
Putting DNS in Context
Mark Allman

International Computer Science Institute

ABSTRACT
Internet traffic generally relies on the Domain Name System (DNS)
to map human-friendly hostnames into IP addresses. While the
community has studied many facets of the system in isolation, this
paper aims to study the DNS in context. With data from a residential
ISP we study DNS along with both activity before an application
needs a given mapping and the subsequent application transaction.
We find that a majority of applications transactions (i) incur no
direct DNS costs and (ii) for those that do the cost is minimal.

CCS CONCEPTS
•Networks→Naming and addressing;Networkperformance
analysis.

KEYWORDS
Internet, DNS, performance, measurement

ACM Reference Format:
Mark Allman. 2020. Putting DNS in Context. In ACM Internet Measurement
Conference (IMC ’20), October 27–29, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3419394.3423659

1 INTRODUCTION
The majority of Internet traffic relies on the Domain Name System
(DNS) [17] to map human-friendly hostnames into IP addresses.
This task and the DNS protocol itself seem relatively simple at first
glance. However, the ecosystem that has emerged around resolving
hostnames has become both complex and mysterious [25]. The
community has focused much attention on developing an under-
standing of the operation and performance of the DNS ecosystem.
Generally the previous work falls into two groups: (i) studies that
deeply explore a particular facet of the DNS (e.g., performance),
or (ii) studies that explore DNS’ role within broader application
transactions using synthetic traffic. Both classes of previous work
have fundamentally advanced our understanding of DNS. How-
ever, both have a drawback: the experiments and measurements
are conducted in isolation. For instance, studies that deeply explore
the duration of DNS lookups may not consider how or when an
application uses DNS information. A hefty DNS delay that happens
once per hour of application use may not be a significant problem.
Meanwhile a small DNS delay for a lookup that is associated with
only a single short transaction, but repeats incessantly may sum

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’20, October 27–29, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8138-3/20/10. . . $15.00
https://doi.org/10.1145/3419394.3423659

to a large amount of waiting time for a user. While some of the
previous work puts the DNS delays in the context of synthetically
loading a web page, the download is isolated from other possibly
germane activities. E.g., some previous download may have used a
given hostname and populated the cache such that the subsequent
access pays no direct DNS cost.

In this paper we aim to augment the DNS literature by evaluating
DNSwithin the context of application transactions and user behavior.
We use a one week dataset of in-situ DNS lookups and application
transactions within a residential setting to understand DNS’ role
in real world traffic. In particular, with respect to the beginning of
each application transaction, we use the following lenses:
Looking backward ... We first aim to understand the location
from which DNS information is retrieved. While all DNS records
ultimately originate at authoritative servers, the records can be
cached at various locations. Our analysis allows us to understand
how previous behavior populates such caches and aids subsequent
transactions. We find that only 15.7% of application transactions
require queries to an authoritative nameserver with the balance
leveraging cached information.
Looking forward ... Our second contribution is to understand the
magnitude of DNS’ contribution to application transactions. For
short transactions, the cost of a DNS lookup may be relatively high
in terms of adding to the length of the transaction. On the other
hand, for long transactions, a DNS lookup may not be noticeable
to a user as the time required by the transaction itself dominates.

2 RELATEDWORK
Our work relates to several broad classes of previous work.
Focused Studies:Much previous DNS work tackles a particular as-
pect of the system to understand or improve. Example topics—with
a meager set of reference examples—include: delays [15], security
[11, 13, 26, 31], caching [12, 18], prefetching [7], robustness [2, 29].
The result is a rich body of work that deeply explores many facets
of the DNS in isolation. Our goal is to understand how a number of
these aspects manifest in the context of DNS’ actual use.
Measurement & Characterization: A second body of work es-
chews isolated studies in favor of measuring and characterizing
many aspects of the DNS in the wild. Examples of such research are
numerous. For instance, a number of studies characterize the traf-
fic that arrives at the root nameservers, including aspects such as
volume, request types and recursive resolver behavior [4, 6, 14, 33].
Meanwhile, other work focuses on understanding the components
and behaviors of DNS’ recursive resolution infrastructure [25]. Still
more work uses passive DNS observation in edge networks to quan-
tify many aspects of traffic—e.g., TTLs, TTL violations, caching
efficacy, name popularity. Studies have been conducted in residen-
tial [5], campus [27] and mobile [16] edge networks.
Performance:More closely related to this paper is a body of work
that uses active measurements to investigate DNS as a component
of web page downloads. Examples of this include the web profiling

https://doi.org/10.1145/3419394.3423659
https://doi.org/10.1145/3419394.3423659

IMC ’20, October 27–29, 2020, Virtual Event, USA Mark Allman

(WProf) work [32], the Mirage work that leverages home routers as
vantage points [30] and a study that uses the Lumen app to under-
stand DNS’ contribution to web page loading in mobile networks
[16]. This previous work crucially begins to build an understanding
of DNS’ role in a broader context. Our study takes this notion a
step further by both (i) considering applications in addition to the
web and (ii) using in-situ instead of synthetic traffic.
Leveraging Slack in DNS: Two of our previous studies have devel-
oped techniques that increase the duration of DNS lookups [1, 24].
Part of these studies use passive measurements to illustrate that
there is often a gap between a DNS lookup and its eventual use
by an application—hence making longer DNS transactions more
palatable. This paper is a more in-depth study of this phenomenon.

