
Fixing Two BSD TCP Bugs

Mark Allman

Sterling Software

NASA Lewis Research Center

21000 Brookpark Rd. MS 54-2

Cleveland, OH 44135

mallman@lerc.nasa.gov

CR-204151

Abstract

This note outlines two bugs found in the BSD

4.4 Lite TCP implementation, as well as the im-

plications of these bugs and possible ways to cor-

rect them. The �rst problem encountered in this

particular TCP implementation is the use of a 2

segment initial congestion window, rather than

the standard 1 segment initial window. The sec-

ond problem is that the receiver delays ACKs in

violation of the delayed ACK rules.

1 Introduction

This report discusses two bugs found in the

Berkeley Software Distribution release 4.4 Lite

implementation of the Transmission Control

Protocol (TCP) [Pos81]. NetBSD's implemen-

tation of TCP is derived from BSD 4.4 Lite

and therefore inherited these bugs

1

. In this pa-

per, \TCP" will refer to standard TCP [Pos81]

[Bra89] [Ste97], while \NTCP" will refer to the

NetBSD implementation of TCP. The following

two sections include an outline of the particu-

lar problem and the implications the problem.

Next, each section will examine the details that

cause the problem, and an outline of how to �x

the bug.

1

We veri�ed that these bugs exist in the BSD 4.4 Lite.

NetBSD is derived from BSD 4.4 Lite and we veri�ed that

the bugs existed in NetBSD 1.1 and NetBSD 1.2.1 (the

current release of NetBSD at the time this report was

prepared).

2 Two Segment Initial Window

2.1 Problem and Implications

Figure 1 shows a time-sequence plot [She91] of

NTCP. This �gure clearly illustrates that NTCP

is using an initial window of 2 segments, rather

than 1 segment, as de�ned in the TCP standard

[Bra89] [Ste97]. The size of the congestion win-

dow determines the amount of data the sender

can transmit without receiving an acknowledg-

ment (ACK). This bug in NTCP occurs because

the congestion window is mistakenly increased

during connection setup.

This bug poses only a small problem in a con-

gested network where each connection's share of

the bottleneck is greater than or equal to 1 seg-

ment but less than 2 segments. An initial win-

dow of 1 segment will experience one congestion

free round-trip time (RTT), while an initial win-

dow of 2 segments will experience loss immedi-

ately. However, when using an initial window

of 1 segment, the ACK of the �rst segment sent

will trigger 2 new segments, which will cause loss.

Therefore, even with an initial window of 1 seg-

ment loss is not prevented, just postponed one

RTT. It is expected that extremely congested

networks of this type are rare and that this bug

has very little impact on the network.

A current proposal [FAP97] suggests increas-

ing the initial window from 1 segment to 4

KBytes. Although further study is still needed,

this change has been investigated and found to

be safe in certain environments [AHO97] [SP97].

1



In particular, a 2 segment initial window did not

signi�cantly increase loss rates in tests over di-

alup modem lines and tests over the Internet

[AHO97].

2.2 Details

Figure 2 shows the portion of the TCP �nite

state machine [Pos81] [Com95] used to setup

TCP connections. The following is a list of the

steps involved in establishing a connection be-

tween a client (which actively opens the con-

nection) and a server (which passively opens the

connection).

1. The server moves from the CLOSED state

to the LISTEN state when it is prepared

to accept connections from clients.

2. When prepared to establish a connection,

the client actively opens the TCP connec-

tion by sending a synchronize (SYN) packet

to the server. This moves the client from the

CLOSED state to the SYN SENT state.

3. When the server is in LISTEN state and

receives a SYN packet from a client, the

server sends an ACK for the incoming SYN,

as well as, transmitting its own SYN (usu-

ally both the SYN and ACK are sent in the

same packet). At this time, the server moves

from the LISTEN state to the SYN RE-

CEIVED state.

4. When the client is in SYN SENT state

and receives a SYN/ACK packet from the

server, the client transmits an ACK for the

server's SYN and moves to the ESTAB-

LISHED state.

5. When the server is in SYN RECEIVED

state and receives an ACK for it's SYN from

the client, the server moves to ESTAB-

LISHED state.

6. When both the client and server are in the

ESTABLISHED state data can be ex-

changed.

The bug in NTCP happens when moving from

the SYN RECEIVED state to the ESTAB-

LISHED state. After the SYN RECEIVED

code handles the incoming ACK and changes

NTCP's state to ESTABLISHED, the code

that handles incoming ACKs when in the ES-

TABLISHED state is allow to process the

ACK. So, the ACK is processed twice. An ACK

received when in ESTABLISHED state would

normally indicate that one or more packets had

been successfully received. This would cause an

increase in the congestion window, allowing the

sender to transmit new data. However, the ACK

in response to the server's SYN segment does not

indicate that data has successfully arrived at the

remote host and therefore should not increase

the congestion window.

2.3 Fix

We �xed this bug in NTCP by setting a ag

when moving from the SYN RECEIVED state

to the ESTABLISHED state. When this ag

is set, the congestion window is not increased.

Figure 3 shows NTCP correctly beginning data

transmission by sending 1 data segment.

3 Delayed ACK Violations

3.1 Problem and Implications

In addition to using a large initial window, �g-

ure 1 also shows that NTCP is violating standard

ACKing behavior [Bra89]. RFC 1122 outlines a

delayed ACK mechanism that allows a TCP re-

ceiver to refrain from sending an ACK for every

incoming segment, as long as the ACK is not

excessively delayed. Speci�cally, an ACK must

be sent for every second full-sized packet. Fur-

thermore, if a second full-sized packet does not

arrive within a given timeout, an ACK must be

sent (this timeout must be � 0.5 seconds). As

�gure 1 shows, NetBSD is in violation of these

rules by ACKing every third full-sized packet.

