
IMPROVING TCP PERFORMANCE OVER SATELLITE CHANNELS

A Thesis Presented To

The Faculty of the

Fritz J. and Dolores H. Russ

College of Engineering and Technology

Ohio University

In Partial Ful�llment

of the Requirements for the Degree

Master of Science

by

Mark Allman

June, 1997

THIS THESIS ENTITLED

\IMPROVING TCP PERFORMANCE OVER SATELLITE CHANNELS"

by Mark Allman

has been approved

for the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology

Shawn D. Ostermann

Assistant Professor of Computer Science

Warren K. Wray, Dean

Fritz J. and Dolores H. Russ

College of Engineering and Technology

i

ACKNOWLEDGMENTS

This thesis would not have been possible without help from a number of peo-

ple. Thanks to Shawn for enlightening conversations, clever ideas, patience and for

providing a stimulating research environment. I would also like to thank Hans and

Ohio University's Internetworking Research Group for many animated discussions

and much support over the last few years. Special thanks to my o�cemates Boris,

Brian, Chris, Doug and Rich for their assistance, conversations and for generally

putting up with me. Also, I thank my family and many friends for their support over

the years. This work would not have been possible without generous funding from

NASA's Lewis Research Center and Ohio University's School of Electrical Engineer-

ing and Computer Science. Most importantly I thank my father, Wes, and Meredith

for their encouragement and support.

DISCARD THIS PAGE

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

1. INTRODUCTION . 1

1.1 TCP Overview . 1

1.1.1 Slow Start and Congestion Avoidance 4

1.1.2 Fast Retransmit and Fast Recovery 5

1.2 TCP Problems in the Satellite Environment 6

1.2.1 Problems Increasing the Sliding Window 7

1.2.2 Problems With TCP Steady-State Behavior 10

1.3 Possible Solutions . 10

2. AN APPLICATION-LEVEL SOLUTION 12

2.1 XFTP Theory . 12

2.2 Experimental Environment . 13

2.2.1 NASA ACTS . 14

2.2.2 Software Emulator . 15

2.2.3 Hardware Emulator . 16

2.3 Experimental Results . 18

2.4 XFTP Lessons . 22

2.4.1 Bigger Windows . 22

2.4.2 Selective Acknowledgments . 23

2.4.3 More Aggressive Slow Start 23

2.4.4 More Aggressive Congestion Avoidance 24

2.4.5 Slow Start Threshold Estimation 24

iii

Page

3. SLOW START MODIFICATIONS . 25

3.1 Slow Start Modi�cations . 25

3.2 Experiments With Larger Initial Window 27

3.3 Experiments With a New Window Increase Algorithm 29

3.4 Experiments with Larger Initial Windows and a Modi�ed Window In-

crease Algorithm . 32

3.5 Future Work . 33

4. CONCLUSIONS AND FUTURE WORK 35

4.1 Recommendations for TCP Extensions 35

4.1.1 Large Windows . 35

4.1.2 Selective Acknowledgments . 36

4.2 Recommendations for Future Modi�cations to TCP 36

4.2.1 Slow Start Modi�cations . 36

4.2.2 Congestion Avoidance Modi�cations 37

4.2.3 Slow Start Threshold Estimation 37

4.2.4 New Loss Recovery Mechanisms 38

4.3 Conclusions . 39

BIBLIOGRAPHY . 40

APPENDIX

A. TCP CONGESTION CONTROL ALGORITHMS 44

B. FTP PROTOCOL MODIFICATIONS . 49

B.1 Introduction . 49

B.2 FTP Commands . 49

B.2.1 MULT . 49

B.2.2 MPRT . 50

B.2.3 MPSV . 50

B.2.4 Discussion . 51

B.3 Enabling Multiple Data Connections 51

B.4 Dividing a File Across Multiple Connections 52

B.5 Recommended Limits . 53

iv

Page

ABSTRACT . 54

v

LIST OF TABLES

Table Page

1.1 TCP Cumulative Acknowledgment Example 2

3.1 New Window Increase Algorithm Without Congestion 30

3.2 New Window Increase Algorithm With Congestion 31

A.1 Congestion Control Algorithm Example 45

vi

LIST OF FIGURES

Figure Page

1.1 Slow Start Comparison . 8

1.2 Congestion Avoidance Comparison . 9

2.1 NASA ACTS Satellite System . 14

2.2 ONE Software Emulator Setup . 15

2.3 A Comparison of NASA ACTS and ONE 16

2.4 Hardware Emulator Setup . 17

2.5 A Comparison of NASA ACTS and the Hardware Emulator 17

2.6 XFTP Test Results . 19

2.7 Modi�ed XFTP Tests . 21

3.1 Larger Initial Windows Without Congestion 28

3.2 Larger Initial Windows With Congestion 29

3.3 Larger Initial Windows and a Modi�ed Window Increase AlgorithmWith-

out Congestion . 33

3.4 Larger Initial Windows and a Modi�ed Window Increase Algorithm With

Congestion . 34

B.1 XFTP Record Format . 52

1

1. INTRODUCTION

The Transmission Control Protocol (TCP) [Pos81] [Com95] is the reliable

connection-oriented transport protocol that a number of major Internet services use

to communicate (e.g., SMTP [Pos82], NNTP [KL86], HTTP [BLFN96] [FJGFBL97],

FTP [PR85]). TCP performs well in terrestrial networks, but does not make full

use of the available bandwidth over satellite channels [Kru95]. The following is an

overview of TCP, followed by an outline of speci�c problems discovered in the satellite

environment. Finally, several proposed solutions are given followed by a brief outline

of the research presented in this paper.

1.1 TCP Overview

TCP provides reliable segment delivery through a positive acknowledgment mech-

anism. Each data segment transmitted contains a sequence number indicating the

position of the data in the transmission. The sequence number is determined by a base

sequence number picked by the operating system and the relative position of the seg-

ment's �rst octet of data in the transmission. For example, assume a TCP sender with

base sequence number X transmits 100 byte segments. The �rst segment will contain

sequence number X and the second segment will contain sequence number X + 100.

For simplicity, this paper treats the sequence number as a \segment number," rather

than the standard \octet number." Including sequence numbers in segment headers

allows the receiver to reassemble the stream of data if segments are re-ordered. Ad-

ditionally, the receiver is able to report the segments that have arrived to the sender

2

by transmitting an acknowledgment (ACK) to the sender for each segment received.

Each ACK contains the sequence number of the next in-order segment the receiver

expects to arrive. Table 1.1 provides an example of TCP's acknowledgment behav-

ior. The table shows that segment 1 triggers an ACK containing sequence number 2.

This indicates that the next segment the receiver expects contains sequence number

2. The arrival of segments 2 and 3 trigger similar ACKs. Notice that segment 4

does not arrive at the receiver before segments 5 and 6. The receiver generates ACKs

containing sequence number 4 in response to segments 5 and 6 because segment 4 is

the next in-order segment the receiver expects to arrive. When segment 4 does arrive,

the ACK triggered contains sequence number 7, indicating the next in-order segment

expected should contain sequence number 7. If a sender does not receive an ACK for

a given segment within a certain amount of time, the segment is retransmitted. The

amount of time the sender waits for an ACK before retransmitting the data segment

is the retransmit timeout (RTO). The RTO is a smoothed estimation of the round

trip time (RTT) plus some variation. The exact details of calculating the RTO are

given in [JK88] and [KP87].

Segment ACK

Received Sent

1 2

2 3

3 4

5 4

6 4

4 7

Table 1.1 TCP Cumulative ACK Example

This �gure shows TCP's acknowledgment behavior from the receiver's perspective.

Each segment received triggers the transmission of a cumulative ACK containing the

sequence number of the next segment the receiver expects to arrive.

3

TCP is a sliding window protocol. A sliding window protocol allows the sender

to transmit a given number of segments before receiving an ACK. When an ACK

is received by the sender, the window \slides" to allow one more segment to be

transmitted. Each TCP segment sent (data segments and ACKs) contains a window

advertisement. The size of the window advertised by the receiver is the upper bound

for the sender's sliding window. The largest window standard TCP can advertise is

65,535 bytes due to the 16 bits allocated for the advertisement in the TCP header

[Pos81].

TCP uses a set of congestion control algorithms [JK88] [Jac90b] [Ste97] that fur-

ther control TCP's sending behavior. These algorithms are important because they

ensure that TCP will not transmit data at a rate that is inappropriate for the net-

work resources available. If TCP's transmission rate is too high, the intermediate

routers in the network can be overwhelmed. If segments arrive at an intermediate

router faster than the router can forward the segments, the segments will be queued

for later processing. If a segment arrives at a router that has no memory to queue

the segment, the segment will be discarded. Therefore, it is important for TCP to be

able to adapt it's sending rate to the network conditions to avoid segment loss.

When too many TCP connections are sending at an inappropriately high rate

the network can su�er from congestive collapse. Congestive collapse is a state when

segments are being injected into the network but very little useful work is being ac-

complished; most of the data segments or their corresponding ACKs are discarded by

one of the intermediate routers in the network before reaching their destination. This

causes the sender to retransmit the data, further aggravating the problem. Congestive

collapse is discussed in more detail in [Nag84a], [Nag84b] and [FF97].

TCP's congestion control algorithms attempt to prevent congestive collapse by

detecting congestion and reducing the transmission rate accordingly. While these al-

gorithms are very important, they can also have a negative impact on the performance

of TCP over satellite channels [Kru95]. TCP's four congestion control algorithms are

4

slow start, congestion avoidance, fast retransmit and fast recovery [JK88] [Jac90b]

[Ste97]. The following is a brief outline of these algorithms. A detailed example of

how these algorithms work together is given in appendix A.

1.1.1 Slow Start and Congestion Avoidance

The slow start and congestion avoidance algorithms [JK88] [Ste97] allow TCP to

increase the data transmission rate without overwhelming the intermediate routers.