3 DATASET
Our dataset comes from monitoring the Case Connection Zone
(CCZ)—an experimental FTTH network in a neighborhood adja-
cent to a Case Western Reserve University. Each of the roughly
100 residences in the neighborhood connects to the Internet via a
bi-directional 1 Gbps link. This link serves as the primary Internet
link for each house and previous work illustrates usage roughly
matches expectations for general residential users [22, 23]. Roughly
half the residences are student rentals, with the remainder being
full-time non-student residents. From previous work in character-
izing the traffic in the CCZ [22, 23], we believe that while the CCZ
is small and provides high capacity, the traffic is akin to we would
expect from a residential network. We do not believe the high ca-
pacity within the CCZ biases the results because for the most part
our results are in terms of delay and not throughput. Further, in
those cases where we do consider throughput, our comparisons
are between transactions within the CCZ. The results presented in
this paper are meant to add to our understanding and not be the
definitive or final word. Results from different settings may vary.

Each house in the CCZ is supplied a router. While many home
routers can act as DNS resolvers1, the supplied routers in the CCZ
do not take part in DNS lookups.2 We monitor the network at
the ISP’s first aggregation point where we can view all traffic to
and from all houses. The supplied home routers act as NATs and
therefore our view of the traffic is at the house granularity. We
cannot differentiate between devices or users within houses.

For this study we use two datasets captured by the Bro network
monitoring system [21] from Feb. 6–12, 2019. A sketch of the ethical
considerations of our data collection, storage and use is in § A.
DNS Transactions: The first dataset consists of 9.2M DNS trans-
actions, including timestamps, local and remote IP address, query
strings, all returned resource records and ancillary information
from the transactions. In this study we consider only plain-text
DNS transactions. At the time our dataset was collected encrypted
DNS—either DNS-over-TLS (DoT) [9] or DNS-over-HTTP (DoH)
[8]—was not mature enough to be in broad use. We validate this
assertion empirically in § 5.1. Widespread use of encrypted DNS
would render the study we conduct in this paper impossible and

1These home routers are generally DNS “forwarders” as they do not communicate with
authoritative servers [25]. Rather, they send DNS requests to other ISP or institutional
recursive resolvers and cache the results.
2This is the general CCZ configuration, not somethingwe instituted for our experiment.

Resolver % Houses % Lookups % Conns % Bytes
Local 92.4 72.8 74.0 70.8
Google 83.5 12.9 8.3 9.2

OpenDNS 25.3 9.4 14.2 13.5
CloudFlare 3.8 3.9 2.9 5.7

Table 1: Use of resolver platforms in our dataset.

therefore future efforts to better understand DNS in context will
likely need to be conducted from end systems.
Application Transactions: The second dataset consists of sum-
maries of 11.2M connections originated by hosts within the CCZ,
including timestamps, IP addresses, port numbers, number of bytes
transmitted in each direction, etc. The connection summaries do
not include payload contents. For TCP, Bro tracks connection setup
(SYN) and tear down (FIN & RST) indications to delineate connec-
tions. Bro defines a UDP “connection” as consisting of all packets
involving a common set of IP addresses and port numbers.3 A time-
out of 60 sec after the last observed packet is used to signal the end
of the “connection”. The dataset includes 9.9M TCP connections
(88%) and 1.3M UDP connections (12%).

The CCZ provides two DNS resolvers. Further, most residences
use at least one third-party public DNS resolver platform. Table 1
lists the resolver platforms that are used for at least 1% of the DNS
lookups in our dataset. The ISP’s two resolvers are the most popular,
being used—at least in part—by over 92% of the houses and handling
over 72% of the queries. The table also shows the percentage of
connections and traffic volume that are tied to each resolver—which
are both roughly commiserate with query percentage.

Further, roughly 16% of the houses only use the ISP’s resolver.
The remaining houses both (i) leverage Google’s public DNS re-
solvers for some of their lookups and (ii) use multiple resolvers. We
believe the prevalent use of Google’s DNS platform at the house
level stems from a default setting in Android devices. Since the only
houses that do not use Google’s DNS resolver are those that only
leverage the local ISP’s resolvers, we hypothesize—without being
able to prove—that these houses have installed a DNS forwarder
that intercepts all DNS traffic and directs it to the ISP’s resolvers.

4 METHODOLOGY
Our analysis depends on the following two building blocks:
Pairing: DNS lookups and application connections—e.g., fetching
a web object—appear as independent transactions to a network
monitor. However, to put DNS in context we use the DN-Hunter
technique [3] to pair each connection with the DNS lookup it uses
(if any). Consider an application connection originating from local
IP address L and destined for remote IP address R. We pair that con-
nection with the most recent non-expired DNS lookup conducted
by L that contains R in the answer (if such exists). If all previous
DNS lookups containing R are expired, we use the most recent.4

Given the widespread use of centralized hosting in the modern
Internet it is possible that multiple hostnames resolve to the same
IP address, thus confusing the DN-Hunter algorithm. In our dataset,
we find there is only a single non-expired DNS response that in-
cludes the given target IP address for over 82% of the application
transactions. For the remaining application transactions there exists
multiple non-expired DNS records with the given IP address. Hence,
3We implicitly cover QUIC [10], as we treat such connections as a UDP “connection”.
4Note, we discuss the use of expired DNS records in more detail in § 5.2.

