
Personal Namespaces∗

Mark Allman
International Computer Science Institute

Abstract

In this paper we propose an over-arching namespace that
serves to abstract away the Internet’s current and obscure
naming schemes from users. We argue for users to have
personal namespaces that are not concerned with unique
naming of resources, but rather focused on aiding user’s
interactions with the system. This additional namespace
does not replace any of our current (or future) naming sys-
tems. Rather, our vision calls for adding a naming layer
that provides the ability for users to meaningfully alias
network resources (especially their own). These aliases
become context-sensitive, provider independent names
for objects that can be easily shared among people. In ad-
dition, we sketch a strawman system—called pnames—in
high level terms as a starting point in the discussion of
how such a system might be built.

1 Introduction

Currently, Internet applications use a significant number
of systems to name resources—from the DNS to URLs to
email addresses to a multitude of other application layer
naming conventions. These naming systems have been
designed independently as needs arise and generally pro-
vide application-specific context-insensitive methods to
uniquely identify a given resource. Therefore, current
names are largely dictated by where a given resource is
located and how it is provided. For instance, consider the
URL [3] for a web resource. The URL may contain infor-
mation about the application-layer protocol (e.g., “http”,
“ftp”, etc.), the machine that hosts some resource (either a
hostname or an IP address), the transport-layer port num-
ber, the filename on the server’s disk and/or arguments to
some server-side program. The URL representation is in-
clusive and offers the flexibility to name a large number of
resources at the cost of complexity. Our current naming
schemes have a number of drawbacks, such as:

Names are obtuse and “ambiguous”. URLs, email ad-
dresses, etc. can be quite obscure to users and do not
lend themselves to manual use. Additionally, many of
our current namespaces require the names users interact
with to be globally unique and this can lead to ambigu-
ities for people. E.g., is “ou.edu” the domain for Ohio

∗ACM SIGCOMM HotNets, November 2007.

University or the University of Oklahoma? The latter—
even though in different parts of the United States and to
different groups of people both are referred to as “OU”.
While, at some level, uniqueness is obviously a require-
ment, we argue that people should not be forced to inter-
act with the system in a context-insensitive manner. Some
applications assist users trying to grapple with obscure
naming for common tasks. For instance, web browsers
have bookmark facilities and email programs have address
books such that resource names are abstracted from users,
who are simply presented with context-sensitive aliases
(e.g., “Dad”, “Bob’s blog”, “Alice’s budgets”, etc.).

Names are hard to share. Similar to the last point, ob-
scure resource names are difficult for users to share with
others. For instance, most people will likely not be able
to rattle off the URL of the flickr.com web page contain-
ing their summer vacation pictures to a friend at a chance
meeting in the grocery store. Applications have again em-
ployed some features that help with some common tasks.
For example, web browsers often allow users to easily
email links to others. In turn, email readers can feed URLs
in email messages to web browsers. While these sorts of
processes remove the need for users to directly deal with
some obtuse resource names in some contexts, the tech-
niques are somewhat clunky, not generic and do not help
in the grocery store1.

In addition, users often have occasions to share re-
source names with themselves. For instance, sharing a
collection of web page bookmarks between a desktop ma-
chine and a laptop is not generally straightforward even
though there have been attempts to make the task a bit
easier (e.g., sharing bookmarks via RSS). There are also
ways to synchronize address books across hosts (say a
desktop and a PDA). However, there is no standard way
to do this and any particular instance of this sort of shar-
ing works only because some specific system has been put
into place for the devices in question. While useful, such
schemes are far from a coherent way to arbitrarily share
high-level names.

1Actually, these schemes do indirectly help in the grocery store
because what inevitably happens is for the party with the pictures to
promise to email a URL to the other person when they get home. While
this does help users a bit it is not as convenient as being able to directly
provide the name of a resource in the grocery store while both people
are thinking about it.

1



Names are intolerant of location change. As noted
above, most current naming includes some notion of
where a resource is currently located. For instance, an
email address explicitly includes the location of a mail
server (or, at least a forwarder). Therefore, when a per-
son graduates, changes jobs or just switches ISPs they
need to distribute a new name to their social network such
that they can be reached. There are ad-hoc mitigations
such as using institution-independent email systems (e.g.,
GMail) or forwarding (e.g., acm.org), however such per-
application mechanisms are not available across all cur-
rent namespaces and may not be ideal for many use cases
(e.g., because of economic or privacy concerns).

Naming is a one-way street. There are generally three
parties involved in accessing resources: the consumer
who is accessing the information, the content provider
who provides the information being sought by the con-
sumer and the service provider who runs the servers on
which the content resides. Namespaces generally include
portions specified by both the service provider and the
content provider. For instance, a content provider may
name a file while a service provider will generally have
named the server, with both pieces being required to ob-
tain the given resource. Consumers can assign arbitrary
local aliases to a given resource. However, when the ac-
tual unique name of the resource changes the user of the
local alias will have to track down the real name again and
update the alias. Finally, neither content providers nor ser-
vice providers can provide the context-sensitive naming
that the consumer can impose (e.g., “Mom’s web page”).

This paper sketches a higher level notion of naming that
provides for a personal namespace. The vision for this
new namespace, pnames, is that it is a user-centric meta-
namespace that can provide an abstraction to the myriad
of other namespaces in current and future networks. The
goal of pnames is not to replace any current namespace,
but rather to add an abstraction to make interacting with
these namespaces easier for users. Pnames is not applica-
tion specific and cannot itself be used to access a resource.
Rather, the names will simply be aliases to resource’s cur-
rent unique identifiers (or, those created in the future).

Each personal namespace is in some sense a “root”
namespace. That is, some given name “foo” can have a
different meaning inside each namespace. The names in a
personal namespace can be selectively shared across hosts
and users. Individuals can manage any number of names-
paces for themselves. For instance, one could use differ-
ent namespaces for home and work (e.g., to have context-
sensitive names like “calendar” bring up the appropriate
resource in a given setting). Further, while we use the
name “personal” as a touchstone for the notion that these
namespaces are user-centric, such namespaces could also
be used for a group. For instance, a institution may wish
to run their own namespace that names internal resources.

This paper describes a vision for a possible system that
enables user-centric naming for network resources. Our
goal for this paper is to start a discussion about whether an
over-arching naming abstraction that is focused on users is
desirable, as well as getting feedback on the initial system
design we present.

The remainder of this paper is organized as follows. § 2
discusses related work. § 3 outlines the proposed system
and discusses several design decisions. § 4 comments on
using the pnames system for more than small-scale per-
sonal naming. Finally, we conclude in § 5.

2 Related Work
The Internet and its applications utilize a large variety of
naming schemes. A number of proposals share ideas with
the system sketched in this paper. This paper is not break-
ing new technical ground, but trying to develop an archi-
tectural vision for an abstraction that encompasses many
ideas from previous work. The following is a discussion
of the various classes of related work.

Personal, Application-specific Naming. Many appli-
cations provide ways for users to create aliases or short-
cuts to often-used names. Examples include email address
books and desktop icons that provide ready access to a
shared disk. These facilities unquestionably aid users in
their interactions with the network (and are suggestive of
a need for user-centric names). However, many of the
drawbacks given in § 1 remain.

Private Naming Realms. A number of high-level user-
oriented naming systems have been developed on a small
scale. For instance, administrators can create aliases for
hosts in the /etc/hosts file on most Unix machines. Any-
one using the given machine can then take advantage of
the alias. America OnLine (AOL) (among others) defines
keywords to help users navigate their system. These key-
words are simply translated into the real name of the given
resource. These naming schemes have utility for users.
However, the scope in which these names are valid is lim-
ited and these schemes also lack the flexibility for users
to name resources themselves.

Naming Hosts. Much work has gone into naming hosts.
We discuss several classes of mechanisms. First, the Do-
main Name System (DNS) [6] provides the ability to map
human-understandable names into an IP address. Second,
[4] outlines the notion of user-centric naming of hosts,
noting that users want to interact with hosts on their own
context-sensitive terms (e.g., to get a picture from “Al-
ice’s phone”). [4] describes a way to introduce and track
devices by gossiping unique host identifiers and storing
these as local user-defined names such that there is no
centralized database. Lastly, we note that the Semantic
Free Referencing (SFR) scheme [9] abstracts out the host-
name and port number portion of URLs, replacing them

2



with an SFRTag (which points to IP and port information).
The SFRTag provides a level of indirection that makes the
tag independent of the host and port on which a resource
actually resides and therefore can be updated as services
change network locations. These host-centric schemes ad-
dress some of the pitfalls discussed in § 1, but others re-
main because the schemes only focus on a portion of the
name required to access a resource.

Naming Services. The DNS has also been used—both
formally and informally—to name services. DNS SRV
records can be used to lookup a service in addition to
IP addresses. More informally, hostnames are often de-
fined to have meaning to users (e.g., “maps.google.com”).
However, often resources do not have concise names that
can be readily inserted into the DNS. This is especially
true of resources normal users make available. [8] intro-
duces permafind to address the issue of service portability
by relying on protocol redirection, indirection and relay-
ing. The permafind system adds an indirection point to
the network. For instance, HTTP redirects are used to
allow a user-defined permafind name to point to an ar-
bitrary web location. Also, the permafind system could
simply forward email to the proper service provider. This
allows users to define and change the names and actual
locations of various resources without changing the glob-
ally used name to reach that service. The permafind sys-
tem well addresses many of the problems we outline in
§ 1. However, the system relies on relaying through a
central service or protocols that support redirection. Fur-
ther, to address the naming problem permafind must also
deal with data transactions, bringing up issues of scalabil-
ity and privacy (since permafind would be offer a possi-
bly large-scale view of user behavior). On the other hand,
pnames is decentralized and deals only with the naming
aspect of network activity (see § 3). The pnames pro-
posal in this paper is similar in many ways to the spirit
of permafind (and, in fact, [8] hints at a system more
like pnames). However, we have designed pnames with-
out regard to how current protocols work and/or how they
would need to be designed in the future.

Generic Group Naming Schemes. SDSI [7] offers a
mechanism to generically name principles, identify those
principles by their key fingerprint (as we do with pnames;
see § 3) and allow principles to name other principles in
higher-level terms (e.g., “Alice’s friend Bob”). In generic
terms the SDSI techniques are what we use in our pro-
posed framework. In this paper, however, we are focused
not on generic naming of principles, but on adding an ab-
straction to the network architecture that is focused on
users being able to easily name network resources.

Summary. The previous work described above (and
many others) has led us to a different architectural ap-
proach. Rather than focusing on particular aspects of var-

ious namespaces in use, we take the view that we need
an additional naming layer that is focused on meeting the
needs of users.

3 System Overview

The pnames system is conceptually simple: a daemon
process runs on every host and tracks various pnames
namespaces on their user’s behalf. Each namespace is
identified by a pnames namespace identifier (NID) which
is a cryptographically unique identifier derived from a
hash of the public key of a locally generated public/private
key pair for the given namespace. Basing the system on
keys instead of names handed out by some central author-
ity also keeps the system decoupled from any required in-
frastructure or provider. This approach is similar to that
used in [4]. The NID will be difficult for people to use di-
rectly. This clearly runs contrary to the entire goal of the
pnames system. However, the pnames system itself can
be used to provide a human-readable alias that users can
employ when using someone’s NID (as discussed below).
The following sub-sections explore various aspects of the
pnames architecture.

3.1 Contents

We envision three types of names to be accommodated in
the pnames system.

Simple Names. These entry types are the backbone of
the pnames system and will be simple aliases for net-
work resources. For instance, there would be a type for
mapping hostnames to IP addresses or adding aliases to
existing hostnames. This would allow for naming pri-
vate address space or providing meaningful names (e.g.,
“laptop”) for machines that have obscure names (e.g.,
“laptop-dept43-building2-3421324.foo.bar.com”). In ad-
dition, names could be added for URLs, allowing names
like “calendar” to point to the appropriate resource for a
given person or group. The intent is for the system to be
extensible to allow aliases for arbitrary existing and fu-
ture namespaces (e.g., names that map to NFS or SMB
shared directories, port numbers, DHT keys, email ad-
dresses, etc.).

Pointers. A namespace can include pointers to other
namespaces for ease of reference. For instance, Alice
may have a pointer to Bob’s namespace such that she can
easily access available items in Bob’s namespace (e.g.,
by using something like “Bob:calendar”). Not only is
the naming scheme easy for people to understand, but
the names associated with a particular namespace (e.g.,
“Bob”) are context-sensitive within a particular names-
pace (e.g., Alice’s, in this case). Given that NIDs are not
human friendly (as discussed above) pointers will be cru-
cial to accessing other’s namespaces.

3



Fallbacks. A namespace can define one or more “fall-
backs” for a particular entry type. As an example, con-
sider hostname lookup. If the given hostname is not found
in the user’s namespace the system may simply request the
name from the DNS. This is akin to the normal procedure
that hosts use to consult a local hostname database before
querying the DNS.

3.2 Example

Before discussing additional aspects of the system we
pause to discuss an example of two pnames namespaces
to aid the reader’s intuition behind the system. Figure 1
shows namespaces for Alice and her son Bob. Alice’s
namespace defines two names for resources she makes
available. The first name is “email”, is of type “email” and
points at Alice’s email address (“alice@mailserver.com”).
The second name is of type “rss”, has the name “blog” and
points at the URL of Alice’s blog.

namespace: [Alice’s NID]
email: email = alice@mailserver.com
rss: blog = http://blogserver/alice-blog.xml

namespace: [Bob’s NID]
pointer: Mom = [Alice’s NID]
email: Mom = Mom:email
URI: vacation07-pix = http://www.flickr.com/[...]

Figure 1: Example namespaces.

The entry for Alice’s son Bob is shown next and illus-
trates the power of the pnames. The first entry in Bob’s
namespace is a pointer that binds Alice’s namespace to
the name “Mom” within Bob’s namespace. Using this
pointer, Bob can access names in Alice’s namespace with-
out dealing with Alice’s obscure NID. The second entry
shows this by defining a name of type “email” and name
“Mom” to point at “Mom:email”—which in turn resolves
to Alice’s email address. This shows that Bob can now
deal with the user-friendly and context sensitive “Mom”
when writing a note to Alice, instead of Alice’s actual
email address. In addition, if Alice changes her email ad-
dress she can update her “email” name and Bob will not be
required to change anything. Finally, the first two entries
of Bob’s namespace show that the names in a namespace
are sensitive to the type of name they are defining and so
can be defined for each type. I.e., “Mom” is both a pointer
to Alice’s namespace and the name of Alice’s email ad-
dress depending on the context in which the name is used.
The third line in Bob’s namespace sets a name for his va-
cation pictures. Once set, Bob can inform friends about
these pictures using his “vacation07-pix” name.

We note that Bob could add an email address for his
Mom such as “email: Mom = alice@mailserver.com”. In
the case where Alice does not make a namespace avail-
able this is what Bob would no doubt do (to be able to use

the name across his various computer’s, say). However,
when Alice makes a namespace available it is more ad-
vantageous to put links to her namespace such that when
Alice changes her email address (and, hence her names-
pace entry) Bob does not have to update his namespace.
In other words, the pnames system works best when the
content providers name their resources.

3.3 Bootstrapping

One problem with using NIDs based on cryptographic
keys is that they are in fact more obtuse than any current
naming scheme and so at odds with the very problem the
pnames system is trying to attack! There are several ways
we might cope with this deficiency.

First, we note that determining and exchanging NIDs is
a one-time cost between two users2. Per the example in
the previous subsection, after finding a NID, a pointer can
be inserted such that the namespace no longer needs to
be identified by the real (and obtuse) unique NID. Rather,
the namespace can be referred to by something context-
sensitive such as “Bob” or “Mom” making the use of
names within the namespace straightforward and easily
understood by people (after the initial pointer insertion).

In addition, well-known namespace registries could be
setup that would use pointer records to associate peo-
ple’s personal namespaces with an easy to communicate
name. The pnames daemon could know about popu-
lar registries such that they could query the “MasterReg-
istry1” (for instance) namespace for “MarkAllman” and
receive the NID for the author’s namespace. The user
could then record the NID of the namespace as a pointer
using whatever context-sensitive name the user chooses
(e.g., “Mark”, “mallman”, “King”, “dork”, etc.).

Another bootstrapping technique is to glom on to tra-
ditional ways users convey naming information. A NID
could be included in an IM profile, a vCard or a header or
signature in an email message. Savvy applications could
interface with the pnames daemon to allow users to eas-
ily record pointers from such entries with a simple mouse
click (or, more speculatively entries could somehow in-
serted into a namespace automatically if they are carried
in some standard way like a known email header).

3.4 Sharing

Sharing pnames is key component of and motivator for
the system. Local storage of name mappings can clearly
be done in arbitrary ways at the discretion of the local

2To carry our grocery store example from § 1 further, we see that
if two people meet in the grocery and have previously exchanged NIDs
then sharing names is straightforward. However, if they have not shared
NIDs previously then we have likely made the problem more difficult by
introducing quite obtuse NIDs into the mix. Our model is that people
will develop lists of NIDs for their social network such that adding new
NIDs to their namespace will be far more rare than using the names
within these namespaces.

4



system (e.g., using some database system). When sharing
names a standardized form will be needed (e.g., an XML
schema). The system will then accommodate two ways to
share names: (i) resolution from a centralized database or
(ii) direct exchange with another individual.

The normal way to share pnames will be through a dis-
tributed hash table (DHT) that would be built from dedi-
cated infrastructure-level nodes (similarly to the DNS sys-
tem). While the DNS system functions reasonably well,
such an arrangement would likely not work as well for
pnames. First, hostnames follow a natural hierarchy and
so a tree of servers can be constructed to match this hier-
archy. Pnames, on the other hand, is a mostly flat nam-
ing system with many namespaces, but no depth in each
and therefore lends itself to the flat naming provided by
DHTs. Second, the aggregate load the pnames system
may impose on a central service will likely far out-pace
the load placed on the DNS. The number of resources on
the Internet dwarfs the number of hostnames. Further, a
single network resource may be named by a large num-
ber of users in the pnames systems, thereby increasing the
aggregate storage and retrieval costs.

Pnames records could be maintained and requested at
will by users. For instance, the data item requested from
the DHT could be stored and retrieved using a hash key
of a SHA-1 of the name being looked up, the name’s type
and the NID that contains the name. Pnames inserted into
the global database could be public or private. All records
will be signed by the owner of the given namespace.
When looking up a record the resolution process should
include validating that the name is properly signed by the
owner of the corresponding namespace. Private records
would additionally be encrypted such that only authenti-
cated users could decrypt and use the given names. Since
the system requires a public/private key-pair to setup each
namespace all the infrastructure required to sign, verify,
encrypt and decrypt records will be required to be in place.

The above scheme works on a per-name basis not a per-
namespace basis. This has two main implications. First,
there is no easy way to list out all the names in a given
namespace3. Second, just because Alice has access to
some name within Bob’s namespace that does not imply
that she has access to Bob’s entire namespace. Alice could
fish for names within Bob’s namespace quite easily, how-
ever, and see where any found names point (if they are
public) or at least that they exist if they are not public and
Alice does not have access to the given record. We of-
fer two ways to address this issue (although, there are no
doubt others):

• One way to combat the sort of fishing given above
is for private records to include some shared secret

3Directories of names could be created for various purposes, of
course.

in addition to the name, NID and type used to con-
struct the key used to access a particular name. In
this way, arbitrary queries for private names would
not be possible. The cost of this approach is in terms
of additional mechanism to establish shared secrets
between users.

• A second way to combat the sort of fishing described
above is to make the DHT return a bogus record for
every non-existent name accessed that looks like an
encrypted record that the given user does not have ac-
cess to decrypt. The DHT then adds this bogus entry
to the DHT so that the same bogus entry is returned
to every query for the given name (until the entry ex-
pires or is replaced by an actual entry by the user). In
this case, it will appear that every namespace has ev-
ery possible name, which makes the fishing scheme
moot. While this scheme requires no effort or inter-
action among users it requires additional work from
the DHT.

A second way records could be shared would be outside
the DHT via whatever method users employ to exchange
data. For instance, records could be attached to email
messages, sent via instant messaging sessions or swapped
via USB sticks. One particularly interesting way to share
names is for using WiFi or Bluetooth on user’s mobile de-
vices when the user’s are in close proximity (e.g., when
meeting in the grocery store), as sketched in [4]. Once
obtained the user could import the records into the local
pnames system. This scheme for exchanging pnames may
suit some circumstances, but does not lend itself to updat-
ing names or accessing new names as readily as sharing
through a DHT since accessing the global database will
be well supported by the system as opposed to ad-hoc im-
porting from arbitrary sources which will likely be a man-
ual process.

3.5 Reliability

The added layer of indirection provided by pnames intro-
duces a new failure case when accessing services. There-
fore, the system needs to be designed to be robust. Our
design uses two primary methods to increase robustness.
First, sharing is done through a DHT, which is a robust
and distributed data structure that gracefully deals with
server failure, connectivity issues, etc.

A second robustness mechanism is the heavy use of
caching. Each record in pnames will be tagged with a
time-to-live (TTL) field, which represents the valid life-
time of the given name. We expect most names will be
slowly changing and hence TTLs will be on the order of
days. When names time out the local pnames system is
encouraged to simply lookup the name again such that it
can be cached with a new lifetime. If the name is not
actually used for a long period of time the name may be

5



actually removed from the local cache. This caching and
pre-fetching of names is similar in spirit the notions in
[5, 2] for massively distributing copies of the DNS NS
records and using stale cache entries to aid robustness.
Somewhat permanently caching pnames should not be a
burdensome requirement since hosts already track book-
marks, email addresses, etc. for the most used resources.
Simply using the local pnames daemon to cache a few
thousand non-local entries and keeping them up-to-date is
not a resource intensive task on modern computers. This
local caching will both increase the robustness to lookup
failures for common resources, and also reduce the perfor-
mance penalty that another level of indirection naturally
adds to the overall process of accessing some resource.
That said, caching would not be a required component of
the system (and there may be good reasons not to cache,
for instance when using a constrained mobile device).

3.6 Security

The pnames system is designed with security in mind
along three axes:

Validating records. Since namespaces are setup and
named with a public/private key-pair all records inserted
can be easily signed and then validated as belonging to the
given namespace as they are looked up and used.

Sharing records. Records can be privately shared by
simply encrypting the record such that only authorized
users can access it. The entire system forces the use of
keys and so encrypting records for only a given set of
people is straightforward4. Further, records that are to be
shared with nobody else can be privately held in the lo-
cal name database and not inserted in any fashion into the
global database.

Robustness to attack. A final possibility that we deal
with up-front is attack on the infrastructure required to
share pnames. A number of proposals have been put forth
to help the DNS system in the case of targeted attacks
against key DNS servers (e.g., [5, 2]). Since the pnames
database is built on a DHT it is naturally distributed and
less vulnerable to targeted denial-of-service attacks than a
centralized service like a particular DNS server or a web
server. Further, the aggressive use of caching sketched in
§ 3.5 reduces the reliance on the central infrastructure for
common lookups. On the other hand, DHTs may well be
vulnerable to different kinds of attacks that involve lever-
aging homogeneous software on tightly coupled hosts.

3.7 User Interface

As discussed at the beginning of this section, the pnames
system requires a daemon to run on every host to resolve

4Note, while the system requires users to possess keys it does not
require them to understand or interact with those keys. See [1] for a
discussion of using opportunistically generated keys for such purposes

pnames. As we have sketched, this daemon is responsible
for providing names to applications, fetching and caching
names from the global database, pushing local names into
the database, etc. We envision the user’s interface into the
system to come in two forms. First, the daemon would
provide an interface for arbitrary applications to lookup,
add, delete and change names. We note that all applica-
tions that wish to utilize pnames will have to be changed.
This seems like a steep price, but the intent is for the ben-
efit to outweigh the extra cost over the long-term. An ad-
ditional factor to keep in mind is that since we are not re-
placing a naming scheme, but adding a meta-namespace,
applications can naturally evolve to support pnames. A
second way users could interact with pnames would be
through a dedicated tool that would let them manage their
namespace much like they manage an address book.

3.8 Situational Names

An additional content type that pnames could support is
“situational” names, or names that depend on where a
given host (and, hence the resolver) is connecting to the
network. For instance, when a laptop connects to the net-
work behind a NAT accessing some host’s SSH server
might require sending traffic to port 22 on 192.168.1.76,
whereas outside the NAT the same server might be ac-
cessed via IP address 69.222.45.91 and port 2222—which
represents the external address of the NAT and a port num-
ber that has been configured to be forwarded to the given
host’s sshd. Given the prevalence of such addressing
realms it may be useful to incorporate the location of the
information consumer into the resolution process. Various
simple primitives could be used to allow users to config-
ure their situational names. For instance, the pnames dae-
mon could use the next hop router’s IP or MAC address,
the SSID of the access point, etc. as input to the resolu-
tion process. More speculatively a more full-featured pro-
gramming environment could be provided such that plug-
ins could be written to aid name resolution.

4 A Different Namespace

One natural consequence of adding a meta-namespace to
the Internet’s architecture is that DNS names could be-
come less important in a non-technical way. With pnames
anyone could provide a “top-level domain” by simply
creating and populating a namespace. For instance, one
could envision an organization like Major League Base-
ball providing a namespace that would allow for easy ac-
cess to each baseball team’s resources. Or, a television
domain providing links to various stations and networks.
Anyone could create these namespaces, populate them as
they see fit and then allow users the choice of using them
or not. Of course, this could create inconsistency be-
cause namespace A may resolve some name to resource
X , whereas a different and competing namespace B may

6



resolve the same name to resource Y . This leaves users in
a quandary about which name to trust—if either of them.
This is similar to registering the DNS name Z.net in the
hopes of getting traffic meant for Z.com, however on a
much broader scale, since the number of top-level do-
mains is unbounded and uncontrolled. This problem is
fundamental and is caused by the desire to have labels that
are both human-friendly and globally unique—-which in-
evitably leads to name clashes.

5 Summary and Future Work
We offer two main contributions in this paper. First, we
outline a new naming abstraction that is user-oriented.
This naming layer has nothing to do with the nitty-gritty
protocol details of accessing a resource, but rather pro-
vides a service that will help users deal with the myriad of
naming systems on the Internet and the obscurity of glob-
ally unique names. We think that, apart from the actual
system we sketch, this abstraction is useful as we strive to
further evolve networks. In addition, we sketch a straw-
man design for such a naming system. While we have not
yet worked out a detailed specification, we have attempted
to consider the high-level aspects of such a system.

There is much future work to be done to realize a work-
ing personal namespace system. There are many details
to consider and refinements to make before even an initial
system would be operational. One of our goals in writing
this paper is to engage the community in a discussion of
the architecture and proposed system.

Acknowledgments
This paper benefits from useful discussions with Ethan
Blanton, Vern Paxson and Scott Shenker, in addition to
comments from the anonymous reviewers. This work
was funded in part by NSF grants ITR/ANI-0205519 and
NSF-0626539. My thanks to all!

References
[1] M. Allman, C. Kreibich, V. Paxson, R. Sommer, and

N. Weaver. The Strengths of Weaker Identities: Op-
portunistic Personas. In USENIX Workshop on Hot
Topics in Security, Aug. 2007.

[2] H. Ballani and P. Francis. A Simple Approach to DNS
DoS Mitigation. In ACM SIGCOMM HotNets, Nov.
2006.

[3] T. Berners-Lee, L. Masinter, and M. McCahill. Uni-
form Resource Locators (URL), Dec. 1994. RFC
1738.

[4] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea,
F. Kaashoek, and R. Morris. User-Relative Names
for Globally Connected Personal Devices. In 5

th In-
ternational Workshop on Peer-to-Peer Systems, Feb.
2006.

[5] M. Handley and A. Greenhalgh. The Case for Pushing
DNS. In ACM SIGCOMM HotNets, Nov. 2005.

[6] P. Mockapetris. Domain Names - Implementation and
Specification, Nov. 1987. RFC 1035.

[7] R. Rivest and B. Lampson. SDSI—A Simple Dis-
tributed Security Infrastructure, 1996.

[8] S. Singh, S. Shenker, and G. Varghese. Service Porta-
bility: Why http redirect is the model for the future.
In ACM SIGCOMM HotNets, Nov. 2006.

[9] M. Walfish, H. Balakrishnan, and S. Shenker. Untan-
gling the Web from DNS. In Usenix/ACM Symposium
on Networked Systems Design and Implementation,
Mar. 2004.

7