To accomplish this, TCP senders use a variable called the congestion window (cwnd).

TCP's congestion window is the size of the sliding window used by the sender and

cwnd cannot exceed the size of the receiver's advertised window. Therefore, TCP

cannot inject more than cwnd segments of unacknowledged data into the network.

The slow start algorithm is used to gradually increase the amount of unacknowl-

edged data TCP injects into the network, by gradually increasing the size of the

sliding window. Slow start is used at the beginning of a TCP connection and in

certain instances after congestion as detected. The algorithm begins by initializing

cwnd to 1 segment

1

. For each ACK received, TCP increases the value of cwnd by 1

segment. For example, after the �rst ACK arrives, cwnd is incremented to 2 segments

and TCP is able to transmit 2 new data segments. This algorithm provides exponen-

tial increase in the size of the sliding window. Slow start continues until either the

size of cwnd reaches the slow start threshold (ssthresh) or segment loss is detected.

The value of ssthresh is initialized to the size of the receiver's advertised window at

the beginning of the connection. If TCP's RTO expires for a given segment, TCP

retransmits the segment but also uses this as an indication of network congestion.

In response to an RTO timeout, TCP reduces its sending rate by setting ssthresh

to half of cwnd 's value and then setting cwnd to 1 segment. This triggers the slow

start algorithm, which will stop when the value of cwnd meets or exceeds ssthresh

1

In practice, cwnd is measured in bytes, however, to simplify discussion we express it in terms of

segments in this paper.

5

or another loss is detected. The new value of ssthresh places an upper bound on the

slow start algorithm of half the sending rate when the loss was detected.

Congestion avoidance is the phase that follows slow start. In this phase the value

of cwnd is greater than or equal to ssthresh. This algorithm increases cwnd at a slower

rate than during slow start. For each segment ACKed during congestion avoidance,

the congestion window is increased by 1/cwnd (unless this would make the value of

cwnd greater than the receivers advertised window). This adds roughly one segment

to the value of cwnd every RTT. The congestion avoidance algorithm provides a linear

increase in the size of TCP's sliding window. This mechanism is used to probe the

network for additional capacity in a conservative manner.

1.1.2 Fast Retransmit and Fast Recovery

The fast retransmit and fast recovery algorithms [JK88] [Jac90b] [Ste97] allow

TCP to detect and recover from segment drops more e�ectively than relying on the

RTO. The RTO is a smoothed average of the RTT plus some variance. As de�ned

in the TCP standard [Pos81], TCP retransmits a segment if the RTO expires before

the segment is ACKed. This mechanism works well if the granularity of the timer

that TCP uses is less than or equal to the RTO. However, the BSD Unix operating

system's timer granularity is 500 ms [WS95] which is clearly not su�cient to trigger

retransmissions on most terrestrial networks (with RTTs less than 500 ms). BSD's

implementation of TCP is freely available and has been used as the basis of many

other implementations of TCP. Our investigations show that timers with granularity

of approximately 500 ms are prevalent.

Fast retransmit provides a way to retransmit a segment before the RTO expires.

As discussed in section 1.1, TCP generates duplicate ACKs when segments arrive

out-of-order. When a small number (usually 3) of duplicate ACKs arrive, TCP uses

this as an indication that a segment has been lost, and it retransmits the appropriate

segment. In addition, TCP uses the dropped segment as an indication of network

6

congestion and reduces the transmission rate. When a segment is retransmitted

using fast retransmit the fast recovery algorithm is employed, as follows. The cwnd

is reduced by half and ssthresh is set to the new value of cwnd. Each duplicate ACK

received by the sender indicates that a segment has arrived at the receiver and is no

longer in the network. TCP uses this knowledge to infer that the network can absorb

another segment and arti�cially inates cwnd by 1 segment. New data segments may

be sent if the value of cwnd becomes greater than the number of unacknowledged

segments in the network. Upon receipt of a non-duplicate ACK, TCP reduces cwnd

by the amount it was arti�cially inated (i.e., back to the value of ssthresh) and the

congestion avoidance algorithm is used as described in section 1.1.1.

TCP reduces its transmission rate for each lost segment it detects, but the amount

of the reduction depends on the way the segment loss was detected. When the re-

transmission is due to the expiration of the RTO, TCP cannot infer anything about

the state of the network and therefore initiates slow start (up to half the transmis-

sion rate when the loss occurred). When the retransmission is triggered by the fast

retransmit mechanism, TCP is receiving duplicate ACKs indicating that segments

are still owing between the sender and receiver. Therefore, the reduction of the

transmission rate is not as large as when the sender is receiving no feedback. When

retransmission is triggered by duplicate ACKs, TCP reduces the sending rate by half.

1.2 TCP Problems in the Satellite Environment

TCP's performance problems in the satellite environment have been outlined in the

literature [Kru95]. The problems can be broken down into two broad areas: problems

increasing the size of the sliding window and problems in steady-state behavior.

7

1.2.1 Problems Increasing the Sliding Window

As outlined above, TCP uses two algorithms to increase the size of the sliding

window. The following two sections will outline the problems with slow start and

congestion avoidance in the satellite environment.

1.2.1.1 Slow Start Over Satellite Channels

Kruse [Kru95] measured the RTT over the NASA ACTS [Bv91] satellite as ap-

proximately 560 ms. For comparison, we measured the RTT over the terrestrial

Internet between Ohio University and the University of California at Berkeley as ap-

proximately 80 ms. Equation 1.1 gives the time it takes the slow start algorithm to

reach a window size of W segments on a network with a RTT of R as de�ned by

[JK88].

slow start time = Rlog

2

W (1.1)

Assuming 512 byte segments, a window size of 128 segments (maximum TCP win-

dow) and the RTTs given above, TCP running over the satellite network takes 3.92

seconds to increase cwnd to the full advertised window. TCP running over the ter-

restrial network takes 560 ms to reach the same window size. While using the slow

start algorithm, TCP can waste available bandwidth. Figure 1.1 shows a mathemat-

ical model of the total amount of data sent over both the terrestrial network and the

satellite network as a function of time. In the time it takes TCP to achieve the ad-

vertised window (128 segments) in the satellite network, TCP is able to send roughly

22 times more data over the terrestrial network.

8

100

1000

10000

100000

1e+06

1e+07

0 0.5 1 1.5 2 2.5 3 3.5 4

D
at

a
T

ra
ns

m
itt

ed
 (

by
te

s)

Time (seconds)

Satellite Network
Terrestrial Network

Figure 1.1 Slow Start Comparison

This �gure shows a mathematical model of the total amount of data sent by TCP

over a satellite network and a terrestrial network as a function of time. Both transfers

start with a cwnd of 1 segment and increase the size of cwnd using the slow start

algorithm. The amount of time shown represents the time it takes TCP over the

satellite network to reach the advertised window (128 segments, in this case) using

slow start.

1.2.1.2 Congestion Avoidance Over Satellite Channels

TCP uses congestion avoidance to probe the network for additional capacity after

loss. Satellite channels increase the amount of time the congestion avoidance algo-

rithm takes to increase cwnd when compared to terrestrial links. For example, when

a TCP connection utilizing the maximum possible window (128 segments containing

512 bytes each) experiences a single segment drop, the value of cwnd is reduced to 64

segments. For each loss-free RTT the value of cwnd is increased by approximately 1

segment. Over the terrestrial network described above it takes 5.12 seconds to increase

the value of cwnd size from 64 segments to 128 segments using congestion avoidance.

Over the ACTS satellite channel the same increase takes 35.84 seconds. Each RTT

9

that TCP is not fully utilizing the available bandwidth represents lost throughput.

Figure 1.2 presents a mathematical model illustrating the total amount of data the

TCP congestion avoidance algorithm is able to send over both the satellite network

and the terrestrial network as a function of time. The �gure shows that when TCP

is operating over a terrestrial network the increase to the advertised window is more

rapid and therefore TCP is able to send almost 9 times more data over the terrestrial

network in the same amount of time when compared to the satellite network.

10000

100000

1e+06

1e+07

1e+08

0 5 10 15 20 25 30 35 40

D
at

a
T

ra
ns

m
itt

ed
 (

by
te

s)

Time (seconds)

Satellite Network
Terrestrial Network

Figure 1.2 Congestion Avoidance Comparison

This �gure shows a mathematical model of the total amount of data sent by TCP

over a satellite network and a terrestrial network as a function of time. Both transfers

start with a cwnd of 64 segments and increase the size of cwnd using the congestion

avoidance algorithm until cwnd reaches the advertised window size (128 segments).

The amount of time shown represents the time it takes TCP over the satellite network

to reach the advertised window using congestion avoidance.

10

1.2.2 Problems With TCP Steady-State Behavior

The satellite channel studied in this paper has 1.536 Mbits/second (or 192,000

bytes/second) of capacity (T1 speed). An upper bound for TCP throughput is given

in equation 1.2 [Pos81]. This equation assumes a loss-free network and a TCP that

does not use any of the congestion control algorithms described in section 1.1.

max throughput =

receive window size

round trip time

(1.2)

Therefore, when using the maximum TCP receive window of 65,535 bytes over a

satellite channel (RTT of 560 ms) the upper bound on throughput is given by equation

1.3.

max throughput =

65,535 bytes

560 ms

� 117,027 bytes/second (1.3)

Clearly this upper bound on TCP throughput ensures that TCP will be unable to

fully utilize the bandwidth provided by T1 satellite channels.

1.3 Possible Solutions

The problems outlined above can be mitigated using a number of approaches. One

approach that has been studied is to break the TCP connection at the router before

the satellite channel [BB95]. Using this mechanism, the router before the satellite

channel accepts and ACKs all the segments sent to a machine across the satellite link.

