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ABSTRACT

While there has been much buzz in the community about
the large depth of queues throughout the Internet—the so-
called “bufferbloat” problem—there has been little empir-
ical understanding of the scope of the phenomenon. Yet,
the supposed problem is being used as input to engineering
decisions about the evolution of protocols. While we know
from wide scale measurements that bufferbloat can happen,
we have no empirically-based understanding of how often
bufferbloat does happen. In this paper we use passive meas-
urements to assess the bufferbloat phenomena.

Categories and Subject Descriptors

C.2.5 [Computer Communication Networks]: Internet
(e.g., TCP/IP)
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1. INTRODUCTION
The past couple of years have seen a buzz in the network-

ing community about bufferbloat [10]. This phenomenon is
caused by a general over-buffering in router queues that hold
traffic that cannot be immediately forwarded. This is espe-
cially problematic in small-scale gear for residential use [16].
The queues are deep, but also not actively managed. TCP’s
congestion control algorithms [12, 3] interact with the drop-
tail queue management to fill the queues since TCP only
detects congestion when noticing packet loss1 and drop-tail
queues only drop packets when they are full (and in many
cases deep). As queues grow so does delay through the net-
work. While delay does not have an appreciable impact on
bulk TCP transfers it can degrade delay-sensitive traffic such
as Internet telephony conversations. While problems with
large possible queues are not new and in fact have received
much study by the community over the years,2 they have
recently received new attention (perhaps as the Internet is
being increasingly used for interactive services).
While some see bufferbloat as “dark storm clouds surround[ing]

us” [8] we are struck by two things. First, while there
is wide-scale evidence that suggests that large amounts of

1TCP can support Explicit Congestion Notification (ECN)
[22], but to date this is not prevalent in the Internet [4].
2One of the goals of active queue management techniques
such as RED [7] is to enable both high performance and low
delays by carefully managing router buffers.

buffering exist in the network and hence buffers can be
bloated [16] there is—to our knowledge—little empirically-
based information about whether these deep potential buffers
are naturally realized in practice. Rather, most of the debate
revolves around anecdotes and not systematic study. Sec-
ond, even in the absence of empirical grounding bufferbloat
is used to argue against particular engineering changes. For
instance, [9] invokes bufferbloat to argue against a proposal
to increase TCP’s initial congestion window from roughly
4KB to roughly 14KB [5]. Another example uses the sup-
posed problem of bufferbloat in mobile networks to motivate
a modification to TCP receivers to dynamically adjust the
advertised window during data reception [14].

We address this dearth of empirically-based understand-
ing by evaluating (i) bufferbloat’s prevalence and magnitude
and (ii) the impact of a modest change to TCP’s initial pa-
rameters on the overall state of buffers in the Internet. While
this is an initial study we believe it is the first systematic,
non-anecdotal study of bufferbloat and its implications. We
encourage additional large scale measurement-based studies
of bufferbloat.

2. BUFFERBLOAT PREVALENCE
Our first analysis aims to study the prevalence of long

queues. We use naturally occurring TCP traffic to assess
the delay across a large number of network paths and gain
an initial insight into the bufferbloat phenomenon.

2.1 Data
We use a packet trace collection taken from the Case Con-

nection Zone (CCZ) [1] experimental fiber-to-the-home net-
work which connects roughly 90 homes adjacent to Case
Western Reserve University’s campus with bi-directional 1 Gbps
links. While the CCZ is a University project, the CCZ en-
joys a direct connection with a regional ISP and is not shared
with campus traffic. We record packet-level traces between
the 11th and the 18th of each month. Each day during this
week is broken into six hour blocks and we record a one-hour
trace starting at a random time within each block. Before
archiving the traces we remove the application payload in
all but one of the traces taken each day.3 We include all
traffic in our traces. Our trace collection spans from Febru-
ary 2011 through March 2012 (14 months), leaving us with
392 distinct trace files.