Each ACK triggers the transmission of new

data (assuming we are not recovering from loss).

Therefore, ACKing more data with a single

ACK, allows the sender to transmit more data

2



192085000

192080000

192075000

192070000

192065000

13.700013.600013.500013.400013.3000

sequence number

time

trillian:1166_==>_marvin:3999 (time sequence graph)

.

Figure 1: Standard NTCP

This �gure shows the behavior of unmodi�ed NTCP. The �gure illustrates that NTCP uses an

initial window of 2 segments and ACKs every third full-sized packet, rather than every second.

CLOSED

LISTEN

  SYN
RECVD

 SYN
SENT

ESTAB-
LISHED

ACTIVE OPEN
SEND: SYN

GET: SYN
SEND: SYN + ACK

GET: SYN + ACK
SEND: ACK

BEGIN

PASSIVE OPEN

GET: ACK

Figure 2: Partial TCP Finite State Machine

This �gure shows the connection setup portion of the TCP �nite state machine.

3



201805000

201800000

201795000

28.600028.500028.400028.300028.2000

sequence number

time

trillian:1168_==>_marvin:3999 (time sequence graph)

Figure 3: Fixed NTCP

This �gure shows the behavior of �xed NTCP. The �gure illustrates NTCP using an initial window

of 1 segment and correctly ACKing every second full-sized segment.

in response to an ACK. As this burst of tra�c

grows, the likelihood of overwhelming intermedi-

ate gateways and causing packet loss increases.

The impact of these \stretch ACKs" is discussed

in [Pax97].

In addition, increasing the ACK interval neg-

atively impacts the slow start phase of a TCP

transfer [Pax97]. During slow start [JK88], the

congestion window is incremented by 1 segment

for each ACK received, providing exponential

increase in the size of the congestion window.

Therefore, by decreasing the number of ACKs

being transmitted, the receiver is slowing the

rate at which the sender can increase the trans-

mission rate. This can have a particularly large

impact on long-delay connections, such as those

over satellite channels.

3.2 Details

The bug in NTCP is caused by the use of TCP

options (e.g., window scaling [JBB92], selective

acknowledgments [MMFR96], T/TCP [Bra94]).

The NTCP connection shown in �gure 1 uses

RFC 1323 TCP extensions [JBB92] and utilizes

a maximum segment size (MSS) of 1460 bytes.

NTCP sends an ACK after receiving data greater

than or equal to twice the MSS. The length of

the TCP options is not considered when deter-

mining whether to send an ACK. In the example

given in �gure 1, the options take 12 bytes of each

packet which would otherwise hold data. There-

fore, each packet contains 1448 bytes of data.

So, two full-sized packets contain 2896 bytes of

data, which is less than the 2920 bytes (2 �

MSS) needed to trigger an ACK. Therefore, the

receiver waits for a third segment to arrive before

sending an ACK.

3.3 Fix

We �xed this bug by adding an entry to the

TCP control block that keeps track of the length

of the options contained on incoming TCP data

segments. The length of the options received is

added to the length of the data when determin-

ing whether two full-sized packets have been re-

ceived. Figure 3 shows that this �x yields correct

ACKing behavior.

4



4 Conclusions

This report has outlined two bugs in the BSD 4.4

Lite implementation of TCP, the implications of

these bugs and �xes for them. Since a number of

TCP implementations are derived from BSD 4.4

Lite, it is expected that a number of may have

similar problems.

Source Code

Our changes to the NetBSD

TCP code are available at

http://gigahertz.lerc.nasa.gov/

�

mallman.

References

[AHO97] Mark Allman, Chris Hayes, and

Shawn Ostermann. An Evaluation

of TCP Slow Start Modi�cations,

1997. Submitted to Computer Com-

munications Review.

[Bra89] Robert Braden. Requirements for

Internet Hosts { Communication

Layers, October 1989. RFC 1122.

[Bra94] Robert Braden. T/TCP { TCP

Extensions for Transactions: Func-

tional Speci�cation, July 1994. RFC

1644.

[Com95] Douglas E. Comer. Internetworking

with TCP/IP, Volume I, Principles,

Protocols, and Architecture. Pren-

tice Hall, 3rd edition, 1995.

[FAP97] Sally Floyd, Mark Allman, and

Craig Partridge. Increasing TCP's

Initial Window, July 1997. Internet-

Draft draft-oyd-incr-init-win-

00.txt.

[JBB92] Van Jacobson, Robert Braden, and

David Borman. TCP Extensions for

High Performance, May 1992. RFC

1323.

[JK88] Van Jacobson and Michael J. Karels.

Congestion Avoidance and Control.

In ACM SIGCOMM, 1988.

[MMFR96] Matt Mathis, Jamshid Mahdavi,

Sally Floyd, and Allyn Romanow.

TCP Selective Acknowledgement

Options, October 1996. RFC 2018.

[Pax97] Vern Paxson. Automated Packet

Trace Analysis of TCP Implementa-

tions. In ACM SIGCOMM, Septem-

ber 1997. To Appear.

[Pos81] Jon Postel. Transmission Control

Protocol, September 1981. RFC 793.

[She91] Tim Shepard. TCP Packet Trace

Analysis. Technical Report TR-494,

Massachusetts Institute of Technol-

ogy, February 1991.

[SP97] Tim Shepard and Craig Partridge.

When TCP Starts Up With Four

Packets Into Only Three Bu�ers,

August 1997. Internet-Draft draft-

shepard-tcp-4-packets-3-bu�-00.txt.

[Ste97] W. Richard Stevens. TCP Slow

Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Al-

gorithms, January 1997. RFC 2001.

5