From the sender's perspective, the transfer is complete when the router ACKs all the

segments. The router then sends the data to the host across the satellite channel. This

makes the transfer \appear" much faster from the senders perspective. However, the

ACKs received by the sender do not indicate that the data was received at the �nal

destination and therefore, this mechanism breaks the end-to-end semantics of TCP.

A similar idea is to make the router handle retransmissions for the sender [BSAK95].

11

Making the router repair all loss without notifying the TCP sender allows retrans-

mission without making the sending TCP reduce the transmission rate. Researchers

have also investigated compressing the TCP and IP headers in an e�ort to reduce

the overhead, leaving more bandwidth for the data [Jac90a] [DENP96]. Finally, new

queueing mechanisms, such as Random Early Detection [FJ93] [BCC

+

97], provide in-

termediate routers with a way to inform the TCP sender that congestion is occurring

before the TCP sender sends an inappropriate amount of data. By giving TCP an

early congestion indication, the router can force TCP to reduce the transmission rate

before the TCP sender transmits an inappropriate amount of data forcing the router

to discard a large number of segments. While potentially useful, these mechanisms

are outside the scope of our investigation.

The �rst approach we studied was an application-level solution. We modi�ed an

FTP client and server to use multiple parallel TCP data connections to transfer a

single �le. While not a general purpose solution for improving utilization of satellite

channels this version of FTP provided insights into the kinds of TCP mechanisms that

may mitigate the problems introduced by satellite channels. XFTP and the lessons it

provides are outlined in chapter 2. The second step of our work is to take the insights

provided by XFTP and enhance the TCP protocol accordingly. One of the issues that

XFTP illustrated was that using a larger initial sliding window enhances bandwidth

utilization. We modi�ed TCP to make the slow start algorithm more aggressive. The

algorithm modi�cations and experimental results are outlined in chapter 3. Finally,

chapter 4 provides conclusions, recommendations and outlines areas for future work.

12

2. AN APPLICATION-LEVEL SOLUTION

The �rst approach we used to better utilize the available bandwidth over satellite

links was to employ multiple parallel TCP data connections. We altered an FTP client

and server to use multiple parallel TCP data connections to transfer a single �le. Our

modi�ed version of FTP is called XFTP

1

. The changes to the FTP application-level

protocol are outlined in appendix B and [AO97b]. This chapter is organized as follows.

Section 2.1 outlines our application-level solution. Section 2.2 describes the various

experimental environments we used to test XFTP. Section 2.3 presents the results

of our experiments. Finally, section 2.4 relates the lessons of XFTP to mechanisms

that could be used in TCP to help it better utilize the available capacity of satellite

channels.

2.1 XFTP Theory

As outlined in equation 1.3 in the previous chapter, TCP is limited to a through-

put of approximately 117,027 bytes/second over the satellite channel used in our

experiments. This limit comes from the maximum TCP window size (65,535 bytes)

and the delay imposed by satellite communications (560 ms RTT). When multiple

TCP connections are used in parallel, an application can utilize a larger e�ective TCP

window. Equation 2.1 shows that an application using 2 parallel TCP connections,

each using a maximum window of 65,535 bytes, can fully utilize a satellite T1 link

(192,000 bytes/second).

1

The name \XFTP" has been used by other researchers for experimental versions of FTP. Unless

otherwise noted, \XFTP" refers to our modi�ed version of FTP in this paper.

13

max throughput =

2(65,535 bytes)

560 ms

� 234,054 bytes/second (2.1)

Our investigation found that the standard SunOS 4.1 FTP client and server use

an advertised window of 24 KB

2

, rather than the maximum window size of 65,535

bytes. Equation 2.2 shows that this smaller window further reduces the throughput

FTP is able to achieve over satellite channels. Unless otherwise noted, the window

size in all of our experiments is 24 KB so that valid comparisons with the standard

SunOS FTP can be drawn.

max throughput =

24,576 bytes

560 ms

� 43,886 bytes/second (2.2)

Rearranging equation 1.2 gives equation 2.3 which de�nes the window size needed to

fully utilize a channel with a given bandwidth and RTT.

window size = (bandwidth)(RTT) (2.3)

So, to fully utilize the capacity of the satellite circuit used in our study, a TCP window

of 107,520 bytes is needed according to equation 2.4.

window size = (192,000 bytes/second)(560 ms) = 107,520 bytes (2.4)

According to equation 2.5, XFTP must use at least 5 parallel data connections, each

with a 24 KB window, to fully utilize a T1 satellite channel.

&

e�ective window needed

1 connection window size

'

=

&

107,520 bytes

24,576 bytes

'

= 5 connections (2.5)

2.2 Experimental Environment

We tested XFTP (and subsequent TCP modi�cations) in 3 environments. The

satellite environment used for this research was the NASA ACTS satellite system

2

In this paper, 1 KB = 1024 bytes.

14

[Bv91], which is in geosynchronous orbit. We also used a software emulator built

at Ohio University in conjunction with this research and a commercially available

hardware emulator to model the ACTS system when the satellite system was being

used by other researchers. When conducting our tests, we did not share any of the

3 testbeds with competing network tra�c. Each of these environments are discussed

in detail below.

CLIENT

SERVER

ROUTER 1

ROUTER 2

ACTS

Figure 2.1 NASA ACTS Satellite System

This �gure shows the network layout for our tests involving the NASA ACTS satellite

system.

2.2.1 NASA ACTS

The network layout of the NASA ACTS testbed is shown in �gure 2.1. Each

physical network contains a Cisco 2514 router. The two routers are connected via the

ACTS satellite. In this environment, the client and server are Sun IPX workstations

running SunOS 4.1.3. We veri�ed that the RTT was approximately 560 ms. The

Cisco routers used in our experiments employed drop-tail queueing. When a router

receives a segment to forward but is already in the process of transmitting another

15

segment, the incoming segment is placed in a queue for later processing. A router

using drop-tail queueing discards incoming segments when the router has exhausted

all available queue memory.

CLIENT EMULATOR SERVER

Figure 2.2 ONE Software Emulator Setup

This �gure shows the network layout for all our tests involving the ONE software

emulator.

2.2.2 Software Emulator

The software emulator used in our experiments is the Ohio Network Emulator

(ONE) [ACO97]. The network layout for the experiments using ONE is shown in

�gure 2.2. The emulator runs on a Sun workstation running the Solaris operating

system. The end points in this �gure are a mixture of Sparc IPC and Intel 486

machines running NetBSD 1.1. The software emulator uses a drop-tail queueing

strategy.

ONE passes segments between the two physical networks to which it is connected

based on a number of user-con�gurable parameters. Each segment passing through

the software emulator is subjected to 3 delays, as follows.

� Transmission Delay: This is the time it would take to transmit the segment

on a network with the user-con�gured bandwidth.

� Propagation Delay: This is the user-con�gurable amount of time it takes a

segment to travel the length of the channel being emulated.

16

� Queue Delay: This delay is determined by ONE. If a segment arrives while

another is being serviced the new segment must sit in the queue and await

transmission. The length of the queue determines the queue delay inserted by

ONE.

14

16

18

20

22

24

26

28

30

32

34

36

0*10^0 1*10^6 2*10^6 3*10^6 4*10^6 5*10^6 6*10^6

T
hr

ou
gh

pu
t (

K
B

/s
ec

on
d)

File Size (bytes)

ACTS
ONE

Figure 2.3 A Comparison of NASA ACTS and ONE

This �gure shows the results of running identical tests using the NASA ACTS satellite

system and the ONE software emulator.

ONE was con�gured to model the ACTS system and the same set of experiments

run in both environments. As �gure 2.3 shows, ONE accurately models the NASA

ACTS satellite channel.

2.2.3 Hardware Emulator

The hardware emulator used in our experiments is the TestLink Data Link Simu-

lator. The emulator runs on an Intel 486 machine equipped with two special purpose

expansion cards that are designed to emulate the network con�gured by the user. The

17

CLIENT

SERVER

ROUTER 1

ROUTER 2

EMULATOR

Figure 2.4 Hardware Emulator Setup

This �gure shows the network layout for all tests involving the hardware emulator.

14

16

18

20

22

24

26

28

30

32

34

0*10^0 1*10^6 2*10^6 3*10^6 4*10^6 5*10^6 6*10^6

T
hr

ou
gh

pu
t (

K
B

/s
ec

on
d)

File Size (bytes)

ACTS
Hardware Emulator

Figure 2.5 A Comparison of NASA ACTS and the Hardware Emulator

This �gure shows the results of running identical tests using the NASA ACTS satellite

system and the hardware emulator.

18

emulator is con�gured using a small software program. The network layout used in

our experiments is illustrated in �gure 2.4. As in the NASA ACTS experiments, Cisco

2514 routers employing drop-tail queueing are used. Furthermore, the mix of Sun IPC

and Intel 486 NetBSD 1.1 machines used in the ONE testbed described above are

again used as the end points for experiments utilizing the hardware emulator.

The hardware emulator limits the bandwidth between the routers by providing

an appropriate clock pulse to the channel based on the user-con�gured bandwidth

setting. The clock pulse determines the rate the routers can transmit segments. The

queue delay is provided by the routers, just as in the ACTS system. The user-

con�gured propagation delay is injected by the emulator delaying segments for the

user-con�gured amount of time before forwarding them.

We con�gured the hardware testbed to model the ACTS environment and ran

the same experiments in both environments. Figure 2.5 shows that the hardware

emulator accurately models the ACTS satellite channel.

2.3 Experimental Results

Our �rst experiments showed that XFTP was able to utilize 84% of the available

bandwidth over the satellite link by increasing the number of data connections used.

Figure 2.6 presents the results of transfering a 5 MB

3

�le as a function of the number

of data connections used. This �gure illustrates a number of interesting �ndings.

