission Control Protool, Sept. 1981.

RFC 793.

[10℄ J. Postel and J. Reynolds. File Tranfer Protool

(FTP), Ot. 1985. RFC 959.

[11℄ D. Zimmerman. The Finger User Information

Protool, De. 1991. RFC 1288.