We use Bro’s [20] “capture-loss” script to assess how much
measurement-based packet loss we experienced during our

3Our tracing strategy was mainly designed around the lo-
gistical constraints we face when storing the collected data.



trace collection. This process is part of Bro’s content re-
assembly procedure and identifies bytes in TCP traffic that
are not present in the trace, but are none-the-less acknowl-
edged by the recipient. While this does not account for
all possible measurement loss (e.g., in non-TCP traffic) it
gives a general indication about the level of measurement
loss present in a given trace. Given this process only runs
when reassembling content from a packet stream, we can
only use it to assess the 25% of our traces that retain appli-
cation payload. Therefore, our analysis should be viewed as
a general calibration of measurement apparatus. Across the
98 traces in our dataset with content payload we find that
measurement-based loss is (i) non-existent in 79 traces, (ii)
less than 0.01% in 18 traces and (iii) 0.013% in 1 trace. Our
conclusion is that while our monitoring apparatus does in
fact drop traffic in some cases this is not a large issue.
Our strategy is to use round-trip times observed in nat-

urally occurring TCP traffic to assess the queuing imposed
along the wide-area path between the CCZ and the remote
host.4 We use Bro to assess and log all possible RTT sam-
ples in our traces [17]. Since our monitoring point is near
the CCZ hosts we take RTT samples using data packets sent
from a CCZ host and the corresponding ACKs from the re-
mote peer. This measures the wide-area and remote edge
networks, but not the portion of the network path within the
CCZ network. In other words, we are not assessing buffering
within the FTTH network. Bro attempts to take an RTT
sample for each data segment observed in the trace. Note,
RTTs taken from retransmitted segments are fundamentally
ambiguous and therefore we—like TCP—apply Karn’s algo-
rithm [15] and do not use these RTT samples.5 We aggregate
RTT samples by host pair, regardless of TCP connection.
Over the course of our data collection we are able to lever-
age the 90 homes in the CCZ to assess bufferbloat at 118K
remote peers on 95K distinct /24s and 16K distinct /16s.
While a larger sample would be useful, assessing bufferbloat
for 118K hosts is a reasonable initial starting point—and at
least offers more data that any other study to date.
RTTs vary for many reasons. We aim to assess one of

these causes: whether buffers are naturally filling. We there-
fore make two assumptions in this paper. First, we as-
sume routing does not change during each trace (1 hour)
and hence we only make direct comparisons between RTT
samples within traces. At this time scale we know routes
can change, but generally these changes are subtle shifting
within ASes along the path and not wholesale changes of the
entire path [19]. Further, we note that buffers close to the
remote peer will likely be constant even if the intermediate
route changes. Second, we assume that all other delay fluc-
tuations besides queue occupancy are relatively small. As
sketched above, we know deep buffers exist and can cause
large delays [16]. In comparison, fluctuations due to things
like router processing of packets or local link-layer retrans-
missions are fairly minor and hence we do not believe will
skew our results. While assumptions are never ideal, we do
not believe our assumptions are unreasonable.

4Assessing queues within the CCZ is future work, but we
presume these will be mostly non-existent given the 1 Gbps
capacity of the network links.
5Some TCP implementations use the timestamp option [13]
to remove the ambiguity and obviate the need for Karn’s al-
gorithm. Bro’s TCP analysis code does not currently lever-
age this option and therefore neither does our analysis.

Many remote peers will be in residential settings where
we know that low-end networking gear which is often con-
figured with deep buffers will be found [16]. We use the
SpamHaus PBL [24] to determine whether the remote peers
in our dataset are end-user systems.6 While the PBL cannot
give us perfect information about whether a host is based
in a residence, in this paper we colloquially denote peers
found on the PBL as “residential”. We also present “non-
residential” traffic, as well, and hence the distinction does
not leave us susceptible to blind spots. Further, the data
given below lends some credence to this approximation in
that it generally shows RTTs to residential peers to be longer
than those for non-residential peers which follows our gen-
eral intuition. Across our dataset we study the bufferbloat
phenomena for nearly 54K residential peers and over 64K
non-residential peers. A study of CCZ’s traffic [23] shows
that the majority of CCZ’s outgoing data volume is peer-
to-peer traffic and hence it is not surprising to find such a
high fraction of remote peers also in residential settings.

Finally, we take the minimum RTT sample observed be-
tween two hosts as a baseline that does not include any
queuing delay. We have no way to know the queue depth at
any given time except in relative terms. Therefore, we use
this baseline to assess how much additional queuing we ob-
serve in the network. While a persistent queue across a trace
file (1 hour) would obscure some of the buffering present in
the network we will at least be able to assess some of the
buffering. Even if this assumption does not generally hold
our results are at least a lower bound on the amount of
buffering that happens in the network.

We use only IP pairs for which we gather at least 30 sam-
ples such that quick transactions with only a few packets do
not skew our statistical analysis. Using our procedure we
find 79 million RTT samples across our 14 month dataset.

2.2 Analysis
Figure 1 shows the distribution of non-residential (left)

and residential (right) RTTs in our dataset. Each plot con-
tains two lines. The “all samples” line is the distribution of
all the RTT samples taken over the entire 14 month dataset,
as described above. The “peer minimum” line is constructed
by replacing each sample in dataset with the minimum RTT
across the host pair within the given trace. This naturally
weights the resulting CDF by the number of samples to a
given remote peer. These plots lead us to several observa-
tions, as follows.

First, the RTT to residential peers is generally longer than
to non-residential peers. The median of the peer minimum
distribution to non-residential peers is 25 msec, while the
corresponding point for residential peers is 78 msec. We be-
lieve the differences in the minimums are at least partially
explained by low bandwidth residential links and geogra-
phy. We use the MaxMind city-level GeoIP database [18]
to lookup each remote IP address.7 We find roughly 40% of
residential peers are more than 2000 miles from the CCZ.
For non-residential hosts we find only about 20% of res-
idential peers are more than 2000 miles away. Therefore,
the geographic distance at least partially explains why the
distribution of minimum RTT samples to residential peers

6We have historical snapshots of the PBL and use the first
snapshot of the day a given trace is taken to categorize hosts.
7We have monthly snapshots of the GeoIP database and use
the corresponding snapshot for each of our traces.
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Figure 1: Distributions of minimum RTT sample to each remote peer for each RTT sample and all RTTs
samples taken for non-residential (left) and residential (right) peers.

is generally larger than the corresponding distribution for
non-residential peers.
The second observation from figure 1 is that 99.6% of

residential RTT samples and 98.3% of non-residential RTT
samples are less than one second. Previous measurements—
both wide-scale [16] and anecdotal [10]—have illustrated
that buffers are often deep enough to make RTTs of more
than one second possible. However, we find that RTTs above
one second are rare in normal traffic. A similar empiri-
cal result is shown in [21] as part of the case for setting
TCP’s initial retransmission timeout to 1 second. This re-
sult highlights the importance of (i) careful empirical study
in identifying and understanding the scope of problems and
(ii) carefully understanding the lessons from well-conducted
previous experiments.
Even though we find RTTs generally less than one sec-

ond in our dataset, our third observation is that buffering
is happening to some extent. In both plots in figure 1 the
“all samples” distribution shows longer RTTs than the peer
minimum distribution. This indicates that in general TCP
segments are encountering some queuing delay through the
network and hence take longer than the baseline would sug-
gest. An exception to this is non-residential hosts that are
within 10 msec of the CCZ hosts. In this case our expec-
tation is that any difference with the minimum does not
necessarily reflect queuing, but at these time scales could be
caused by myriad small issues. While our results show queu-
ing does happen with in the network—as we would expect
since queues are in place for a reason—Whether this consti-
tutes “bloat” is a subjective judgment. All we conclude is
that we do not find queues that impose the seconds of delay
often touted as the hallmark of bufferbloat in our dataset.
Our final observation from figure 1 is that the amount of

buffering is larger for residential peers than for non-residential
peers. One reason for this could be that residential users
generally have slower links than non-residential hosts and
therefore draining a queue—which the FTTH-connected sen-
der could readily fill—naturally takes longer. Additionally,
residential users are both geographically and delay-wise fur-
ther from the CCZ hosts. Therefore, traffic to residential
peers may have a natural tendency to accumulate more delay
as it passes through more routers. Finally, home network-
ing gear may simply have a higher propensity to over-buffer
as suggested in [16]. Without additional ancillary data we
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Figure 2: Distribution of each RTT sample minus
minimum RTT to the given remote peer.

cannot ascribe a reason to the larger buffering to residential
peers even though it is unmistakably present.

While figure 1 shows buffering does indeed happen, we
now assess the magnitude of the phenomenon in our dataset.
Figure 2 shows the distribution of difference between each
sample in our dataset and the minimum RTT for the given
host pair (within each trace). The median increase in RTT
is just over 1 msec for non-residential peers and roughly
45 msec for residential peers. At the 99th percentile the
buffering represents 450 msec and 976 msec of added delay
for non-residential and residential peers, respectively. In
other words, fewer than 1% of the packets experience an
RTT increase of more than 1 second.

Finally, we turn our attention to the buffering patterns we
observe. First, we wish to gain an understanding of whether
RTTs are generally increasing or decreasing across a pair of
hosts in a given trace. We therefore count the number of
times the RTT increases (decreases) across subsequent RTT
samples for each host pair. In figure 3 (solid lines) we plot
the ratio of the count of RTT increases to the count of RTT
decreases for non-residential (top) and residential (bottom)
peers. A ratio greater than one indicates the RTT increases
more times than it decreases, with a ratio of less than one
indicating the opposite. The plots show that in over 90%
of the cases the host pair has either more RTT increases
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Figure 3: The distribution of the ratio of RTT in-
creases to RTT decreases between subsequent sam-
ples in our traces. The top and bottom plots reflect
non-residential and residential traffic, respectively.

or more RTT decreases. We only see rough parity between
increases and decreases (i.e., a ratio of one) in about 10% of
the cases. In general the split between an increasing trend
and a decreasing trend is balanced—with non-residential re-
mote hosts showing a bit more of an increasing trend than
residential hosts.
In addition to a simple count, we measured the magnitude

of the increase (decrease) between subsequent RTT samples
and again plot the distribution of the ratio between the ag-
gregate RTT increase and the aggregate RTT decrease. Fig-
ure 3 (dotted lines) shows that in terms of the magnitude
of the RTT increase and decrease there is much more par-
ity than in terms of the count. At least half the host pairs
show a ratio of RTT increase to RTT decrease of roughly
one. Again we find slightly more RTT increase than RTT
decrease when taking into account magnitude instead of just
a raw count—especially for non-residential traffic. Finally,
the ratios are generally within 20% of parity and hence show
that the aggregate increase or decrease over the active pe-
riod of a host pair is modest. In other words, RTTs are
not simply growing or declining, but are fluctuating up and
down over time.
We also consider runs of RTT increases (decreases), both

in terms of the number of samples in each run and the over-
all increase (decrease) in the RTT over the course of the
run. We find that for all runs—increasing, decreasing, non-
residential and residential—more than 97% consist of three
or fewer samples. In terms of the magnitude of RTT in-
creases across runs we find the 90th percentile for increas-

Connections CCZ ICSI LBL

Total 16.1M 20.5M 365M
Bogus 8.5M 18.0M 279M
Remaining 7.6M 2.5M 85M

Table 1: Connection log dataset description.

ing runs add 122 msec and 229 msec to the RTT for non-
residential and residential traffic, respectively. This is con-
sistent with the RTT increase illustrated above in figure 2.
Further, we also find roughly the same results for decreas-
ing runs, again indicating that RTTs are fluctuating and not
simply rising or falling.8

3. IMPACT OF THE INITIAL WINDOW
We next address the use of the suggested bufferbloat prob-

lem to influence Internet engineering decisions. As an exem-
plar, currently TCP’s initial congestion window (IW)—the
amount of data that can be transmitted before receiving
an ACK—is 4,380 bytes [3].9 A proposal is currently be-
ing considered to increase IW to 10 packets or 14,600 bytes
[5]. A counter-argument to this proposal cites bufferbloat
as one reason the proposed increase in the IW “must be
considered deeply harmful” [9]. The major argument given
in [9] against the larger IW revolves around the larger traf-
fic impulse the proposal would create as the IW will more
than triple. Additionally, [9] argues that browsers have a
multiplicative effect by opening many parallel TCP connec-
tions. While [9] offers some brief analytical analysis there is
no empirical evidence offered to support the claim that the
impulse will be as problematic as stated. E.g., [9] claims in
the abstract that the proposed increase in the IW “makes
the problem of transient congestion at a user’s broadband
connection two and a half times worse”. In this section we
set out to evaluate the situation empirically.

3.1 Data
To analyze how bufferbloat interacts with a larger IW we

use passively gathered traffic summaries to study the traf-
fic impulses the proposed IW increase would trigger. We
collect connection logs produced by Bro [20] for one week—
March 20–26, 2012—from three vantage points in the net-
work, as illustrated in table 1. The “CCZ” data comes from
the CCZ project described in § 2.1. The “ICSI” data comes
from the border between the International Computer Sci-
ence Institute and the Internet and encompasses roughly
90 users’ activity. Finally, the “LBL” data comes from the
border between Lawrence Berkeley National Laboratory and
the Internet and encompasses 3-4,000 users’ activity. Note,
these datasets are used simply to distill user activity which is
then used to study the impact of a larger IW. Also note that
while perhaps not reflective of precisely the traffic pattern
at other points in the network, the crucial characteristic (as
developed below) is that the distribution of transfer sizes is

8This fluctuation is expected to some degree due to TCP
dynamics which multiplicatively decrease the sending rate
when congestion is detected in an attempt to relieve the
resource contention within the network. Subsequently, the
congestion window is linearly increased until congestion is
detected again.
9The actual IW specified in [3] is 2–4 packets depending
on the MSS, but for purposes of this paper we consider the
standard IW to be three packets of 1,460 bytes each.
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Figure 4: Distributions of transfer sizes to the mon-
itored networks.

heavy-tailed, which has been well established in the litera-
ture (e.g., [6]). Therefore, we expect the insights found from
our datasets to hold more generally.
The logs include all observed connections or partial con-

nections (e.g., those connections started by a scanner but
never fully established). We remove connections from fur-
ther analysis for one of four reasons. First, a small number
of records are simply malformed and hence unusable. Sec-
ond, we removed non-TCP traffic. Third, some records are
missing key information, such as byte counts in one or both
direction or a connection duration, which indicates the con-
nection accomplishes no useful work. Finally, we found a
large whois harvest running at ICSI during our collection
period. This activity skewed our data towards connections
that transfer less than 100 bytes in both directions. Fur-
ther, this traffic is (largely) caused by an experiment and
not normal user activity. Therefore, we do not further con-
sider whois connections. Table 1 summarizes our dataset.
For our analysis we rely on each connection’s timestamp,
the involved hosts and the byte counts in each direction.
We treat each connection as two uni-directional connections
for traffic flowing from and to the monitored network.

3.2 Per-Connection Analysis
Our first analysis aims to understand the impact of al-

lowing individual TCP connections to use an IW of up to
10 segments. Figure 4 shows the transfer size distribution
for data sent to the monitored networks.10 The data shows
the expected heavy-tailed distributions.
First note the left-most vertical line on the plot is 4,380 bytes,

the current standard IW. We find that across all distribu-
tions at least 73% of the transfers completely fit within the
current IW and therefore increasing the IW will have no
impact on any bufferbloat caused by these connections.
TCP uses the slow start algorithm [12, 3] to exponentially

increase the cwnd to find an appropriate operating point for
the observed conditions across the path. Therefore, regard-
less of IW used, sufficiently long transfers will increase the
cwnd to the point allowed by the proposed IW. Precisely
how long and how much data is required to increase the

10The transfer sizes in the opposite direction are generally a
bit shorter, but are not presented due to space constraints.
We derive no additional insights from scoping our presenta-
tion to only incoming traffic.

cwnd from 3 to 10 segments depends on (i) whether the
TCP sender increases the cwnd according to the number of
ACKs received or the number of bytes acknowledged [2] and
(ii) whether the TCP receiver ACKs each segment or uses
delayed ACKs [3] to ACK roughly every second segment. In
theory the process requires 2–3 RTTs and 19–26 segments
of data. The worst case11 is a receiver that ACKs roughly
every second segment (except when a second does not arrive
within some timeout) and a sender that increases the cwnd

based on the number of arriving ACKs. In this case for the
current IW the first RTT has the sender transmitting 3 seg-
ments, which triggers 2 ACKs and hence the cwnd increases
to 5 segments. The sender then transmits 5 segments in the
second RTT. The process repeats and the sender transmits
8 segments in the third RTT and finally reaches a cwnd of
10 segments in the fourth RTT.12 All told this process re-
quires 26 data segments to build cwnd from 3 segment to
10 segments.

The right-hand vertical line in figure 4 is at 37,960 bytes—
or 26 segments assuming an MSS of 1,460 bytes. All connec-
tions in the distributions to the right of this line will attain
a cwnd of 10 segments even if the IW remains at 3 segments.
The plot shows that 6–8% of the connections will utilize a
cwnd of at least 10 segments even if the IW is 3 segments.
While these connections will be more bursty at the begin-
ning with the larger IW—and hence require buffering—the
overall impact of the IW on bufferbloat is likely to be mod-
est at best since these connections are long and their overall
behavior not dictated by TCP’s initial parameters.

We are then left with the connections that fall between
the vertical lines in figure 4. These connections carry more
data than will fit in the currently standard IW, but not
enough to increase the cwnd to the proposed initial value
of 10 segments. Therefore, these connections arguably have
the potential to transiently increase the size of the buffers
along the network path when using an IW of 10 segments
as opposed to an IW of 3 segments. Depending on the van-
tage point we find 7–20% of the connections falling into this
middle area. Note that while these connections will increase
transient burstiness, they are relatively short and therefore
cannot drive long-term buffer occupancy.

We use the distribution with the largest proportion of con-
nections in the middle area—i.e., the worst case—to further
assess the possible impact on intermediate buffers. The mid-
dle portion of the LBL distribution represents roughly 20%
of the connections. For each of these connections we calcu-
late the additional impulse that an IW of 10 segments would
add to the sending pattern compared to using an initial cwnd
of 3 segments. As developed above, assuming TCP is using
delayed ACKs and increasing the cwnd based on the number
of returning ACKs the largest additional impulse for these
middle-sized connections is 17 segments (i.e., 7 and 10 addi-
tional segments in the first and second RTTs respectively).

We find that for the LBL data, 88% of the connections
in the middle portion of the distribution would send one
additional impulse of up to 10,220 bytes—or 7 segments—
worth of data, with the size of the impulse spread fairly
uniformly from 1– 10,220 bytes. The remaining 12% of the
connections will add a full 7 segment first impulse and then

11We assume no ACK loss, which would in some cases make
for an even slower process.

12The sender would have a cwnd of 12 segments in the fourth
RTT, but our analysis stops at the point of the proposed IW.



a second additional impulse of up to 14,600 bytes—or 10
segments.
One additional note is that while a larger IW will increase

the burstiness of the traffic with these additional impulses,
there will also be periods of less activity than the current
case. In other words, because a larger initial cwnd makes
TCP more aggressively transmit data, the duration of the
transmission is likely to be reduced, hence leaving periods
of less buffer utilization.
Our per-connection analysis suggests transfer sizes largely

dictate that either a larger IW cannot cause additional buffer-
ing or that regardless of the IW the connection will utilize
a cwnd of at least the proposed larger IW and hence the
initial parameter has a minor effect. Further, in up to 20%
of the cases we find the proposed IW will cause modest ad-
ditional traffic impulses that would cause additional short-
term buffering compared to the currently standard IW.

3.3 Per-Aggregate Analysis
While our per connection analysis is a start, [9] correctly

notes that parallel TCP connections can cause a multiplica-
tive effect, whereby even if the increased IW is reasonable for
a single connection it may be problematic across a set of con-
nections that are all running simultaneously. To assess this
we group connections into aggregates. Our connection logs
are not amenable to drawing fine-grained dependence be-
tween connections (e.g., that two connections represent two
images loading for single web page). Therefore, we adopt
the following conservative approach. For each local host we
monitor we consider two connections (regardless of peer) to
be in the same aggregate if their start times differ by no
more than some threshold t seconds. For the initial anal-
ysis in this paper we choose t = 1 sec, but we have tried
other values and the insights presented below are not highly
sensitive to this choice. This process is conservative in that
the aggregated connections may not share a buffer, either
because they are disparate enough in time or are traversing
different network paths.
We find that using the this strategy leads to aggregates of

a single connection in over 55% of the cases across the three
datasets (and close to 70% in the ICSI and LBL datasets).
Additionally, at least 92% of the aggregates are less than
10 connections and the 99th percentile is 37 connections.
After constructing the aggregates we calculate the effec-

tive size of the initial cwnd across all connections within the
aggregate. Note, we assume that (i) all data transmitted
on each connection is immediately available when transmis-
sion begins and (ii) that all connections in an aggregate
start at the same time rather than following their natural
pattern. These assumptions will exacerbate the buffering
requirement, but makes the analysis tractable and serves to
provide a rough indication of the impact of aggregates on
buffering. We then calculate the effective IW across the ag-
gregate based on the data volume and individual connection
IW values of 3 and 10 segments. We then compute the dif-
ference in the effective aggregate initial cwnd when using
the two connection-based values.
Figure 5 shows the distributions of the additional aggre-

gate IW that would occur if an IW of 10 segments were
universally adopted as opposed to using an IW of 3 seg-
ments, for all connections sending traffic to the monitored
network.13 We find at least two-thirds of the aggregates

13As in the last section we analyzed the traffic sent by the
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Figure 5: Distribution of effective IW increase with
IW=10 vs. IW=3.

(over 80% for ICSI) do not present any increase in the ag-
gregate IW when each individual connection is allowed to
use a larger IW. This is expected from our connection-level
analysis as most of the connections do not even fully utilize
the current IW. Aggregating such connections therefore also
has no impact on the buffering requirement.

We also find that the mode across datasets is 10,220 bytes—
or 7 segments of additional initial cwnd usage. This nearly
always corresponds to aggregates that contain only one con-
nection and can use the full proposed IW. Finally, in 5–12%
of the cases (depending on distribution) we find aggregate
IW values in excess of 10,220 bytes. We find a few aggre-
gates that increase the effective initial cwnd by 100+ KB
or even megabytes in some cases. However, it is important
to note that in such cases even using an IW of 3 segments
represents a significant load on the network and the buffers.

Given the above, we conclude that much like our single
connection analysis, aggregates would cause modest addi-
tional buffering demands. However, in at least two-thirds
of the cases there will be no impact and the impact will be
modest—up to 7 additional segments—in the majority of
the remaining cases.

4. FUTURE WORK
As we note above, this short paper presents only an initial

investigation of the bufferbloat phenomena. We encourage
the community to continue to investigate bufferbloat. Sev-
eral areas for future work include:

• Bringing datasets from additional vantage points to
bear on the questions surrounding bufferbloat is un-
questionably useful. While we study bufferbloat re-
lated to 118K peers for some modest period of time
(up to one week), following more peers and over the
course of a longer period would be useful.

• While we are able to assess 118K peers, we are only
able to do so opportunistically when a host on the
network we monitor communicates with those peers.
A vantage point that provides a more comprehensive
view of residential peers’ behavior would be useful.

• While we still presume residential broadband equip-
ment has too much buffering—even if we find that

monitored network, as well, and found the same insights.



it is not often utilized—and we find that queues are
built (to modest levels), and therefore a concrete un-
derstanding of where in the network queues actually
form would be useful.

• In addition to passive observation, long term active
measurements from many vantage points can offer in-
sights into delay fluctuations throughout the network.

• Finally, while we concentrate on understanding how
buffers are actually used in the network, we also en-
courage continuing studies such as [16] that illuminate
the amount of buffering present—even if unused—across
network paths.

5. SUMMARY
Our contribution is an initial systematic, empirical study

of the bufferbloat issue. Our investigation shows that buffer-
bloat does indeed happen—and more so in residential than
non-residential networks. However, the magnitude of the
problem as manifest in live traffic is modest. In particu-
lar, we find bloat bounded at (i) 100 msec for more than
half the samples and (ii) 250 msec for at least 94% of the
samples. We additionally find little evidence of large scale
persistent queues, as opposed to fluctuating queues. Further
we study the impact of increasing TCP’s IW to 10 segments
on bufferbloat. We find that in the majority of the cases an
initial cwnd of 10 segments will have no impact on buffering.
Further, in the remaining cases the larger initial cwnd will
result in modestly larger bursts and hence a more aggres-
sive use of buffering. These results hold when considering
aggregates of multiple parallel connections, as well.
We stress that we are not concluding deep buffers are not

possible nor arguing that filling deep buffers is not prob-
lematic. To the contrary, we believe the literature has well
established that deep buffers can occur and further when
they do they are suboptimal for some traffic. However, our
results show a disconnect between whether long queues can
occur and how often they do occur. We believe this is a key
distinction in reasoning about the magnitude of the issue.
Finally, based on our study and the wider literature on

bufferbloat, we make three meta-comments the we believe
apply broadly to networking research and engineering.