As described in [Kru95] and predicted above in equation 2.2, using one TCP

connection to transfer a �le does not fully utilize the available bandwidth. The

di�erence between the predicted throughput (equation 2.2) and the actual throughput

(�gure 2.6) can be explained by TCP/IP segment header overhead (approximately

8%).

3

In this paper, 1 MB = 1024 * 1024 bytes = 1,048,576 bytes.

19

40

60

80

100

120

140

160

0 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
ec

on
d)

TCP Data Connections

Throughput

Figure 2.6 XFTP Test Results

This �gure shows the throughput using XFTP to transfer a 5 MB �le using the NASA

ACTS satellite system plotted as a function of the number of parallel data connections

employed.

Using 4 data connections gives XFTP an e�ective window of 98,304 bytes. This is

approximately 91% of the window size needed to fully utilize the available bandwidth

(according to equation 2.4). Using 4 data connections XFTP was able to utilize 87%

of the available capacity after taking overhead into account.

As indicated in equation 2.5, using 4 data connections does not provide a large

enough e�ective window to use the available capacity. However, 8 data connections

provides an e�ective window of 196,608 bytes which is much larger than the 107,520

bytes needed. Yet, using 8 connections only yields a 84% utilization of the available

bandwidth. Even when segment header overhead is taken into account, utilization is

still only 92%.

20

Even though the required window size (107,520 bytes from equation 2.4) was ex-

ceeded, utilization continued to improve as connections were added through 8 connec-

tions. However, when 10 and 12 data connections were employed utilization dropped.

Examination of network traces indicated a large loss event at the end of slow start on

most of the TCP connections. This loss explains the reduction in throughput, since

TCP must �rst waste time retransmitting lost data and then reduce the sending rate.

The cause of the loss can be directly explained by the slow start algorithm. Each

data connection begins by exponentially increasing the sending rate every RTT until it

�lls the receive window or loss is detected. With multiple data connections doubling

their sending rate every RTT, the intervening router is easily overwhelmed by the

bursts of segments and must discard the segments it cannot queue. In the experiment

shown in �gure 2.6, the router was able to queue enough tra�c to keep losses from

occurring when 8 data connections were used by XFTP. However, when 10 connections

were employed, the aggregate transmission rate overloaded the router's queue and a

massive loss event ensued.

After these ACTS experiments, we were not able to explain why XFTP was only

able to utilize 92% of the channel capacity by any TCP related problem. Upon

pro�ling our XFTP client and server we found that transmitting and receiving were

unnecessarily slow. XFTP writes and reads data in 8 KB chunks (see appendix B

for details). The version of XFTP described above would write 8 KB at a time,

even if the network was unable to accept the full 8 KB. When the operating system

was unable to write the entire chunk, XFTP was forced to wait until the network

could accept the rest. A similar problem was occurring on the receiving side of the

connection. After the �rst round of tests, XFTP was modi�ed to use asynchronous

reading and writing calls. The modi�ed version of XFTP transmits as much of the 8

KB chunk as possible and queues the rest for later transmission. This allows XFTP

to transmit data on another data connection rather than waiting for the entire 8 KB

chunk to be transmitted. A similar mechanism is employed on the receiving side of

21

the connection. In this way, XFTP is always writing or reading (unless all of the

connections are unavailable). This optimization yields better network utilization, as

shown in �gure 2.7. Using 6{8 connections this version of XFTP was able to utilize

approximately 90% of the available capacity. When segment header overhead is taken

into account, XFTP is utilizing approximately 98% of the channel capacity.

70

80

90

100

110

120

130

140

150

160

170

2 4 6 8 10 12 14 16 18 20

K
B

yt
es

/S
ec

on
d

TCP Connections

Throughput

Figure 2.7 Modi�ed XFTP Tests

This �gure shows the throughput obtained using an asynchronous version of XFTP

to transfer a 5 MB �le across the hardware emulator plotted as a function of the

number of parallel data connections employed.

22

2.4 XFTP Lessons

Studying XFTP's behavior has provided insight into TCP modi�cations that may

improve performance over satellite channels. XFTP's use of N data connections

generally makes it N times more aggressive than a single TCP connection. For

example, slow start e�ectively begins by sending N segments rather than 1 segment.

Similarly, congestion avoidance e�ectively adds N segments per RTT rather than

just a single segment. Furthermore, XFTP is more aggressive in the face of dropped

segments. For example, if each of N data connections are using a cwnd of m segments

and a single segment is dropped on one of the connections, XFTP will reduce the

cwnd to that given in equation 2.6 rather than reducing cwnd by half as a single

TCP connection would. This reduction represents one of the N data connections

reducing it's cwnd by half, while the other N � 1 data connections continue using

the same window size.

�

2N - 1

2N

�

m (2.6)

While XFTP is more aggressive than a single TCP connection it can provide insight

into new mechanisms that will help TCP better utilize satellite channels. The lessons

provided by XFTP include the need for larger windows, selective acknowledgments

and possibly the need to make the standard TCP congestion control algorithms more

aggressive.

2.4.1 Bigger Windows

The case for larger TCP windows is given in section 1.2.2. Furthermore, the XFTP

experiments presented in 2.3 show that larger e�ective windows allow TCP to fully

utilize the capacity of satellite channels. TCP options to provide larger windows have

been de�ned [JB88] [BJZ90] [JBB92]. These extensions have been proven useful in

networks with high latency [AHKO97] and in high bandwidth networks [VS95].

23

2.4.2 Selective Acknowledgments

XFTP shows that errors can be repaired better if TCP is given a better idea

about which segments have been lost. Using N data connections allows TCP to

detect up to N lost segments simultaneously. TCP is able to repair up to N lost

segments using fast retransmit, as opposed to 1 lost segment when using a single

TCP connection. This suggests that the TCP sender needs more information about

which segments have arrived at the receiver. A selective acknowledgment (SACK)

mechanism provides information about exactly which segments have arrived at the

receiver. SACKs allow the TCP sender to retransmit only those segments that have

been dropped by the network. A SACK is de�ned for TCP in [MMFR96]. SACKs

have been proven useful in several research protocols (e.g., NETBLT [CLZ87], RDP

[VHS84], VMTP [Che88]), as well as TCP [AHKO97] [FF96].

2.4.3 More Aggressive Slow Start

Our XFTP experiments show that one of the reasons TCP was not able to fully

utilize the channel bandwidth even when using an adequate window size was the

slow start algorithm. This has also been shown in companion research [AHKO97].

Adding more connections to an XFTP �le transfer allows XFTP to better utilize the

capacity. This can be explained by the increased rate at which XFTP increases the

value of cwnd. XFTP e�ectively multiplies slow start by the number of connections

being used. A single TCP connection can get this same e�ect by increasing the initial

congestion window (currently 1 segment). The use of a larger initial window has been

proposed recently [Flo97]. We have experimented with this more aggressive version

of slow start and our results are presented in chapter 3.

24

2.4.4 More Aggressive Congestion Avoidance

XFTP also suggests that further study into the the congestion avoidance algorithm

is needed. As outlined in section 1.2.1.2, congestion avoidance requires a large amount

of time to increase the window size over satellite channels due to the long RTT.

XFTP is able to multiply this increase by the number of connections being used

(i.e., each data connection can increase the e�ective window by 1 segment per RTT).

Future work in this area may include attempting to change the congestion avoidance

algorithm to take the RTT into account when increasing cwnd rather than simply

using the number of RTTs that have past since the loss occurred.

2.4.5 Slow Start Threshold Estimation

Finally, XFTP suggests that further study into choosing when TCP terminates

the slow start algorithm is needed. Massive loss happens when XFTP utilizes too

many data connections because the e�ective sliding window overwhelms the inter-

vening router. TCP could avoid the majority of these losses, while maintaining good

utilization, if it could terminate slow start just before the loss event occurs. The re-

quired window can be computed using equation 2.3. TCP already observes the RTT,

but would need to estimate the available bandwidth of the bottleneck link to compute

the required window. Once such an estimation is made the needed window should be

assigned to the ssthresh variable (which determines when slow start is terminated).

25

3. SLOW START MODIFICATIONS

As discussed in section 2.4.3, XFTP is able to better utilize the available capacity

of satellite links partly because it is able to increase the e�ective sliding window size

more rapidly than a single TCP connection. As outlined in section 1.1.1, TCP begins

each connection by using the slow start algorithm. This algorithm initializes cwnd

to 1 segment. XFTP's use of N parallel data connections provides an e�ective initial

cwnd of N segments. This increase in the e�ective initial size of cwnd is important

because it reduces the time TCP spends in slow start, which reduces the amount of

unused capacity (as discussed in section 1.2.1.1).

Section 3.1 outlines two slow start modi�cations that will reduce the amount of

time TCP spends using the slow start algorithm. Section 3.2 presents results of tests

using larger initial cwnd values. Section 3.3 presents results of tests employing our

modi�ed cwnd increase algorithm. Section 3.4 presents tests that employ both slow

start modi�cations. Finally, section 3.5 outlines future work in this area.

3.1 Slow Start Modi�cations

We hypothesized that by increasing the initial size of cwnd, a single TCP connec-

tion may obtain channel utilization bene�ts similar to those obtained by XFTP. Floyd

[Flo97] proposes allowing an initial cwnd of 4 segments (or 4380 bytes, whichever is

smaller). This accelerated slow start behavior is only used at the beginning of a con-

nection; if TCP reverts to slow start because the RTO expired, cwnd is re-initialized

to 1 segment, as in standard TCP.

26

When an initial window of size W

I

segments is used, TCP saves the amount of

time normally associated with increasing the window to W

I

segments (log

2

W

I

RTTs

as de�ned by [JK88]). Equation 3.1 is a generalized version of equation 1.1 that

gives the amount of time needed to increase cwnd from an initial cwnd of W

I

to an

advertised window of W

A

on a network with a RTT of R.

slow start time = R(log

2

W

A

� log

2

W

I

) (3.1)

Clearly, equation 3.1 shows that for initial windows of more that 1 segment, the slow

start time is reduced.