Putting DNS in Context IMC ’20, October 27–29, 2020, Virtual Event, USA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000 10000

C
D

F

Time Between DNS and Connection (sec)

Figure 1: Dist. of time between completion of a DNS lookup
and the start of an application connection.
given our vantage point we cannot be certain that the most recent
DNS transaction is the correct choice for pairing—even if intuitive.
To understand the impact of this ambiguity we ran an alternate ver-
sion of the analysis in the remainder of the paper whereby we pair
a random non-expired DNS transactions that contains the target IP
address. Due to space constraints we do not present these results,
but the magnitude of the deviations from the results we present are
small and the high-level take-aways remain unchanged.
Blocking: To better understand DNS’ role, we determine whether
application connections (i) are blocked waiting on a DNS lookup to
proceed or (ii) rely on previously looked up DNS information that is
readily available. A network monitor has no concrete way to make
this determination and therefore we design a heuristic to infer the
relationship. Figure 1 shows the distribution of the interval between
the start of each connection that relies on DNS and time the paired
DNS transaction completes. The distribution shows two different
regions—with a knee around 20 msec (red line on plot)—which
follows our intuition that some connections are blocked awaiting
the results of a DNS lookup while the DNS information is readily
available for other connections. We find that 91% of the connections
that start within 20 msec of the DNS lookup are the first to use the
DNS lookup—i.e., these connections are less likely to be relying the
device’s local DNS cache. In contrast, only 21% of the connections
that start more than 20 msec after the DNS lookup are the first
to use a given lookup. Therefore, we use the two regions of the
distribution to determine whether connections are blocked on DNS
lookups or not. While 20 msec is visually around the knee of the
curve, we use a more conservative threshold of connections starting
within 100 msec of the DNS lookup completion—marked with a
blue line on the plot—being called “blocked” in our analysis.5

5 DNS INFORMATION SOURCE
We now tackle the origin of DNS information for each connection.

5.1 No DNS Information Required
First, we focus on the first line of Table 2, or the 7.2% of connections
that do not utilize DNS lookups—denoted as the N connections.
We find that in 81.6% of these connections both ports are non-
reserved “high ports”. This is a hallmark of peer-to-peer traffic
5We call 100 msec “conservative” because our analysis generally considers DNS delays
more important for blocked connections and, hence, the larger the threshold the more
important DNS’ role. We ran our analysis with a range of thresholds and find that
while the numbers change slightly, the overall insights remain as we present them.

Class Desc. Conns (M) % Conns
N No DNS 0.8 7.2
LC Local Cache 4.8 42.9
P Prefetched 0.9 7.8
SC Shared Resolver Cache 3.0 26.3
R Requires Resolution 1.8 15.7

Table 2: DNS information origin by connection.

where neither endpoint is a well-known server. Further, this type
of traffic often does not depend on DNS information, but rather
obtains IP addresses of peers via initial bootstrapping information
(e.g., “.torrent” files) and gossiping among the known peers.

The balance of the connections use a reserved port. Ports 443,
123 and 80 account for nearly all these connections. These instances
seem to largely come from IP addresses hard-coded into software
in small devices. For instance, we find over 23K unsuccessful NTP
connections to a particular IP address. Fromweb searcheswe believe
this likely stems from TP-Link devices being hard-coded to contact
a now-retired public NTP server. Additionally, we find nearly 3K
connections that contact one of two Ooma NTP servers which
seem to be hard-coded into Ooma’s residential VoIP devices. In a
final example, we find over 11K HTTPS connections to one of two
AlarmNet IP addresses, which we believe to be part of a monitoring
service for residential security alarms.

As we note in § 3, we have no visibility into encrypted DNS
lookups. We believe that at the time our dataset was collected,
encrypted DNS was not prevalent in the CCZ. First, we find no
transactions inN using the standardDoT port (853). Second, we find
that only 1.3% of all application transactions are both (i) unpaired
with a visible DNS lookup and (ii) not peer-to-peer traffic. Even if
all these connections pair with an encrypted DNS lookup—which
is unlikely the case, given the above discussion and examples—the
impact of encrypted DNS on our overall insights will be negligible.

5.2 No DNS Lookup Required
The second set of connections listed in Table 2 are those that use
DNS information, but get their records from a local cache and,
hence, do not block awaiting DNS. While all of these connections
start at least 100 msec after the paired DNS lookup has finished
(see § 4), we sub-divide them further by whether the connection is
the first to use the paired DNS record (P) or not (LC), as follows.
Local Caching: The LC category listed in Table 2 shows that
42.9% of the connections in our dataset rely on DNS information
from the local cache.6 The LC connections both (i) come more
than 100 msec after the corresponding DNS transaction finishes
and (ii) leverage a paired DNS record that has been previously used.
This second criteria means the information has been locally cached
based on previous activity. These connections do not block waiting
for DNS information and, therefore, have no attendant DNS costs.

Of the 4.8M LC connections, nearly 1.1M (22.2%) use outdated
DNS information that should have been expunged from the cache
based on the DNS record’s TTL. This aligns with previous work
that shows some residential networking gear does not respect the
TTL [25] and hosts often use DNS bindings for longer than allowed
by the TTL [28]. We find that almost 82% of the violations happen
6Given our vantage point outside the residences, we cannot determine whether the
DNS information comes from the on-device stub resolver’s cache or from a home
router acting as a DNS forwarder. However, in both cases the information is close to
the application and the retrieval delay should be nearly irrelevant.

IMC ’20, October 27–29, 2020, Virtual Event, USA Mark Allman

more than 30 seconds after the expiration. The median and 90th
percentile of the distribution are 890 seconds and nearly 19K sec-
onds, respectively. Hence, a non-trivial part of the efficacy of the
local cache is based on violating DNS records’ TTL.
Prefetching: Most modern web browsers speculatively issue DNS
requests of hostnames they encounter that may need resolution in
the future [7]. For instance, if a web page has an advertisement with
a link to “www.cnn.com” the browser will lookup “www.cnn.com”
as soon as noticing the link so that, if needed,there will be no
delay in determining the IP address to contact. We determine that a
connection benefits from speculative DNS lookups if it both (i) starts
100 msec after the paired DNS lookup concludes and (ii) leverages
a previously unused DNS lookup. We denote this as P on Table 2
and find that 7.8% of the connections benefit from prefetching. The
P connections do not incur a DNS cost because the DNS lookup
happens in the natural lag time between noticing the name and
using the mapping. Without prefetching the application would be
forced to block awaiting a DNS response.

The benefit of DNS prefetching comes with the cost of specula-
tive lookups that go unused. We find almost 3.1M DNS transactions
(or 37.8%) are not used to facilitate an application transaction. Given
our vantage point, we cannot conclusively determine that these
are all traditional prefetching. For instance, an application could
trigger a DNS lookup with the intention of using the result only
to terminate before doing so. However, we believe that these DNS
transactions are largely speculative lookups to aid performance. If
we assume all the unused DNS lookups were caused by prefetching,
then 22.3% of the speculative lookups were ultimately used.

Similar to the LC connections, we find that 12.4% of the P con-
nections use expired DNS records. The rate of using expired DNS
records is roughly 10% less for P connections compared with LC

connections. We believe this discrepancy stems from LC connec-
tions being to destinations the user accesses with some frequency—
as indicated by LC connections not being the first connection to
use a given lookup. Meanwhile, the lookups behind P connections
are speculative and so their use depends on users clicking a link.
This naturally happens closer in time to the speculative lookup—
e.g., before the user moves on to another web page—and therefore
more often happens within the TTL. Indeed, the median time be-
tween DNS lookup and use is 310 seconds for P connections and
1,033 seconds for LC connections.

5.3 DNS Lookup Required
The previous two subsections detail connections that do not block
on DNS lookups. Nowwe turn to the last two lines on Table 2 which
deal connections that block awaiting DNS lookups to complete.
These connections start within 100 msec of the end of the DNS
transaction. These two categories are the SC connections that use
DNS records from a shared resolver’s cache and the R connections
that require retrieving information from authoritative servers.

Given that we do not have visibility into DNS requests sent from
the shared resolvers, we use a heuristic that uses the duration of
a DNS lookup to place each connection in the SC or R set. For
all resolvers utilized by at least 1,000 connections we calculate the
distribution of the duration of the DNS transactions. We assume
the minimum of this distribution is the network RTT to the given

resolver. If a DNS record is cached by the resolver, we expect the
lookup duration to be roughly the same as the minimum duration.
However, the transaction duration will be longer than the network
RTT when the resolver requires information from one or more
authoritative servers. The delay distributions for all the popular
resolvers indeed show a mode around the minimum delay, which
we then use to set a threshold for each resolver. We conclude that
lookups that do not exceed the threshold are served from the shared
resolver’s cache and the remainder require communication with
some number of authoritative DNS servers. The threshold varies
by resolver and reflects a small amount of rounding—e.g., we find
a minimum RTT of about 2 msec for the local ISP’s resolvers and
therefore we use a threshold of 5 msec. For transactions not des-
tined for one of the popular shared resolvers we use a threshold of
5 msec. The thresholds are specific to the monitored network, but
the process for determining the thresholds is general.

Note, all DNS records we classify as coming from the shared
resolver’s cache nearly must be correct since there just isn’t time
to contact an authoritative server. However, we could mistakenly
classify a lookup as requiring communication with authoritative
servers when the shared resolver has the needed information in its
cache, but extra delays creep into the process—e.g., network jitter,
retransmission delays or extra processing delays.
Shared Cache: Table 2 shows that the shared cache is leveraged
by 26.3% of the connections in our dataset. This represents a cache
hit rate of 62.6% of all connections that query a recursive resolver
(i.e., the SC and R connections). I.e., even when a connection is
blocked waiting on a DNS record not available locally, the majority
of the time the record is in the shared resolver’s cache and the delay
to obtain it is low—i.e., at most 20 msec in our environment.
Resolution Required: The final line in Table 2 shows that 15.7%
of the connections in our dataset require the shared resolver to
contact one or more authoritative servers before the connection
can start. From our monitoring vantage point, we cannot determine
how many authoritative servers the resolver must contact for each
transaction. However, presumably, even these transactions that we
have labeled as cache misses within the shared resolver generally
benefit from some amount of caching. For instance, many trans-
actions likely depend on the shared resolver’s cached copy of the
“.com” record obtained from the root nameservers. Therefore, this
category encompasses a fairly wide variety of behavior.

6 DNS PERFORMANCE IMPLICATIONS
We now turn from the origin of the DNS records to the impact of
lookups on performance. The N , LC and P connections—57.9% of
the total connections—either do not require DNS information or
leverage records that are on hand locally when the connection is
instantiated. Therefore, these connections incur no direct DNS costs.
Instead, in this section we focus on the SC and R connections.

The top plot in Figure 2 shows the distribution of the duration
of the DNS lookups in the SC and R sets. The modes at lower
durations represent cache hits with the different modes indicating
different resolvers. For instance, the large mode around 2 msec
stems from the local ISP’s resovlers, while the small mode just
under 10 msec stems from cache hits at Cloudflare’s resolvers. The
figure shows a median lookup time of 8.5 msec and a 75th percentile

Putting DNS in Context IMC ’20, October 27–29, 2020, Virtual Event, USA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1

C
D

F

DNS Lookup Duration (sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10

C
D

F

DNS Percentage

All Conns.
SC Conns.

R Conns.

Figure 2: Dist. of DNS lookup delays (top) and DNS contribu-
tion to application transaction (bottom) for SC and R.
of 20 msec. Further only 3.3% of the connections experience a
DNS lookup delay over 100 msec. Our general takeaway is that in
absolute terms DNS lookup durations are modest.

While the absolute delay is often small, we also aim to understand
the delay in the context of the application transaction that depends
on the DNS lookup. For each connection inSC and R we determine
the total time T as the sum of the duration of the DNS lookup D
and the duration of the application transfer A. The bottom plot in
Figure 2 shows the distribution of DNS’ percentage contribution to
the total time (i.e., 100 × D

T). The plot shows that DNS’ contribution
is more than 1% for only 20% of all the transactions (black line).
Further, in only 8% of the transactions do we find DNS contributes
at least 10% of the overall duration. Unsurprisingly, the DNS portion
of the transactions is generally less for the SC set (blue line) than
for the R set (red line). However, even for the R case we find DNS
contributes more than 1% in only 30% of the transactions.

Next, we pick two independent criteria that intuitively indicate
the DNS cost is “insignificant”: (i) an absolute lookup time of no
more then 20 msec and (ii) a relative contribution of no more than
1%.7 We find 64.0% of the SC and R transactions experience DNS
lookups that are insignificant using both criteria. Also, we find that
for 11.5% of the transactions the DNS lookup constitutes more than
1% of the transaction time, however, the absolute cost is no more
than 20 msec. Similarly, we find that 15.9% of the transactions have
an absolute DNS lookup time more than 20 msec, but the DNS
lookup represents no more than 1% of the total transaction. This
leaves 8.6% of theSC and R transactions that pay a significant DNS
lookup cost—i.e., the delay is both (i) > 20 msec and (ii) > 1% of the
overall transaction time. In terms of the overall set of connections
this means only 3.6% suffer a significant DNS lookup delay.
7While we can quibble about the chosen constants, when run with alternate values—
elided due to space—our analysis shows similar high-order insight.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

C
D

F

DNS Lookup Duration (sec)

Local
Cloudflare
OpenDNS

Google DNS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
D

F

Throughput (bytes/sec)

Local
Cloudflare
OpenDNS

Google DNS
Google DNS w/o gstatic

Figure 3: Dist. of DNS delays for R connections (top) and
throughput for SC and R connections (bottom).
7 PERFORMANCE VS. RESOLVER
As we discuss in § 3, a handful of resolver platforms are used by at
least 1% of the connections in our dataset (see Table 1). We now use
our framework to perform an analysis of the relative performance
of each platform across various metrics.

First, we consider the shared cache hit rate—i.e., the percentage
of SC connections relative to all SC and R connections for each
resolver platform. The hit rate varies considerably across resolver
platforms, as follows: (i) Cloudflare, 83.6%, (ii) local ISP resolvers,
71.2%, (iii) OpenDNS, 58.8%, and (iv) Google, 23.0%.8 All platforms
except Google use their cache for the majority of the lookups.

We next turn to the duration of lookups to various resolver plat-
forms. The lookup duration in the SC set are dictated by the RTT
between the monitored clients and the resolver. Therefore, we focus
on delays for the R set of lookups. The top plot in Figure 3 shows
the distribution of the duration of lookups used by R connections.
The plot shows that (naturally) the local ISP’s resolver generally
has the lowest delay, followed by Cloudflare and OpenDNS. The
difference between the local ISP, Cloudflare and OpenDNS at the
median point in the distribution can largely be explained by the
RTT between the clients and the resolver. That is, these resolvers
generally perform their lookups similarly, but their distance from
the client is the factor in making them “better” or “worse”. Google
on the other hand has generally longer lookups than the other
resolvers until the 75th percentile. However, the tail of Google’s
distribution is generally shorter than the other platforms.

A final metric we use to assess resolvers is the performance of ap-
plication transactions. Content Distribution Networks (CDNs) often

8Note, we only assess the first-level cache that is co-located with the resolver the
client accesses. Some platforms may have second-level caches that provide the needed
answers instead of relying on the authoritative servers, however, we cannot detect
this from our vantage point.

IMC ’20, October 27–29, 2020, Virtual Event, USA Mark Allman

convey which edge server clients should access via DNS responses.
One of the pieces of information CDNs use to make this decision
is where a client is located. Since clients rarely send DNS requests
directly to the CDNs’ authoritative servers, the CDNs leverage the
location of the resolver as a proxy for a client’s location. This means
that the resolver can impact the quality of CDN decisions [19].

The bottom plot in Figure 3 shows the distribution of through-
put for SC and R connections for each resolver platform. First,
note that Google has two lines on the plot. We find that 23.5% of
the connections that stem from lookups to Google’s resolver are
for “connectivitycheck.gstatic.com”. This hostname is responsible
for 0.3% of the connections that stem from non-Google resolvers.
Looking up this hostname is part of the process Anroid devices
use to detect captive portals. We removed the connections that
use the “connectivitycheck.gstatic.com” hostname and include the
dashed orange line to show the performance of Google without this
artifact. Comparing the solid and dashed orange lines on the plot
shows that these connections skew the distribution. The plot also
shows that for 75% of connections Cloudflare-based connections
have lower performance than the other three platforms—which are
roughly equivalent. For the 25% tail of the distributions we find
that (i) Cloudflare-based connections converge to being roughly
equivalent with the local ISP’s resolver and OpenDNS, while (ii)
Google-based connections (dashed line) perform better than the
others (corresponding to their lower delay shown in the top plot).

Ultimately, due to conflicting metrics we are unable to determine
which resolver is “the best”.

8 POSSIBLE DNS IMPROVEMENTS
In Table 2 we show that 42.1% of the connections in our dataset
block awaiting DNS information. While we find in § 6 that blocking
adds significant delay for only 3.6% of the connections, we now
briefly explore two local mechanisms to further reduce DNS’ cost.
A Whole-House Cache: The first improvement we study is use
of a cache in each home’s router. While many modern residential
routers act as caching forwarders [25], those used in the CCZ do
not. However, we take cases where multiple requests for the same
record within the record’s TTL as hints that multiple devices require
the same record and a whole-house cache could be helpful.

We used the traffic in our dataset to simulate a whole-house
cache for each house in the observed network. The connections in
the N , LC and P categories will not benefit from further caching,
hence, we focus on the SC and R connections. We find that 9.8%
of the connections in our dataset would move from SC or R to
LC—i.e., would benefit from a whole-house cache. We find that
22% of the SC connections and 25% of the R connections would see
benefit from a whole-house cache—i.e., the savings is fairly uniform
across the two sets of connections that block on DNS lookups.
Refreshing: Another local approach we investigate to aid perfor-
mance is speculatively refreshing cache entries as they are about to
expire in a whole-house cache. This is similar to browser prefetch-
ing in that we use a cue that a user might need a given record in
the future so we request and cache the record a priori.

To study this, we built a simple trace-driven simulator that uses
our traffic dataset as the workload. For each query retrieved over
our dataset we use the maximum TTL in the observed responses

Standard Refresh
All

Conns. 10.4M 10.4M
DNS Lookups 8.4M 1.2B
Lookups/sec/house 0.2 25.2
Cache Hits 61.0% 96.6%
Cache Misses 39.0% 3.4%

Table 3: Efficacy of refreshing expiring names.

as the authoritative TTL. This is a conservative approximation in
that if the TTL we observe is lower than the actual authoritative
TTL we will expire the entry too soon and see more work required
to keep the entry fresh. Further, we do not refresh records with
an authoritative TTL under 10 seconds as this is logistically prob-
lematic (more below). Finally, note, that some of the results from
our simulations do not exactly match the analysis in the previous
sections. This stems from our ideal use of the TTL, which does not
always align with reality (e.g., see § 5.2).

Table 3 shows the results of our simulations. First, note, we only
use the 10.4M connections in our corpus that use DNS in some
fashion—i.e., we do not include the N connections. The second
column shows the performance of a standard cache that conducts
DNS queries as needed. We find 61.0% of the connections are served
from the cache. The number of lookups equates to an average of
roughly 0.2 lookups per second across all the houses in our dataset.

The final column of Table 3 shows the performance of a whole-
house cache that refreshes all previous lookups as their entries
expire—for records with TTLs > 10 seconds. In this case, the cache
hit rate is 96.6%, showing that name use is highly predictable by
previous user behavior. Achieving this cache hit rate, however,
takes roughly 1.2B additional DNS requests—or roughly 144x more
than the standard cache. The average query rate is about 25 queries
per second per house—an approximately 126x increase over the
standard cache. While the cache hit rate increased by more than
50%, the query load seems impractical for most situations. Further,
the query load will increase if we include names with lower TTLs.
An open question for future work is whether we can design ways
to achieve close to the 96.6% cache hit rate that is possible, while
incurring costs that are commiserate with the standard cache.

9 SUMMARY
This paper provides a study of DNS use within the context of appli-
cation traffic. We make several contributions, including (i) finding
nearly 58% of connections do not block awaiting DNS lookups, (ii)
determining that only 3.6% of the connections pay a significant DNS
cost, and (iii) finding no clear cut winner across several resolver
platforms. We believe our analysis adds to the significant existing
body of work on understanding DNS.

ACKNOWLEDGMENTS
This work benefits from discussions with Misha Rabinovich, Kyle
Schomp and Rami Al-Dalky over the years. The IMC reviewers and
our shepherd, John Heidemann, provided many useful comments
that improved the paper. This work was supported in part by Na-
tional Science Foundation awards CNS-1647126 and CNS-1815876.
Our thanks to all!

Putting DNS in Context IMC ’20, October 27–29, 2020, Virtual Event, USA

REFERENCES
[1] Rami Al-Dalky, Michael Rabinovich, and Mark Allman. 2018. Practical Challenge-

Response for DNS. ACM Computer Communication Review 48, 3 (July 2018).
[2] Mark Allman. 2018. Comments on DNS Robustness. InACM Internet Measurement

Conference.
[3] Ignacio N. Bermudez, Marco Mellia, Maurizio M. Munafo, Ram Keralapura, and

Antonio Nucci. 2012. DNS to the Rescue: Discerning Content and Services in a
Tangled Web. In Internet Measurement Conference.

[4] N. Brownlee, k. claffy, and E. Nemeth. 2001. DNS Measurements at a Root Server.
In IEEE Global Telecommunications Conference (GLOBECOM).

[5] Tom Callahan, Mark Allman, and Michael Rabinovich. 2013. On Modern DNS
Behavior and Properties. ACMComputer Communication Review 43, 3 (July 2013).

[6] S. Castro, D. Wessels, M. Fomenkov, and k. claffy. 2008. A Day at the Root of
the Internet. ACM SIGCOMM Computer Communication Review (CCR) 38, 5 (Oct
2008).

[7] E. Cohen and H. Kaplan. 2003. Proactive Caching of DNS Records: Addressing a
Performance Bottleneck. Computer Networks 41, 6 (2003).

[8] P. Hoffman and P. McManus. 2018. DNS Queries Over HTTPS (DoH). RFC 8484.
[9] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. 2016.

Specification For DNS Over Transport Layer Security (TLS). RFC 7858.
[10] J. Iyengar and M. Thomson. 2020. QUIC: A UDP-Based Multiplexed and Secure

Transport. Internet-Draft draft-ietf-quic-transport-30.txt (work in progress).
[11] Ben Jones, Nick Feamster, Vern Paxson, Nicholas Weaver, and Mark Allman.

2016. Detecting DNS Root Manipulation. In Passive and Active Measurement
Conference.

[12] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. 2001. DNS Perfor-
mance and the Effectiveness of Caching. In ACM SIGCOMM Internet Measurement
Workshop.

[13] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Internet-Wide Study of
DNS Cache Injections. In Proc. of IEEE InfoCom.

[14] Matthew Lentz, Dave Levin, Jason Castonguay, Neil Spring, and Bobby Bhat-
tacharjee. 2013. D-mystifying the d-root Address Change. In ACM Internet
Measurement Conference.

[15] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang,
Chunying Leng, Ying Liu, Zaifeng Zhang, and JianpingWu. 2019. An End-to-End,
Large-Scale Measurement of DNS-over-Encryption: How Far Have We Come?.
In ACM SIGCOMM Internet Measurement Conference.

[16] M. M. Almeida, A. Finamore, D. Perino, N. Vallina-Rodriguez, and M. Varvello.
2017. Dissecting DNS Stakeholders in Mobile Networks. In ACM CoNext.

[17] P.V. Mockapetris. 1987. Domain Names - Concepts And Facilities. RFC 1034.
[18] Giovane C. M. Moura, John Heidemann, Ricardo Schmidt, and Wes Hardaker.

2019. Cache Me If You Can: Effects of DNS Time-to-Live. In ACM SIGCOMM
Internet Measurement Conference.

[19] J. Otto, M. Schez, J. Rula, and F. Bustamante. 2012. Content Delivery and the Nat-
ural Evolution of DNS: Remote DNS Trends, Performance Issues and Alternative
Solutions. In ACM SIGCOMM Internet Measurement Conference.

[20] Craig Partridge and Mark Allman. 2016. Addressing Ethical Considerations in
Network Measurement Papers. Commun. ACM 59, 10 (Oct. 2016).

[21] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-Time.
Computer Networks 31, 23-24 (Dec. 1999).

[22] Matt Sargent and Mark Allman. 2014. PerformanceWithin A Fiber-To-The-Home
Network. ACM Computer Communication Review 44, 3 (July 2014).

[23] Matt Sargent, Brian Stack, Tom Dooner, and Mark Allman. 2012. A First Look at 1
Gbps Fiber-To-The-Home Traffic. Technical Report 12-009. International Computer
Science Institute.

[24] Kyle Schomp, Mark Allman, and Michael Rabinovich. 2014. DNS Resolvers
Considered Harmful. In ACM SIGCOMM HotNets.

[25] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On
Measuring the Client-Side DNS Infrastructure. In ACM Internet Measurement
Conference.

[26] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2014. As-
sessing DNS Vulnerability to Record Injection. In Passive and Active Measurement
Conference.

[27] Kyle Schomp, Michael Rabinovich, and Mark Allman. 2016. Towards a Model of
DNS Client Behavior. In Passive and Active Measurement Conference.

[28] Craig Shue, Andrew Kalafut, Mark Allman, and Curtis Taylor. 2012. On Building
Inexpensive Network Capabilities. ACM Computer Communication Review 42, 2
(April 2012).

[29] Craig Shue, Andrew Kalafut, and Minaxi Gupta. 2007. The Web is Smaller than
it Seems. In ACM Internet Measurement Conference.

[30] Srikanth Sundaresan, Nick Feamster, Renata Teixeira, and Nazanin Magharei.
2013. Measuring and Mitigating Web Performance Bottlenecks in Broadband
Access Networks. In ACM Internet Measurement Conference.

[31] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. 2014. DNSSEC and
Its Potential for DDoS Attacks: A Comprehensive Measurement Study. In ACM
Internet Measurement Conference.

[32] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf. In Proc. of
NSDI.

[33] D. Wessels and M. Fomenkov. 2003. Wow, That’s A Lot of Packets. In Passive and
Active Network Measurement Workshop (PAM).

A ETHICS
The dataset we use for this paper is based on observing a real user
population and, as such, there are privacy concerns with the data.
While we cannot guarantee no harm ever comes from this dataset,
we have taken a number of precautions to conduct the work in an
ethical manner, including:

• The monitored FTTH network is adjacent to Case Western
Reserve University and was setup for the explicit purpose
of experimenting with giving large capacity to residential
users. Each house connected to the network has explicitly
agreed to participate in the experimental program.

• Case’s Institutional Research Board (IRB) has reviewed our
data collection, storage and use processes and ultimately has
classified our research as not being human subject research.
That is, our research focus is on the system and not the
people. Of course, we do not take this finding as carte blanche,
but rather understand that the dataset must be treated with
care as it is in fact sensitive.

• We use only passively collected data in this paper. Therefore,
our experiments cannot cause direct harm, but instead the
data represents only “potential harm”, as outlined in [20].
In other words, we do not make any actual changes to the
network, we only watch what naturally happens. That said,
we treat the recorded data as highly sensitive such that any
potential harm we record does not turn into actual harm.

• Access to the actual network monitor we use to gather data
is tightly controlled. It is generally available only to fac-
ulty and senior research scientists. Occasionally, a student
is given temporary access to debug an issue. This latter did
not happen for the data gathered for this paper.

• The body of this paper uses only aggregate numbers and we
do not provide enough information to identify any user of
the monitored network. While it may be possible to iden-
tify people with the raw data, we have not done so in our
investigation.

• From the traffic patterns we observe, we believe all houses
likely have multiple devices and multiple users. The gate-
way provided for each residence in the experimental net-
work does Network Address Translation and this makes it
even more difficult to readily identify actual users from the
recorded traffic.

• All data collected is kept encrypted. Access is given only (i)
to those with a direct need and (ii) to the narrowest possible
set of data for a given project.

• For the application transactions (web, email, etc.) we do not
record the payload of the transactions. We use Bro’s [21]
standard connection summary policy file to record various
information about the connections (endpoints, start time,
duration, bytes transmitted, etc.).

• For DNS transactions we use Bro’s [21] DNS policy script to
record traffic. We do not collect DNS payloads as they appear

IMC ’20, October 27–29, 2020, Virtual Event, USA Mark Allman

on the wire, but the summaries do contain query strings and
the resource records from responses.

• While we could have anonymized portions of the traffic—
e.g., IP addresses, query strings—described in the last two
bullets before storing the data, we chose not to do so. While
most of the analysis in this paper could have been conducted
on anonymous data, we believe that such anonymization
unduly degrades the research value of the data.
E.g., without the real IP addresses of the DNS resolvers the
quality of the analysis in § 7 would have been degraded—or,
perhaps, not possible. For instance, each resolver platform

uses multiple IP addresses and it would have been exceed-
ingly difficult to tease apart Google and OpenDNS because
they both had an RTT of roughly 20msec from themonitored
network.
As we have done in much previous work, we put our trust in
limiting access to the data and working in a disciplined way
that calls for only looking at only what we need to complete
a given analysis.

Ultimately, we believe the ethical decisions we made for our work
are consistent with much previous work in the community and
align with the community’s (unwritten9) norms.
9 ...alas...

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Methodology
	5 DNS Information Source
	5.1 No DNS Information Required
	5.2 No DNS Lookup Required
	5.3 DNS Lookup Required

	6 DNS Performance Implications
	7 Performance vs. Resolver
	8 Possible DNS Improvements
	9 Summary
	References
	A Ethics