• We must carefully understand what previous research
shows, but also what it does not show. E.g., [16] shows
that large delays due to buffering can happen, not that
they do happen.

• While it is sometimes easy to dismiss some measure-
ment papers as “just another data dump”, these can
have significant value in informing our mental mod-
els as to how the network operates. In the absence of
empirical assessment of the Internet we are left with
mental models that are potentially skewed by our own
(limited) experiences.

• We should aim to understand problems before we set
out to find solutions. Without understanding prob-
lems our “solutions” may well simply cause more prob-
lems. See [11] for a recent exploration of this pitfall in
the context of video streaming over TCP.

Acknowledgments

This paper benefits from a great many conversations with
a list of people too long to name. Katrina LaCurts wrote

and debugged the Bro TCP analysis code we leverage. Vern
Paxson provided the LBL data used in § 3. Rob Beverly,
Oliver Hohlfeld, Vern Paxson and the anonymous reviewers
provided useful comments on a draft of this paper. This
work is funded in part by the National Science Foundation
under grant CNS-1213157. My thanks to all!

6. REFERENCES
[1] Case Connection Zone. http://caseconnectionzone.org/.
[2] M. Allman. TCP Congestion Control with Appropriate

Byte Counting (ABC), Feb. 2003. RFC 3465.
[3] M. Allman, V. Paxson, and E. Blanton. TCP Congestion

Control, Sept. 2009. RFC 5681.

[4] S. Bauer, R. Beverly, and A. Berger. Measuring the state of
ecn readiness in servers, clients,and routers. In ACM
Internet Measurement Conference, 2011.

[5] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing
TCP’s Initial Window, Feb. 2012. Internet-Draft
draft-ietf-tcpm-initcwnd-03.txt (work in progress).

[6] M. Crovella and A. Bestavros. Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes.
IEEE/ACM Transactions on Networking, 5(6), Dec. 1997.

[7] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4), Aug. 1993.

[8] J. Gettys. Bufferbloat: Dark buffers in the internet. IEEE
Computing, May/June 2011.

[9] J. Gettys. IW10 Considered Harmful, Aug. 2011.
Internet-Draft draft-gettys-iw10-considered-harmful-00.txt
(work in progress).

[10] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in the
Internet. ACM Queue, Nov. 2011.

[11] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and
R. Johari. Confused, Timid, and Unstable: Picking a Video
Streaming Rate is Hard. In ACM Internet Measurement
Conference, Nov. 2012.

[12] V. Jacobson. Congestion Avoidance and Control. In ACM
SIGCOMM, 1988.

[13] V. Jacobson, R. Braden, and D. Borman. TCP Extensions
for High Performance, May 1992. RFC 1323.

[14] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling
Bufferbloat in 3G/4G Networks. In ACM Internet
Measurement Conference, Nov. 2012.

[15] P. Karn and C. Partridge. Improving Round-Trip Time
Estimates in Reliable Transport Protocols. In ACM
SIGCOMM, Aug. 1987.

[16] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the edge network. In ACM Internet
Measurement Conference, Nov. 2010.

[17] K. LaCurts. Bro tcp anomaly script, 2012.
[18] L. MaxMind. City-level geoip database.

http://www.maxmind.com/.
[19] V. Paxson. End-to-End Routing Behavior in the Internet.

In ACM SIGCOMM, Aug. 1996.
[20] V. Paxson. Bro: A System for Detecting Network Intruders

in Real-Time. Computer Networks, Dec. 1999.
[21] V. Paxson, M. Allman, H. J. Chu, and M. Sargent.

Computing TCP’s Retransmission Timeout, June 2011.
RFC 6298.

[22] K. K. Ramakrishnan and S. Floyd. A Proposal to Add
Explicit Congestion Notification (ECN) to IP, Jan. 1999.
RFC 2481.

[23] M. Sargent, B. Stack, T. Dooner, and M. Allman. A First
Look at 1 Gbps Fiber-To-The-Home Traffic. Technical
Report 12-009, International Computer Science Institute,
Aug. 2012.

[24] The Spamhaus Project - PBL.
http://www.spamhaus.org/pbl/.