The second modi�cation used to reduce the amount of time TCP spends using

the slow start algorithm is to introduce a mechanism to counteract delayed acknowl-

edgments as de�ned in RFC 1122 [Bra89]. Delayed ACKs allow TCP receivers to

refrain from sending an ACK for each segment received. However, according to RFC

1122 an ACK must be generated for every other segment received. In addition, if a

second segment does not arrive within a given timeout, the receiver must generate an

ACK after the timeout (according to RFC 1122 the timeout must be no more than

500 ms). Since slow start increases the value of cwnd by 1 segment for each ACK

that arrives and delayed ACKs reduce the ACK arrival rate by roughly half, the rate

at which cwnd is increased is reduced. This reduction causes TCP to spend more

time using the slow start algorithm to reach the advertised window. As discussed in

section 1.2.1.1, the time spent in slow start can represent wasted bandwidth.

TCP can achieve the same increase rate regardless of how often the receiver gener-

ates ACKs if cwnd is increased by the number of new segments an ACK covers, rather

than increasing cwnd by one segment for each ACK received. This rate of increase

is consistent with that provided by the original de�nition of slow start [JK88], which

predates the delayed ACK mechanism. Our implementation of this modi�ed window

increase algorithm takes place both at the beginning of the transfer and in slow start

phases that follow the expiration of the RTO.

27

3.2 Experiments With Larger Initial Window

We used FTP to transfer �les of varying sizes over the ONE testbed network,

which was con�gured to model the ACTS satellite environment (as described in sec-

tion 2.2.2). In the �rst set of tests, the receiver's advertised window was limited

to ensure that no congestion loss occurred. Figure 3.1 presents the results of these

tests, showing a plot of the throughput change between TCP with an initial cwnd

of 1 segment (standard TCP) and TCP with larger initial cwnd values. As we hy-

pothesized, increasing the initial value of cwnd reduced the total time of the transfer,

thus increasing the throughput. This was most noticeable when transfering a small

amount of data. For example, when sending 30 KB using a 32 segment initial window

the throughput was improved by roughly 180%. Using the 4 segment initial window

suggested by Floyd [Flo97] a 27% increase in throughput is shown for the 30 KB

transfer. The throughput increase in short transfers can be explained by the close re-

lationship between the total transfer time and the time saved by using a larger initial

cwnd value. The throughput increase is not as large in the longer transfers because

the total transfer time dominates the small number of RTTs saved by using a larger

initial cwnd value. For instance, only a 3% increase in throughput is shown when

using an initial cwnd value of 32 segments to transfer a 5 MB �le. The suggested

initial cwnd value of 4 segments did not degrade performance in any of the cases

tested.

The tests outlined above were repeated using a larger advertised window, ensuring

the TCP sender would overwhelm the intervening router queue (provided that the

transfer is su�ciently long to allow TCP to increase the value of cwnd to the adver-

tised window). Figure 3.2 presents the results of the second set of tests. As in the

above tests, this �gure illustrates the throughput change between standard TCP (with

an initial cwnd of 1 segment) and TCP with a larger initial cwnd value. Figure 3.2

indicates that the shorter transfers (30 KB, 100 KB and 200 KB) performed almost

28

-20

0

20

40

60

80

100

120

140

160

180

200

1 10 100

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

%
)

Initial Window (segments)

30,720 byte transfer
102,400 byte transfer
204,800 byte transfer

1,048,576 byte transfer
5,242,880 byte transfer

Figure 3.1 Larger Initial Windows Without Congestion

This �gure shows the throughput improvement of modi�ed TCP when compared to

standard TCP (initial cwnd of 1 segment) plotted as a function of the initial cwnd

size used. The advertised window in these tests ensured that TCP would not cause

congestion loss by overwhelming the router queue.

identically to the transfers in the �rst set of tests. This indicates that the TCP sender

completed the transfer before the value of cwnd was increased enough to overwhelm

the intervening router queue. The 1 MB and 5 MB transfers show very little change

in throughput across all initial cwnd values. Examination of network traces of the

1 MB and 5 MB transfers indicates that the loss pattern is similar across all initial

cwnd values. The only di�erence we observed was the relative time at which the loss

occurred. As the initial cwnd value increased, the relative time of the loss decreased.

As in the �rst set of tests, using the suggested initial cwnd value (4 segments) did

not degrade performance for any of the transfer sizes tested.

29

-20

0

20

40

60

80

100

120

140

160

180

200

1 10 100

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

%
)

Initial Window (segments)

30,720 byte transfer
102,400 byte transfer
204,800 byte transfer

1,048,576 byte transfer
5,242,880 byte transfer

Figure 3.2 Larger Initial Windows With Congestion

This �gure shows the throughput improvement of modi�ed TCP when compared to

standard TCP (initial cwnd of 1 segment) plotted as a function of the initial cwnd size

used. The advertised window in these tests ensured that TCP would cause congestion

loss by overwhelming the router queue, provided that the transfer was long enough

to increase the size of cwnd to the advertised window.

3.3 Experiments With a New Window Increase Algorithm

To test the modi�ed cwnd increase algorithm outlined in section 3.2, we used FTP

to transfer �les of various sizes using both the standard cwnd increase algorithm and

our modi�ed algorithm. As in the tests above, we used the ONE testbed for these

tests. The �rst set of tests used a receive window that ensured a congestion-free

environment. Table 3.1 presents the results of these tests. The table shows the

throughput change between standard TCP and TCP employing our modi�ed cwnd

increase algorithm. Table 3.1 shows that all transfer sizes bene�ted from using our

modi�ed cwnd increase algorithm. The 100 KB and 200 KB transfers bene�ted the

most from the new algorithm. Transfers of this size utilize the slow start algorithm for

the entire transfer, so changes to slow start have a large impact on overall throughput.

30

The 30 KB transfer shows somewhat less improvement because it is too short to take

full advantage of the modi�ed algorithm. The 1 MB and 5 MB transfers show only

minor improvements because slow start is only used during a small percentage of these

transfers. Therefore, changes to slow start have little e�ect on the overall throughput

of long transfers. Table 3.1 shows throughput gains using our modi�ed cwnd increase

algorithm across all transfer sizes tested.

File Size Throughput

Improvement (%)

30 KB 9.4

100 KB 16.9

200 KB 15.3

1 MB 8.5

5 MB 9.5

Table 3.1 New Window Increase Algorithm Without Congestion

This table shows the throughput improvement of TCP using our modi�ed window

increase algorithm when compared to standard TCP. The advertised window ensured

that TCP would not cause congestion loss by overwhelming the router queue.

We repeated the above set of tests using a larger advertised window to ensure

that the transmission rate will overwhelm the router queue (assuming the transfer

is su�ciently long, so that the value of cwnd is increased to the advertised window

size). The results of these tests are shown in table 3.2. As in the above set of tests,

the throughput change between standard TCP and TCP using our modi�ed cwnd

increase algorithm is reported. The 30 KB and 100 KB transfers show throughput

improvements of approximately 8% and 15% respectively when our cwnd algorithm is

employed. These results are consistent with the �rst set of experiments involving our

modi�ed cwnd increase algorithm (table 3.1). This indicates that transfers of this size

do not increase the value of cwnd enough to overwhelm the intervening router queue.

31

Our modi�ed cwnd increase algorithm reduced the throughput of the 200 KB transfer

by 36%. This throughput reduction indicates that when using our modi�ed version of

slow start, TCP is able to increase cwnd to the point at which the intervening router

queue is overwhelmed. However, standard TCP is unable to increase cwnd enough

to overwhelm the router and generate loss. This is not a aw in our algorithm, as

any version of TCP has a transfer size at which it will overwhelm the intermediate

router. Our algorithm simply causes TCP to reach this \breaking point" for smaller

transfers. The 1 MB and 5 MB transfers show little change in throughput. As in

the last experiment, this is because TCP spends only a small percentage of the total

transfer time using the slow start algorithm. Therefore, our modi�cation of slow start

have very little e�ect on the overall throughput.

File Size Throughput

Improvement (%)

30 KB 8.1

100 KB 14.6

200 KB -36.2

1 MB 5.1

5 MB 3.7

Table 3.2 New Window Increase Algorithm With Congestion

This table shows the throughput improvement of TCP using our modi�ed window

increase algorithm when compared to standard TCP. The advertised window ensured

that TCP would cause congestion loss by overwhelming the intermediate router, pro-

viding the transfer was long enough to increase cwnd to the advertised window size.

32

3.4 Experiments with Larger Initial Windows and a Modi�ed Window Increase Al-

gorithm

The following two sets of tests involve a version of slow start employing both

larger initial values for cwnd and our modi�ed cwnd increase algorithm. As with the

previous tests outlined in this chapter, these tests were run using the ONE testbed.

As in the above experiments, the �rst set of tests uses an advertised window that

ensures no congestion loss. The results of these tests are presented in �gure 3.3. This

�gure shows the throughput change between TCP using standard slow start and TCP

using our modi�ed slow start. As we hypothesized, �gure 3.3 shows that when used

together, the two modi�cations to slow start outlined above are able to increase the

throughput more than either modi�cation alone. Throughput is increased across all

transfer sizes and all initial cwnd values.

The second set of experiments used an advertised window that ensured that con-

gestion loss would occur provided the transfer was long enough to allow cwnd to reach

the advertised window. Figure 3.4 presents the results of this set of tests. This �gure

plots the throughput change between standard TCP and TCP using our modi�ca-

tions. The 30 KB and 100 KB transfers were not able to increase cwnd enough to

create loss. Therefore, the 30 KB and 100 KB transfers are nearly identical to those

in the �rst set of tests (shown in �gure 3.3). As predicted by tests outlined in section

3.3, the 200 KB transfers show reduced throughput when using both slow start mod-

i�cations. As shown in table 3.2, using our cwnd increase algorithm caused loss in

the 200 KB transfer while using the standard increase algorithm did not. Therefore,

the 200 KB transfer showed a reduction in throughput when using both modi�cations

to the slow start algorithm. The 1 MB and 5 MB transfers show little change when

using both slow start modi�cations. This can be explained by the relatively small

impact slow start has on the overall throughput of long transfers.

33

0

20

40

60

80

100

120

140

160

180

1 10 100

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

%
)

Initial Window (segments)

30,720 byte transfer
102,400 byte transfer
204,800 byte transfer

1,048,576 byte transfer
5,242,880 byte transfer

Figure 3.3 Larger Initial Windows and a Modi�ed Window Increase Algorithm With-

out Congestion

This �gure shows the throughput improvement achieved by our modi�ed version of

slow start when compared to standard TCP as a function of the initial cwnd size used.

In addition to larger initial windows, our modi�ed window increase algorithm is em-

ployed in all transfers except the standard TCP transfers. The advertised window in

these tests ensured that TCP would not cause congestion loss by overwhelming the

intermediate router.

3.5 Future Work

The test results presented above illustrate that the two slow start modi�cations

outlined in section 3.1 increase overall throughput with little penalty over satellite

channels. However, these modi�cations to slow start make TCP more aggressive and

therefore further study is needed to ensure that they will not cause problems when

competing tra�c is present. In a companion study, we are testing these modi�cations

over the global Internet [AHO97].

34

-50

0

50

100

150

200

1 10 100

T
hr

ou
gh

pu
t I

m
pr

ov
em

en
t (

%
)

Initial Window (segments)

30,720 byte transfer
102,400 byte transfer
204,800 byte transfer

1,048,576 byte transfer
5,242,880 byte transfer

Figure 3.4 Larger Initial Windows and a Modi�ed Window Increase Algorithm With

Congestion

This �gure shows the throughput improvement achieved by our modi�ed version

of slow start when compared to standard TCP as a function of the initial cwnd size

used. In addition to larger initial windows, our modi�ed window increase algorithm is

employed in all transfers except the standard TCP transfers. The advertised window

in these tests ensured that TCP would cause congestion loss by overwhelming the

intermediate router, provided the transfer was long enough to increase the cwnd to

the size of the advertised window.

35

4. CONCLUSIONS AND FUTURE WORK

We have developed a modi�ed version of FTP that improves the utilization of

satellite channels. However, we feel that our application-level solution, XFTP, is

too aggressive to be used in general purpose networks. Furthermore, such a solution

requires that modi�cations be made to all applications and servers in order to achieve

full channel utilization over satellite links. However, the XFTP experiments presented

in chapter 2 provided insights into TCP modi�cations that will help better utilize

satellite circuits. The remainder of this chapter is divided as follows. Section 4.1

discusses the TCP mechanisms that have been thoroughly tested and we believe

should be widely implemented. Section 4.2 discusses the TCP mechanisms that we

believe are promising but need further study before they are widely implemented.

Finally, section 4.3 provides �nal conclusions.

4.1 Recommendations for TCP Extensions

This section provides recommendations for TCP mechanisms that should be added

to all general purpose TCP implementations. These mechanisms are needed to better

the utilize satellite channels. Furthermore, these mechanisms have been proven to

work well over the global Internet.

4.1.1 Large Windows

It has been shown in this paper (sections 1.2.2, 2.1 and 2.4.1) that for TCP to

fully utilize the available capacity of satellite channels, large window TCP extensions

[JBB92] are needed. Because the value of cwnd limits the amount of unacknowledged

36

data a TCP sender can inject into the network, advertising a window larger than

permitted by standard TCP should not be harmful to the network. Larger advertised

windows have been shown to work well in satellite networks [AHKO97] and over

wide-area terrestrial networks [VS95].

4.1.2 Selective Acknowledgments

The need for SACKs has been shown in section 2.4.2. SACKs allow the receiver

to report precisely which segments have arrived. This explicit information allows

the sender to more e�ectively retransmit segments that have not been received. The

sender is able to nearly eliminate retransmitting segments that have been successfully

delivered because of using a poor retransmission strategy (i.e., using slow start to

retransmit all segments that have not been cumulatively ACKed). In a companion

study, the use of SACKs has been shown to be e�ective in the satellite environment

[AHKO97]. In addition, SACKs have been shown to be bene�cial in the face of

varying amounts of loss in simulated terrestrial networks [FF96].

4.2 Recommendations for Future Modi�cations to TCP

This section outlines TCP mechanisms that have been proposed but not tested

over satellite channels and in a shared network, such as the global Internet. These

mechanisms show promise in helping TCP better utilize satellite channels as well as

terrestrial links. Some of these TCP modi�cations are products of the work described

in this paper, while others are products of other researchers and are included for

completeness.

4.2.1 Slow Start Modi�cations

As shown in chapter 3, modifying the slow start algorithm can provide a through-

put increase when transfering �les over satellite channels. Furthermore, our tests show

37

little disadvantage in using these mechanisms in the satellite environment. However,

these mechanisms increase TCP's aggressiveness and our tests did not include com-

peting tra�c. Therefore, further studies are needed to ensure these modi�cations

do not negatively impact a shared network, such as the global Internet. We are

currently involved in studying the impact of these slow start changes on the global

Internet [AHO97].

4.2.2 Congestion Avoidance Modi�cations

As outlined in sections 1.2.1.2 and 2.4.4, TCP's congestion avoidance algorithm

provides extremely slow cwnd increase over long-delay channels. Study into a version

of congestion avoidance that is not biased against long-delay channels is needed. Such

a mechanism should take into account both the number of RTTs that have passed,

as well as the length of the RTT rather than simply the number of RTTs that have

passed as the current mechanism uses.

4.2.3 Slow Start Threshold Estimation

Hoe [Hoe96] suggests using both the RTT and packet-pair bandwidth estimation

[Kes91] to set the initial value of ssthresh. Packet-pair is a mechanism for determining

the available bandwidth of the bottleneck link in the network between the sender and

the receiver. Once the RTT and the available bandwidth are known, the appropriate

window size can be computed using equation 2.3. Setting ssthresh to the appropri-

ate window size for the current network conditions forces TCP to change from using

the slow start algorithm to using the more conservative congestion avoidance algo-

rithm before the slow start algorithm increases the value of cwnd to an inappropriate

size causing a large number of segments to be dropped. Recent research has out-

lined problems with the packet-pair approach to bandwidth estimation and suggests

that a receiver-based packet-pair mechanism may provide a better bandwidth esti-

mate [Pax97]. Therefore, the estimation of ssthresh requires further study in both

38

satellite and terrestrial network environments before widespread deployment can be

recommended.

4.2.4 New Loss Recovery Mechanisms

Improvements to the fast recovery algorithm that make data retransmission more

e�ective have been suggested in the literature. Hoe [Hoe96] introduces a sender-side

mechanisms called the \fast recovery phase." This algorithm is used from the time a

segment is retransmitted using the fast retransmit algorithm until all losses have been

repaired. While in the fast recovery phase, TCP uses clues from incoming ACKs to

determine which segments have not been delivered and therefore need retransmitted.

This mechanism works better than standard TCP with fast recovery but not as well

as TCP with SACKs [FF96]. An advantage of this mechanism over SACKs is that it

only needs to be implemented on the sender-side of the TCP connection, rather than

in both the sender and receiver TCP implementations as SACK requires.

TCP with SACK is explicitly given information about which segments have not

arrived at the receiver. With this information, TCP can use more advanced re-

transmission techniques that decouple the decision of what to retransmit from the

decision of when to retransmit. One such mechanism is the work by Fall and Floyd

[FF96] that replaces the fast recovery algorithm. This algorithm is similar to that

used by fast recovery, but less conservative. The algorithm attempts to determine

the amount of outstanding data in the network and when this estimate becomes less

than the congestion window, new data is transmitted. This algorithm takes advan-

tage of the additional information provided by the SACKs to reduce the amount of

time TCP uses retransmitting data without sending new data. This algorithm has

been shown to work well in satellite networks [AHKO97] and in simulated terrestrial

networks [FF96]. Another algorithm that uses SACKs and replaces fast recovery is

forward acknowledgments (FACK) [MM96a] [MM96b]. FACK allows TCP to reduce

the transmission rate gradually while retransmitting lost segments. Standard TCP

39

is unable to do this, because standard TCP senders do now know which segments

need retransmitted. Further investigation is needed to determine which fast recovery

replacement should be widely implemented.

4.3 Conclusions

Our application-level solution, as well as work done by other researchers, shows

that TCP extensions providing larger windows and selective acknowledgments al-

low TCP to achieve good performance over satellite channels. Furthermore, our

application-level solution suggested that changes to TCP's slow start and congestion

avoidance algorithms could also improve performance. The experiments presented in

this paper veri�ed that modi�cations to slow start improved channel utilization. The

extensions we tested, as well as the work cited above by other researchers, allow the

TCP protocol to fully utilize long-delay satellite channels.

BIBLIOGRAPHY

40

BIBLIOGRAPHY

[ACO97] Mark Allman, Adam Caldwell, and Shawn Ostermann. ONE: The Ohio

Network Emulator. Technical Report TR-19972, Ohio University Com-

puter Science, June 1997.

[AHKO97] Mark Allman, Chris Hayes, Hans Kruse, and Shawn Ostermann. TCP

Performance Over Satellite Links. In Proceedings of the 5th Interna-

tional Conference on Telecommunication Systems, March 1997.

[AHO97] Mark Allman, Chris Hayes, and Shawn Ostermann. An Evaluation of

TCP Slow Start Modi�cations, 1997. In preparation.

[AO97a] Mark Allman and Shawn Ostermann. FTP Extensions for Variable

Protocol Speci�cation, March 1997. Internet-Draft draft-allman-ftp-

variable-04.txt (work in progress).

[AO97b] Mark Allman and Shawn Ostermann. Multiple Data Connection FTP

Extensions. Technical Report TR-19971, Ohio University Computer

Science, February 1997.

[BB95] A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for Mobile

Hosts. In Proceedings of the 15th International Conference on Dis-

tributed Computing Systems (ICDCS), May 1995.

[BCC

+

97] Robert Braden, David Clark, Jon Crowcroft, Bruce Davie, Steve Deer-

ing, Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig

Partridge, Larry Peterson, K. Ramakrishnan, S. Shenker, J. Wro-

clawski, and Lixia Zhang. Recommendations on Queue Management

and Congestion Avoidance in the Internet, March 1997. Internet-Draft

draft-irtf-e2e-queue-mgt-00.txt (work in progress).

[BJZ90] Robert Braden, Van Jacobson, and Lixia Zhang. TCP Extension for

High-Speed Paths, October 1990. RFC 1185.

[BLFN96] Tim Berners-Lee, R. Fielding, and H. Nielsen. Hypertext Transfer Pro-

tocol { HTTP/1.0, May 1996. RFC 1945.

41

[Bra89] Robert Braden. Requirements for Internet Hosts { Communication

Layers, October 1989. RFC 1122.

[BSAK95] Hari Balakrishnan, Srinivasan Seshan, Etan Amir, and Randy Katz.

Improving TCP/IP Performance Over Wireless Networks. In ACM Mo-

biCom, November 1995.

[Bv91] R. Bauer and T. vonDeak. Advanced Communications Technology

Satellite (ACTS) and Experiments Program Descriptive Overview.

Technical report, NASA Lewis Reseach Center, 1991.

[Che88] David Cheriton. VMTP: Versatile Message Transaction Protocol,

February 1988. RFC 1045.

[CLZ87] David Clark, Mark Lambert, and Lixia Zhang. NETBLT: A High

Throughput Transport Protocol. In ACM SIGCOMM, pages 353{359,

August 1987.

[Com95] Douglas E. Comer. Internetworking with TCP/IP, Volume I, Princi-

ples, Protocols, and Architecture. Prentice Hall, 3rd edition, 1995.

[DENP96] Mikael Degermark, Mathias Engan, Bjorn Nordgren, and Stephen Pink.

Low-Loss TCP/IP Header Compression for Wireless Networks. In ACM

MobiCom, November 1996.

[FF96] Kevin Fall and Sally Floyd. Simulation-based Comparisons of Tahoe,

Reno, and SACK TCP. Computer Communications Review, July 1996.

[FF97] Sally Floyd and Kevin Fall. Router Mechanisms to Support End-to-End

Congestion Control. Technical report, LBL, February 1997. Submitted

to SIGCOMM.

[FJ93] Sally Floyd and Van Jacobson. Random Early Detection Gateways

for Congestion Avoidance. IEEE/ACM Transactions on Networking,

1(4):397{413, August 1993.

[FJGFBL97] R. Fielding, Je�rey C. Mogul Jim Gettys, H. Frystyk, and Tim Berners-

Lee. Hypertext Transfer Protocol { HTTP/1.1, January 1997. RFC

2068.

[Flo97] Sally Floyd, February 1997. Note to end2end-interest mailing list.

[Hoe96] Janey C. Hoe. Improving the Start-up Behavior of a Congestion Control

Scheme for TCP. In ACM SIGCOMM, August 1996.

42

[Jac90a] Van Jacobson. Compressing TCP/IP Headers For Low-Speed Serial

Links, February 1990. RFC 1144.

[Jac90b] Van Jacobson. Modi�ed TCP Congestion Avoidance Algorithm. Tech-

nical report, LBL, April 1990. Email to the end2end-interest mailing

list. URL: ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[JB88] Van Jacobson and Robert Braden. TCP Extensions for Long-Delay

Paths, October 1988. RFC 1072.

[JBB92] Van Jacobson, Robert Braden, and David Borman. TCP Extensions

for High Performance, May 1992. RFC 1323.

[JK88] Van Jacobson and Michael J. Karels. Congestion Avoidance and Con-

trol. In ACM SIGCOMM, 1988.

[Kes91] Srinivasan Keshav. A Control Theoretic Approach to Flow Control. In

ACM SIGCOMM, pages 3{15. SIGCOMM, ACM, September 1991.

[KL86] B. Kantor and P. Lapsley. Network News Transfer Protocol: A Pro-

posed Standard for the Stream-Based Transmission of News, February

1986. RFC 977.

[KP87] Phil Karn and Craig Partridge. Improving Round-Trip Time Estimates

in Reliable Transport Protocols. In ACM SIGCOMM, pages 2{7, Au-

gust 1987.

[Kru95] Hans Kruse. Performance Of Common Data Communications Proto-

cols Over Long Delay Links: An Experimental Examination. In 3rd

International Conference on Telecommunication Systems Modeling and

Design, 1995.

[MM96a] Matt Mathis and Jamshid Mahdavi. TCP Rate-Halving with Bound-

ing Parameters. Technical report, Pittsburgh Supercomputer Center,

October 1996. URL:

http://www.psc.edu/networking/papers/FACKnotes/current/.

[MM96b] Matthew Mathis and Jamshid Mahdavi. Forward Acknowledgment:

Re�ning TCP Congestion Control. In ACM SIGCOMM, August 1996.

[MMFR96] Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow.

TCP Selective Acknowledgement Options, October 1996. RFC 2018.

[Nag84a] John Nagle. Congestion Control in IP/TCP Internetworks, January

1984. RFC 896.

43

[Nag84b] John Nagle. Congestion Control in IP/TCP Internetworks. Computer

Communication Review, 14(4), October 1984.

[Pax97] Vern Paxson. End-to-End Internet Packet Dynamics. In ACM SIG-

COMM, September 1997. To Appear.

[Pos81] Jon Postel. Transmission Control Protocol, September 1981. RFC 793.

[Pos82] Jon Postel. Simple Mail Transfer Protocol, August 1982. RFC 821.

[PR85] Jon Postel and Joyce Reynolds. File Tranfer Protocol (FTP), October

1985. RFC 959.

[Ste97] W. Richard Stevens. TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms, January 1997. RFC 2001.

[VHS84] D. Velten, Robert Hinden, and J. Sax. Reliable Data Protocol, July

1984. RFC 908.

[VS95] Curtis Villamizar and Cheng Song. High Performance TCP in

ANSNET. Computer Communications Review, 24(5):45{60, October

1995.

[WS95] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated Volume

II: The Implementation. Addison-Wesley, 1995.

APPENDIX

44

A. TCP CONGESTION CONTROL ALGORITHMS

Table A.1 provides an example of TCP's congestion control algorithms. In this

example, the receivers advertised window is 10 segments and the transfer consists of

31 segments. The example is presented from the viewpoint of the sending host. Each

event within a RTT is given it's own row (and event number). A double horizontal

line separates RTTs from one another. When an ACK arrives that is not triggered

by the expected data segment the triggering segment is given in parenthesis after the

sequence number contained in the ACK in the \Acknowledgment Received" column.

� RTT: 1

The value of cwnd is initialized to 1 segment and segment 1 is transmitted. The

value of ssthresh is initialized to the receiver's advertised window (10 segments).

� RTT: 2

The ACK generated by the receiver contains sequence number 2. This indicates

that segment 1 has arrived (and segment 2 is expected next). Since cwnd is

less than ssthresh, the slow start algorithm is in e�ect and cwnd is incremented

by 1 segment. This increases cwnd to 2 segments and segments 2 and 3 are

transmitted.

� RTT: 3

Slow start continues as ACKs covering segments 2 and 3 arrive. This leads to

increasing cwnd to 4 segments and transmitting segments 4{7.

� RTT: 4

Again, slow start continues as ACKs covering segments 4{7 arrive. These ACKs

45

Event Segment(s) Acknowledgment cwnd ssthresh Unacknowledged

Number Sent Received Segments

1 1 { 1 10 1

2 2,3 2 2 10 2{3

3 4,5 3 3 10 3{5

4 6,7 4 4 10 4{7

5 8,9 5 5 10 5{9

6 10,11 6 6 10 6{11

7 12,13 7 7 10 7{13

8 14,15 8 8 10 8{15

9 16,17 9 9 10 9{17

10 18,19 10 10 10 10{19

11 20 11 10 10 11{20

12 { 11 (12) 10 10 11{20

13 { 11 (13) 10 10 11{20

14 11 11 (14) 8 5 11{20

15 { 11 (15) 9 5 11{20

16 { 11 (16) 10 5 11{20

17 { 11 (17) 10 5 11{20

18 { 11 (18) 10 5 11{20

19 { 11 (19) 10 5 11{20

20 { 11 (20) 10 5 11{20

21 21{25 21 (11) 5 5 21{25

22 26 22 � 5.2 5 22{26

23 27 23 � 5.4 5 23{27

24 28 24 � 5.6 5 24{28

25 29 25 � 5.8 5 25{29

26 30,31 26 � 6 5 26{31

27 { 27 6.17 5 27{31

28 { 28 6.33 5 28{31

29 { 29 6.49 5 29{31

30 { 29 (30) 6.64 5 29{31

31 { 29 (31) 6.79 5 29{31

32 29 { 1 � 3:4 29{31

33 { 32 (29) 2 � 3:4 {

Table A.1 Congestion Control Algorithm Example

This table shows how the four basic congestion control algorithms (slow start, con-

gestion avoidance, fast retransmit and fast recovery) work as de�ned by Jacobson

[JK88].

46

increase cwnd to 8 segments and 8 new segments are transmitted (segments 8{

15).

� RTT: 5

Events 9 and 10 are continuations of slow start. ACKs covering segments 8 and

9 arrive. Each of these arrivals triggers an increase of cwnd by 1 segment and

the transmission of 2 new segments. After these �rst two events, slow start ends,

as cwnd has reached the receive window. At this point, each ACK will only

trigger the transmission of 1 segment, as illustrated by event 11. In this event,

the ACK covering segment 10 arrives, leaving 9 unacknowledged segments in

the network. This causes a new segment (segment 20) to be transmitted.

Event 12 is the arrival of a duplicate ACK covering segment 10 (which was

triggered by the arrival of segment 12 at the receiver). This is followed by

the arrival of two additional duplicate ACKs covering segment 10 (event 14).

When the third duplicate ACK arrives (triggered by the reception of segment

14), fast retransmit is used to retransmit segment 11. Furthermore, ssthresh

is set to half of cwnd 's current value. cwnd is also halved, but fast recovery

arti�cially inates cwnd by the number of duplicate ACKs that have arrived

(3). So, cwnd is set to 8 segments. The last event in this RTT is the arrival of a

fourth duplicate ACK covering segment 10 (triggered by the receipt of segment

15). This causes cwnd to be arti�cially incremented by 1 segment, making it 9

segments. However, nothing can be transmitted because cwnd is still less than

the number of unacknowledged segments in the network (10).

� RTT: 6

Event 16 is the arrival of the �fth duplicate ACK covering segment 10. This

causes a 1 segment arti�cial increment of cwnd (now 10 segments). However,

no new data can be sent, because there are still 10 unacknowledged segments in

the network. Four more duplicate ACKs follow (triggered by segments 17{20).

47

These duplicate ACKs do not increase cwnd since cwnd has reached the size

of the receive window. The last event that occurs in this RTT is the arrival of

an ACK covering segment 20. This ACK was triggered by the arrival of the

retransmission of segment 11. This causes cwnd to be reduced to it's value

prior to the arti�cial ination (5 segments). Since there are no unacknowledged

segments in the network, 5 new segments (segments 21{25) are transmitted.

� RTT: 7

This RTT shows ACKs for segments 21{24 arriving and one new data segment

being sent for each of these ACKs. In addition, since TCP is now using the

congestion avoidance algorithm cwnd is being incremented by 1/cwnd for each

ACK received. These partial segments add up to a full segment by the end of

the RTT. The last event of the RTT shows that cwnd is 6 segments. Therefore,

in response to the ACK covering segment 25, TCP is able to transmit two

segments (30 and 31).

� RTT: 8

Events 27{29 show the arrival of ACKs (covering segments 26{28). Since the

transfer is only 31 segments long no new data is transmitted in response to

these ACKs. However, cwnd is being incremented by a 1/cwnd for each ACK

received. Events 30 and 31 show duplicate ACKs covering segment 28 arriving

(triggered by segments 30 and 31). This indicates that segment 29 was dropped.

� RTT: 9

Since a third duplicate ACK never arrives the TCP sender is forced to wait for

the RTO to expire. After the RTO expires, segment 29 is transmitted. Since

this segment was resent due to the expiration of the RTO, ssthresh is set to half

of the value of cwnd and cwnd is set to 1 segment.

48

� RTT: 10

This shows the arrival of the ACK covering segment 31. This ACK was triggered

by the retransmission of segment 29. This ACK increments cwnd by 1 segment,

since slow start is being used (since cwnd is less than ssthresh).

49

B. FTP PROTOCOL MODIFICATIONS

B.1 Introduction

This appendix outlines the modi�cations made to the FTP protocol [PR85] so

that FTP is able to use multiple parallel TCP data connections to transfer a single

�le. These extensions include three new \FTP commands" (commands exchanged

between the FTP client and the FTP server on the control connection), a new user

mechanism for requesting multiple data connections, and a mechanism for dividing a

�le across multiple data connections.

B.2 FTP Commands

B.2.1 MULT

The MULT command is a question sent from the client to determine if the server

supports the use of multiple data connections. This command has no arguments.

If arguments are given, the server MUST return an error code of 500 (\command

not understood", as de�ned by [PR85]). If the server does not implement multiple

connections, it will not understand the MULT command and therefore must return

an error code of 500 (\command not understood") according to [PR85]. If the server

can accept multiple data connections, it MUST respond with a return code of 200

(\Command OK"). The string portion of the response SHOULD contain the maxi-

mum number of connections the server supports. If used, the format of the response

string is:

X data connections available.

50

For example:

16 data connections available.

B.2.2 MPRT

The MPRT command MUST be used instead of the PORT command when mul-

tiple data connections are to be employed. The syntax of the MPRT command is an

extension of the EPRT command, as de�ned by [AO97a]. The syntax of the MPRT

command is:

MPRT <SPACE><net-prot>|<trans-prot>|<net-addr>|<trans-addr(s)><CRLF>

All �elds except the last are unchanged from the de�nitions given in [AO97a],

with one exception: if the <trans-prot> �eld is TCP, the <trans-addr(s)> can

contain any number of TCP port numbers, separated by commas (\,"). For example:

MPRT IP4|TCP|132.235.34.34|2345,6789,1212

If the number of ports given exceeds the number of data connections supported by

the server (as returned in response the the MULT command), the extra ports MUST

be ignored (that is, the server MUST NOT open a data connection on these extra

ports).

B.2.3 MPSV

The MPSV command MUST be used instead of the PASV command when mul-

tiple data connections are to be employed. The MPSV command is issued with no

arguments. The text response to the MPSV command is similar to the response to

EPSV de�ned in [AO97a]. The response MUST be:

(<net-prot>|<trans-prot>|<net-addr>|<trans-addr(s)>) \

<text indicating server is entering passive mode>

51

All �elds within the parenthesis are unchanged from the response to EPSV de�ned

in in [AO97a] except the <trans-addr(s)> �eld. If the transport protocol is TCP, the

<trans-addr(s)> �eld can contain any number of TCP port number separated by

commas (\,"). For example:

(IP4|TCP|132.235.34.34|3434,7865,9934) Entering passive mode.

If the number of ports listed in the MPSV response exceeds the maximum number

of connections supported by the host issuing the MPSV command, the extra ports

MUST be ignored. That is, no data connection should be opened on these ports.

B.2.4 Discussion

The MULT command is not required for correct operation of the system, but its

use is RECOMMENDED before the MPRT command. In the case when the MULT

command is not used and multiple data connections are not supported, an error

code of 500 (\command not understood") will be returned. In this case, the client

and server must revert to using a single data connection. If the MULT command

is used (and both client and server make use of the MULT response string in the

recommended way) the host opening the data connections passively will not waste

time and resources opening data connections that will be unused.

B.3 Enabling Multiple Data Connections

For the user to enable the use of multiple connections, a new mechanism must be

added to the client. Once the user attempts to activate multiple connections using

this mechanism, the client SHOULD send the MULT FTP command to the server.

The client may allow the user to specify the number of connections to be used for the

transfer. If such a choice is provided, the client SHOULD place a limit on the user's

choice (see section B.5). Furthermore, the client SHOULD NOT allow the user's

52

choice to be greater than the number of data connections supported by the server

(obtained from the response to the MULT command).

For example, a simple ASCII interface might provide a new \user command"

(issued to the client by the user) called \multiple". Without an argument, this com-

mand would trigger an attempt to activate multiple data connections using a default

number of connections. With a numeric argument, the command would attempt to

activate the number of data connections requested by the user (subject to the limits

imposed by the client and server).

B.4 Dividing a File Across Multiple Connections

In order to transfer a �le across multiple connections, the �le MUST be broken

up into 8192 byte chunks. Each chunk must be prepended with a 4 byte sequence

number to form a record (as shown in �gure B.1). The sequence numbers begin at 0

and increase by 1 for each subsequent record. The sequence number multiplied by the

chunk size (8192 bytes) forms an o�set from the beginning of the �le to the location

of the record's data. The sequence number is necessary to reconstruct the �le, as

each record may be independently transmitted using any one of the established data

connections.

4 bytes 8192 bytes

Sequence Data

Number Chunk

Figure B.1 XFTP Record Format

53

B.5 Recommended Limits

These extensions to FTP can allow a user to inadvertently ood the network with

tra�c. Therefore, the client and server SHOULD set limits on the number of data

connections each is willing to support. The recommended limit for both the client

and the server is 8 data connections. Furthermore, it is recommended that if a client

employs a default number of connections, this default be 4. These limits will minimize

the user's ability to inadvertently ood the network.

ALLMAN, MARK. M.S. June, 1997

Electrical Engineering

Improving TCP Performance Over Satellite Channels (64 pp.)

Director of Thesis: Shawn Ostermann

This thesis outlines performance problems with the Transmission Control Protocol

(TCP) in networks containing geosyncronous satellite channels, as well as solutions

to these problems. The �rst solution is a modi�cation of the File Transfer Protocol

(FTP). Standard FTP uses one TCP data connection to transfer a single �le. How-

ever, our modi�cations allow FTP to employ multiple parallel TCP data connections

to transfer a single �le. Experiments have shown that this approach allows FTP to

utilize the full capacity of the NASA ACTS satellite system. This application-level

solution also provided insights into general TCP modi�cations that will allow all ap-

plications to fully utilize the available bandwidth provided by satellite channels. The

insights provided by XFTP include the need for larger TCP windows, selective ac-

knowledgments, changes to the slow start and congestion avoidance algorithms and

the need for available bandwidth estimation. We altered the slow start algorithm to

be more aggressive, as suggested by XFTP. Experiments using these slow start mod-

i�cations show better utilization of satellite channels. Finally, this paper presents

recommendations for which TCP mechanisms should be widely implemented and

which mechanisms need further study.

Approved:

