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Abstract

This paper presents a simulation study of vari-
ous TCP acknowledgment generation and utilization
techniques. We investigate the standard version of
TCP and the two standard acknowledgment strate-
gies employed by receivers: those that acknowledge
each incoming segment and those that implement de-
layed acknowledgments. We show the delayed ac-
knowledgment mechanism hurts TCP performance,
especially during slow start. Next we examine three
alternate mechanisms for generating and using ac-
knowledgments designed to mitigate the negative im-
pact of delayed acknowledgments. The �rst method
is to generate delayed ACKs only when the sender
is not using the slow start algorithm. The second
mechanism, called byte counting, allows TCP senders
to increase the amount of data being injected into the
network based on the amount of data acknowledged
rather than on the number of acknowledgments re-
ceived. The last mechanism is a limited form of byte
counting. Each of these mechanisms is evaluated in a
simulated network with no competing tra�c, as well
as a dynamic environment with a varying amount of
competing tra�c. We study the costs and bene�ts
of the alternate mechanisms when compared to the
standard algorithm with delayed ACKs.

1 Introduction

The Transmission Control Protocol (TCP) [Pos81]
is the prevalent reliable transport protocol used on
the Internet today. TCP data receivers transmit ac-
knowledgments (ACKs) to the data sender as seg-
ments arrive. This provides reliability, as the sender
retransmits any segments that are not acknowledged
by the receiver. Since TCP is a sliding window pro-
tocol, incoming ACKs also allow the transmission of
new data. Finally, ACKs are used by TCP's con-
gestion control algorithms [JK88] [Ste97] [SAP98] to
increase the amount of outstanding data (data that

�This paper appears in ACM Computer Communication
Review, October 1998.

has been sent but not yet acknowledged) the sender
is permitted to inject into the network.

As originally outlined in [Pos81], TCP receivers
generate an ACK for each incoming segment. These
ACKs are cumulative and acknowledge all in-order
segments that have arrived at the receiver. The
redundancy provided by cumulative ACKs protects
against ACK loss.

If an out-of-order segment arrives, an ACK is trans-
mitted. However, it will not ACK the incoming seg-
ment, but rather a duplicate ACK for the last in-order
segment that arrived is generated. RFC 1122 [Bra89]
de�nes an optional delayed acknowledgment mecha-
nism. Delayed ACKs allow a TCP receiver to refrain
from transmitting an ACK for every incoming seg-
ment. However, the receiver must send an ACK for
every second full-sized segment. In addition, an ACK
cannot be delayed for more than 500 ms while wait-
ing for a second full-sized segment to arrive. Since
ACKs are cumulative, using delayed ACKs has little
impact on transmission reliability. Furthermore, de-
layed ACKs conserve resources by decreasing the load
on the network and the machines that must generate
and process these segments.

Paxson [Pax97] found that delayed ACKs are used
in a variety of TCP implementations common in the
Internet today. Delayed ACKs have been found to
have a positive impact on the performance of bulk
transfers in certain networks [Joh95]. In addition,
[BPK97] shows that using delayed ACKs can increase
performance in asymmetric networks. However, de-
layed ACKs can also reduce performance in certain
situations. TCP senders increase the amount of out-
standing data injected into the network based on the
number of ACKs received. Therefore, by reducing the
number of ACKs the receiver generates by roughly
half, the rate that TCP senders increase the amount
of data injected into the network is also reduced.

This paper investigates several alternate ways to
generate and utilize TCP acknowledgments that mit-
igate the negative impact that delayed ACKs can
have on performance1. The sender employs the slow

1We do not claim to be the originators of the ACK genera-
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start algorithm, which uses incoming ACKs to in-
crease the amount of outstanding data injected into
the network at the beginning of a transfer. The �rst
mechanism we investigate is the use of delayed ACKs
only when the sender is not using the slow start al-
gorithm. While the sender is using slow start, every
segment is acknowledged to provide more ACKs and
therefore a more rapid increase to an appropriate win-
dow size. Next, we study the use of byte counting to
increase the amount of outstanding data the sender
can inject into the network. This mechanism bases
the increase in the amount of outstanding data trans-
mitted on the number of previously unacknowledged
bytes acknowledged by each incoming ACK, rather
than on the number of incoming ACKs. Our sim-
ulations show byte counting to be too aggressive in
many situations. This leads to the last mechanism
presented, which is a limited form of byte counting.
The remainder of this paper is organized as fol-

lows. Section 2 outlines TCP's standard algorithms
for increasing the amount of data injected into the
network, as well as the alternate mechanisms for gen-
erating and using ACKs studied in this paper. Sec-
tion 3 outlines a set of simple simulations that investi-
gate the di�erences between the ACK generation and
utilization mechanisms in a number of environments.
Section 4 investigates the various mechanisms in sim-
ulations with competing tra�c. Section 5 examines
ACK generation and utilization for interactive appli-
cations. Finally, section 6 outlines our conclusions
and future work on these mechanisms.

2 TCP Congestion Control Al-

gorithms

TCP employs several congestion control algorithms
to adjust the amount of data injected into the net-
work based on the amount of network congestion
observed. These algorithms provide network stabil-
ity and prevent congestive collapse [JK88] [FF98].
The standard algorithms used to increase the amount
of outstanding data injected into the network are
slow start and congestion avoidance [JK88] [Ste97]
[SAP98]. Additionally, TCP Reno includes the fast
retransmit and fast recovery [Jac90] [Ste97] [SAP98]
loss recovery algorithms. Our investigation also con-
siders a version of TCP that employs selective ac-
knowledgments (SACKs) [MMFR96]. The SACK

tion/utilization mechanisms investigated in this paper. These
ideas seem to have been independently thought of and dis-
cussed by a number of researchers. We were not able to �nd
any formal discussions of the mechanisms in the literature,
therefore we credit the research community as a whole for these
ideas.

version of TCP used in this paper employs fast re-
transmit and the conservative fast recovery replace-
ment outlined in [FF96].
This section will brie
y outline slow start and con-

gestion avoidance and the problems associated with
the algorithms in the face of delayed ACKs. In addi-
tion, the alternate ACK generation/utilization mech-
anisms will be outlined.

2.1 Slow Start

The slow start algorithm [JK88] [Ste97] [SAP98] is
used to gradually increase the amount of data a TCP
sender injects into the network, as well as starting the
ACK clock. Slow start is used at the beginning of a
transfer and following loss detected by TCP's retrans-
mission timer2. The TCP sender uses a congestion
window (cwnd) to limit the amount of outstanding
data injected into the network to an appropriate level
for the current network conditions. The slow start al-
gorithm initializes cwnd to 1 segment3. This allows
the sender to transmit a single data segment. For
each ACK received cwnd is increased by 1 segment.
Slow start is terminated when cwnd reaches the re-
ceiver's advertised window, or congestion (loss) is de-
tected. Equation 1, where R is the round-trip time
(RTT) between the sender and receiver and WA is
the receiver's advertised window (in segments), gives
the time the TCP sender spends using the slow start
algorithm to increase cwnd from 1 segment to the
advertised window size when the receiver ACKs each
incoming segment [JK88].

slow start time = Rlog2WA (1)

By comparison, equation 2 gives the approximate
time4 spent by the TCP sender using the slow start
algorithm when the receiver implements delayed ac-
knowledgments [PS97].

slow start time � 2Rlog2WA (2)

2Some TCP implementations also use slow start after a rel-
atively long quiescent period. This use of slow start is not
investigated in this paper, as we feel beginning transmission
after a long idle period is roughly equivalent to starting trans-
mission at the beginning of a connection. Therefore, we expect
the mechanisms outlined in this paper to perform roughly the
same in both cases.

3In practice, cwnd is sometimes stored in terms of bytes.
However, for simplicity we will discuss it in terms of segments
in this paper.

4It is di�cult to exactly quantify the time required to open
cwnd in the face of delayed ACKs because of the delayed ACK
timer. The timer implementation, the length of the timeout
and the RTT between the sender and receiver all interact to
make prediction of the exact increase di�cult, and beyond the
scope of this paper.
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Note that each of the above equations assume that
cwnd is able to reach the advertised window before
detecting congestion and that no ACKs are dropped
in the network.

As illustrated by the above equations, using de-
layed ACKs roughly doubles the time required to in-
crease cwnd from 1 segment to the advertised window
size. This increase in time required is caused by the
reduction in the number of ACKs being sent by the
receiver. The slow start algorithm increases cwnd by
1 segment for each ACK received. Therefore, reduc-
ing the number of ACKs by roughly half increases
the time required to open cwnd by a factor of 2. The
increase in time required by slow start can especially
hurt performance for short transfers that complete
before the slow start phase is terminated (e.g., short
world-wide web pages), as well as transfers over long-
delay channels (e.g., satellite links).

Delayed ACKs increase the size of line-rate bursts
sent by TCP, while decreasing overall burstiness.
Consider the transmission of two segments during
slow start. When the receiver ACKs each segment
separately, the sender receives 2 ACKs. In response
to each ACK, cwnd slides by 1 segment and the slow
start algorithm increases cwnd by 1 segment. This
leads to a transmission of 2 back-to-back segments
for each of the incoming ACKs. So, after sending
2 segments and receiving the corresponding ACKs,
4 segments are transmitted. When the same 2 seg-
ments are sent to a delayed ACK receiver, a single
ACK is returned. In response, the sender slides cwnd
by 2 segments and increments cwnd by 1 segment.
Therefore, a delayed ACK triggers a burst of 3 back-
to-back segments during slow start. Hence, with de-
layed ACKs the burst in response to each ACK is
larger than when the receiver ACKs each incoming
segment. However, delayed ACKs reduce the total
number of segments sent from 4 segments to 3 seg-
ments, in the above example.

2.2 Congestion Avoidance

Congestion avoidance [JK88] [Ste97] [SAP98] is used
to probe the network for additional capacity after
congestion is detected. The congestion avoidance
algorithm increases cwnd more conservatively than
the slow start algorithm. For each incoming ACK,
cwnd is increased by 1/cwnd (up to the advertised
window). When the receiver ACKs each incom-
ing segment, congestion avoidance increases cwnd by
roughly 1 segment per RTT. However, if delayed
ACKs are employed by the receiver only half as many
ACKs arrive at the sender and therefore congestion
avoidance will increase cwnd by roughly half a seg-

ment every RTT. Therefore, as with slow start, con-
gestion avoidance induced cwnd growth is slowed by
delayed ACKs.

2.3 Delayed ACKs After Slow Start

We modi�ed the simulated TCP receivers to send
an ACK for each incoming segment while the slow
start algorithm is used by the TCP sender. When
not using slow start, delayed ACKs are generated.
Using Delayed ACKs After Slow Start (DAASS) pro-
vides more acknowledgments than delayed ACKs dur-
ing slow start and therefore cwnd is opened more
rapidly. During the congestion avoidance phase, de-
layed ACKs are used to conserve host and network
resources, without drastically reducing performance.

Using DAASS requires the TCP receiver to de-
termine when the sender is using slow start. One
method of accomplishing this may be for the TCP
sender to explicitly inform the receiver that delayed
ACKs should not be generated. Alternatively, the
TCP receiver could use a heuristic to guess when
the sender is using the slow start algorithm based
on the arrival pattern of incoming data segments.
This paper only examines the impact of this mecha-
nism. Researching an implementation of this mech-
anism is left as future work. Therefore, we cheated
and added a global variable in the simulator that in-
dicates whether or not the sender is using slow start.

2.4 Byte Counting

We modi�ed the TCP senders in the simulator to
increase cwnd based on the number of previously un-
acknowledged bytes covered by each incoming ACK,
rather than the number of ACKs received. This
mechanism decouples the sender and receiver behav-
ior and provides the same increase in cwnd regardless
of how often the receiver generates ACKs. There-
fore, the receiver can conserve resources by gener-
ating delayed ACKs without impacting the sender's
cwnd growth. This mechanism will be called unlim-
ited byte counting (UBC) for the remainder of the
paper. Unlimited byte counting has been shown to
improve transfer time in limited tests over satellite
links [All97].

As will be shown, unlimited byte counting is too
aggressive in some circumstances. Therefore, we in-
vestigated a limited byte counting (LBC) mechanism,
as well. LBC also increases cwnd based on the num-
ber of previously unacknowledged bytes covered by
each incoming ACK. However, the cwnd increase can
be no more than 2 segments. As will be shown, this
limitation on the size of the line-rate burst that an
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ACK can trigger prevents loss and improves perfor-
mance when compared to unlimited byte counting.
Paxson [Pax97] found that it is not uncommon

for TCP implementations to generate stretch ACKs5

(ACKs for more than two segments). The implica-
tions of stretch ACKs are discussed in [Pax97] and
[PAD+98]. LBC limits the size of the burst a sender
can transmit in response to a stretch ACK when com-
pared to UBC. However, when compared to the stan-
dard slow start algorithm LBC increases the size of
the burst sent in response to a stretch ACK by 1
segment.

3 Single Flow Tests

This section investigates the performance of the var-
ious ACK generation and utilization mechanisms in
a simple environment with a single active TCP con-
nection.

3.1 Simulated Environment

We used the ns [MF95] network simulator (version
1.4) to conduct our investigation. The Reno and
SACK versions of TCP included with ns were used
for the baseline measurements (TCP with and with-
out delayed ACKs). We made several small changes
to the simulator's Reno and SACK TCP implemen-
tations to provide the alternate ACK generation and
utilization mechanisms studied in this paper.

S

G

R

10 Mbps -- 0 ms

1.5 Mbps -- 50 ms

Figure 1: Simulated network topology.

The topology of the network studied is given in �g-
ure 1. Labeled in this �gure are the data source, S,
the data receiver, R, and an intervening gateway, G.
As shown in the �gure, the bandwidth of the bottle-
neck link is 1.5 Mbps6, which is roughly T1 band-
width. The RTT provided by the simulated network

5It should be noted that buggy TCP implementations are
not the only reason for stretch ACKs. A dropped ACK can
cause the subsequent ACK to look like a stretch ACK.

6In this paper, 1 Mb = 1,000,000 bits.

is 100 ms, which is approximately the RTT measured
between NASA's Lewis Research Center and the Uni-
versity of California at Berkeley when the topology
was constructed.
The bottleneck gateway in the simulated topology

utilizes a drop-tail queueing strategy. The TCP data
senders use a segment size of 1000 bytes7. The ad-
vertised window was 40 segments, which is roughly
twice the size required to fully utilize the network
(the delay*bandwidth product).
The size of the queue in the bottleneck gateway var-

ied from 4 segments (heavy loss) to 22 segments (no
loss) in our simulations. In addition, the transfer size
was varied to show the impact of the alternate ACK
generation/utilization mechanisms on various types
of tra�c (from short WWW pages or email messages
to long bulk transfers). The transfer size varied from
5,000 bytes to 995,000 bytes in increments of 10,000
bytes.

3.2 Baseline Measurements

The following is a discussion of TCP's standard ac-
knowledgment generation and utilization strategies
[JK88] [Ste97] [SAP98] [Bra89]. These simulations
will be used as a baseline with which to compare
the alternate ACK generation and utilization mech-
anisms that will be presented in section 3.3.

3.2.1 Acknowledging Every Segment

Figure 2(a) shows TCP Reno's behavior when the re-
ceiver generates an ACK for each incoming segment,
as a function of both bottleneck queue size and trans-
fer size. With a queue size of 22 segments, no loss oc-
curs. When the queue size is reduced to 21 segments,
no more than a single segment is dropped from a
window of data in any of the transfers. This does
not signi�cantly increase the transfer time, as a sin-
gle loss is repaired using the fast retransmit algorithm
without returning to slow start. When the queue size
is less than 21 segments, most of the transfers ex-
perienced multiple dropped segments in at least one
window of data. The multiple drops are caused by
the initial slow start phase increasing cwnd enough
to overwhelm the bottleneck queue. The large in-
crease in transfer time shown when the queue is less
than 21 segments represents a TCP retransmission
timeout (RTO).
Several short transfers do not experience multi-

ple drops, as shown by their relatively low transfer
time. Figure 2(a) illustrates that as the queue size
gets smaller, the number of transfers that experience

71000 bytes is the default segment size in ns-1.4
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(b) TCP SACK

Figure 2: Standard TCP sender with receiver ACKing every segment.

multiple losses increases. This indicates that the loss
is caused by the slow start algorithm overwhelming
the queue at the bottleneck. As the size of the queue
is reduced, the size of the transfer needed to increase
cwnd enough to overwhelm the queue and cause mul-
tiple drops also decreases.

A noticeable increase in transfer time is shown
when the queue size is 8 or fewer bu�ers. This is
caused by loss occurring in two successive windows
of data. When the queue size is 8 segments, one seg-
ment is dropped from the �rst of the two windows
of data and a number of segments are dropped from
the subsequent window of data. However, when the
queue size is at least 9 segments loss only occurs in
the second of the two windows of data. When two
successive windows of data experience loss, cwnd is
reduced twice. Also, the multiple drops from the sec-
ond window of data require the RTO to expire before
retransmitting the lost segments. These two factors
lead to an increased transfer time.

Figure 2(b) illustrates the behavior of TCP SACK
when the receiver acknowledges each incoming seg-
ment. This �gure shows no large jumps in transfer
time, as shown when using TCP Reno. TCP SACK
does not depend on the RTO timer to expire be-
fore recovering from multiple dropped segments and
therefore is able to repair loss more quickly. The
small ripples shown in this graph are caused by small
interactions between cwnd and the queue size. For
instance, the transfer time is generally greater when
the queue size is 8 segments when compared to using
a queue size of 9 segments. When the queue size is 8

segments, a single segment is lost during loss recov-
ery. However, when the queue size is 9 segments the
queue is able to hold this segment, thus preventing a
second halving of cwnd.

3.2.2 Delayed Acknowledgments

Figure 3(a) shows the behavior of a TCP Reno sender
when the receiver employs delayed ACKs. Again,
when the queue size is 22 segments no loss occurs.
In this case, no loss occurs when the queue is 21
segments due to the more gradual increase of cwnd
caused by delayed ACKs. When the queue size is 20
segments no more than a single drop occurs in any
window of data. This single loss is repaired using
the fast retransmit algorithm and therefore does not
cause a large increase in transfer time. In addition,
this �gure again shows that short transfers do not
experience loss because TCP is unable to open cwnd
enough to overwhelm the queue before the transfer
is complete. However, the transfer size required to
overwhelm the queue is generally greater when the
receiver uses delayed ACKs than when the receiver
ACKs every segment. This is explained by the in-
creased time required to open cwnd in the face of
delayed ACKs, as discussed in section 2.1.

As in the previous section, the increase in the
transfer time for most transfer sizes when the queue
size is 19 segments can be explained by slow start
overwhelming the bottleneck queue causing multi-
ple dropped segments from a window of data. This
causes TCP Reno to incur an RTO timeout and re-
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(b) TCP SACK

Figure 3: Standard TCP sender with a receiver generating delayed ACKs.

sort to slow start to retransmit segments. The in-
crease in transfer time when the queue size is 19 seg-
ments is greater when the receiver generates delayed
ACKs than when the receiver ACKs each incoming
segment. The increase is explained by the increase in
time required by the slow start and congestion avoid-
ance algorithms to raise cwnd after loss when using
delayed ACKs (as discussed in sections 2.1 and 2.2).
The jump in the transfer time when the queue size is
7 or fewer segments is caused by dropped segments in
two successive windows of data, as discussed in sec-
tion 3.2.1. Note that the increase happens when the
queue size is 7 segments when using delayed ACKs,
rather than 8 segments, as happens when the receiver
ACKs each incoming segment. Again, this is caused
by cwnd increasing more slowly when delayed ACKs
are generated.

Figure 3(b) shows the behavior of TCP SACK
when the receiver generates delayed acknowledg-
ments. This �gure shows no large jumps in transfer
time, as shown in the TCP Reno transfers. As in
the case when the TCP SACK receiver ACKs each
segment (section 3.2.1), the small ripples in this �g-
ure are caused by interactions between the queue size
and cwnd. The ripples are slightly larger when the re-
ceiver employs delayed ACKs because the congestion
avoidance algorithm takes roughly twice as long to
increase cwnd after the recovery phase when delayed
ACKs are used.

3.3 Alternative Mechanisms

3.3.1 Delayed ACKs After Slow Start

Figure 4(a) illustrates the behavior of TCP Reno
when the receiver uses DAASS. In this case, the be-
havior of TCP Reno is similar to that shown when us-
ing the standard acknowledgment mechanisms (sec-
tions 3.2.1 and 3.2.2). Figure 4(b) shows the behavior
of TCP SACK when the receiver uses DAASS. This
�gure shows small increases in transfer time at vari-
ous points. When the queue size is 8 segments, the
transfer time increases. As indicated in sections 3.2.1
and 3.2.2 this is an interaction between the queue size
and cwnd. An additional increase in transfer time is
shown when the queue size is 5 segments. This hap-
pens because the queue size causes the transfer to
experience loss during the recovery phase. This loss
further reduces cwnd, increasing the transfer time.

3.3.2 Unlimited Byte Counting

Figure 5(a) shows the behavior of TCP Reno using
unlimited byte counting (UBC) in the face of delayed
ACKs from the receiver. This �gure shows large vari-
ations in the transfer time. These increases in trans-
fer time are caused by large increases in cwnd dur-
ing loss recovery. Acknowledgments covering a large
number of previously unacknowledged segments are
commonly received during the slow start phase fol-
lowing a loss event. When using UBC, an ACK cover-
ing N previously unacknowledged segments triggers
a burst of 2N new segments to be sent. In the case
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(b) TCP SACK

Figure 4: Standard TCP sender with receiver generating delayed ACKs after slow start.
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Figure 5: Sender using unlimited byte counting with a receiver generating delayed ACKs.
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when N is large, the resulting line-rate burst of seg-
ments may overwhelm the bottleneck queue causing
further loss and consequently an increase in transfer
time, as shown.

Figure 5(b) shows the behavior of TCP SACK
using UBC when the receiver is generating delayed
ACKs. The variation in the transfer time in this �g-
ure is relatively small when compared to UBC under
TCP Reno. Generally, TCP SACK does not revert
to slow start during recovery and keeps the network
(and cwnd) �lled by injecting new segments during
recovery. Therefore, cumulative ACKs that cover a
large number of previously unacknowledged segments
do not represent permission to send a large burst of
new data segments, which could cause further loss.
UBC does lead to larger line-rate bursts in the face
of delayed ACKs than when the receiver ACKs each
segment. Without UBC, bursts of 3 segments during
slow start are normal because receipt of a delayed
ACK slides cwnd by 2 segments and slow start incre-
ments cwnd by an additional segment. UBC incre-
ments cwnd by 2 additional segments upon receipt
of a delayed ACK, which leads to a 4 segment burst.
This added burstiness causes a small amount of addi-
tional congestion, leading to the the small variation
in transfer time shown in �gure 5(b).

3.3.3 Limited Byte Counting

To reduce the burstiness of UBC during TCP Reno
style loss recovery we added a limit of 2 segments to
the amount cwnd can be incremented by an incom-
ing ACK. Limiting the increase of cwnd to 2 segments
will allow TCP senders to open cwnd faster than us-
ing the standard increment algorithm when the re-
ceiver is properly generating delayed ACKs. How-
ever, overly excessive bursts caused by stretch ACKs
or slow start after loss can be avoided.

Figure 6 shows the behavior of TCP Reno with
limited byte counting (LBC) in the face of delayed
ACKs. This �gure shows that the 2 segment limit
prevents inappropriate burstiness during loss recov-
ery, which in turn prevents further loss as was evident
with UBC. The increase in transfer time that occurs
when the queue size is 7{9 segments is caused by a
small interaction between cwnd and the queue size.
When the queue size is 7{9 segments, enough new seg-
ments are sent during recovery (with the fast recovery
algorithm) to generate enough ACKs to trigger the
fast retransmit algorithm for two segments dropped
within one window of data. This successive fast re-
transmit phenomenon [Flo95], causes the RTO timer
to reset, causing a large idle period before using slow
start to retransmit the remaining dropped segments.
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Figure 6: Sender using TCP Reno and limited byte
counting with a receiver generating delayed ACKs.

When the queue size is 7{9 segments the sender is
able to inject enough new segments into the network
using fast recovery to allow this phenomenon to oc-
cur. However, when the queue size is less than 7 seg-
ments, more segments are lost reducing the number
of duplicate ACKs generated by the receiver. This
prevents the sender from injecting enough new data
into the network to cause the second fast retransmit
and therefore slow start recovery occurs sooner. The
loss pattern that occurs when the queue size is 10 seg-
ments provides no possibility of a successive fast re-
transmit within a window of data, allowing slow start
to begin sooner, thus reducing the transfer time.

The behavior of TCP SACK using LBC is exactly
the same as when using UBC (�gure 5(b)). As dis-
cussed in section 3.3.2, TCP SACK recovery does not
generate large cumulative ACKs that lead to large
bursts of segments that can cause additional loss.
Therefore, transfer time is not changed by the plac-
ing a limit on the byte counting algorithm when using
TCP SACK. However, placing a limit on byte count-
ing is still important, even when using TCP SACK.
The limit guards against stretch ACKs (caused by
buggy TCP implementations or dropped ACKs) trig-
gering inappropriately large bursts of tra�c that may
overwhelm the bottleneck queue.

3.4 Comparisons

Figure 7 shows the transfer time as a function of
transfer size for the various mechanisms studied in
this paper. Note that only short transfers are shown
in the plot, but the curves continue as shown for
larger transfer sizes. The queue size for these trans-
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Figure 7: Loss-free transfer time comparison.

fers was 22 segment bu�ers and therefore no loss oc-
curred. Therefore, TCP Reno and TCP SACK ex-
hibit the same behavior. UBC and LBC exhibit the
same behavior in the absence of segment drops so
only the LBC transfers are plotted. The transfer
time for the case when the standard cwnd increase
algorithm is used in the face of a receiver ACKing
each segment and DAASS is identical and therefore,
DAASS is not plotted. The two algorithms perform
exactly the same in the absence of loss since all cwnd
growth is provided during slow start and both algo-
rithms receive the same number of ACKs during slow
start. DAASS provides slower cwnd growth after loss
(i.e., during congestion avoidance) due to the reduced
number of ACKs being generated by the receiver.

Using the standard cwnd increase algorithm in
the face of ACKing every segment provides the best
performance. Using delayed ACKs with the stan-
dard cwnd increase algorithm provides the worst
performance. The delayed ACK timer prevents
LBC/UBC from obtaining the same performance as
the case when the receiver ACKs each incoming seg-
ment. However, LBC/UBC still provide better per-
formance than using the standard cwnd increase al-
gorithm with delayed ACKs. The di�erence between
LBC/UBC and standard TCP with ACKing every
segment is explained by the delayed ACK timeout re-
quired to ACK the �rst segment sent in the transfer.
We repeated the simulation with a 2 segment initial
congestion window, as proposed in [AFP98], and the
results show that LBC/UBC performance was nearly
identical to standard TCP when the receiver ACKs
each incoming segment.

Figure 8 shows the percentage of time in which the

queue at the bottleneck link was a given length. As
described above, the maximum queue size was 22 seg-
ments in this simulation and no loss occurred in any
of the transfers. As the �gure shows, a queue length
of 20 segments dominated when the receiver ACKed
each incoming segment. All other mechanisms use
delayed ACKs and the queue spent the vast major-
ity of the time with a length of 19 or 20 segments.
In the case of delayed ACKs, new segments are gen-
erated roughly half as often as when each segment
is acknowledged. The larger period of time between
ACKs allows the router to transmit a segment and
therefore the queue size oscillates between the two
queue lengths. This �gure shows that all the mecha-
nisms utilize the queue in a similar manner.

Table 1 presents the median percent improvement
in TCP Reno transfer time using various ACK gen-
eration/utilization mechanisms when compared to a
standard TCP Reno sender and a receiver generating
delayed ACKs. In the top half of the table all trans-
fer sizes reported in �gures 2(a) { 6 are considered.
In the bottom half of the table, the improvement for
\short" transfers is reported. A \short" transfer is
de�ned as all transfers reported in �gures 2(a) { 6
that do not exceed 80,000 bytes. In our simulations,
a loss-free transfer under 80,000 bytes uses the slow
start algorithm for the entire transfer. However, a
transfer of more than 80,000 bytes is able to com-
plete the slow start phase. Table 2 presents a similar
comparison for a TCP SACK sender and a receiver
generating delayed ACKs and SACK blocks.

Acknowledging each segment provides the best im-
provement in transfer time in all conditions presented
in the tables. However, ACKing each segment gener-
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Figure 8: Bottleneck queue size.

Experimental Mechanism Transfers Delayed ACKs

(Median % Improvement)

ACK Each Segment All 12
Delayed ACKs After Slow Start All 7
Unlimited Byte Counting All -9
Limited Byte Counting All 8

ACK Each Segment Short 28
Delayed ACKs After Slow Start Short 28
Unlimited Byte Counting Short 18
Limited Byte Counting Short 19

Table 1: Reno Comparison

Experimental Mechanism Transfers Delayed ACKs

(Median % Improvement)

ACK Each Segment All 9
Delayed ACKs After Slow Start All 5
Unlimited Byte Counting All 3
Limited Byte Counting All 3

ACK Each Segment Short 28
Delayed ACKs After Slow Start Short 20
Unlimited Byte Counting Short 17
Limited Byte Counting Short 17

Table 2: SACK Comparison
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ates more segments which can waste scarce host and
network resources. Using DAASS improves transfer
time when compared to standard TCP with delayed
ACKs in all cases shown in the tables. However, the
mechanism also consumes more host and network re-
sources than standard TCP with delayed ACKs dur-
ing slow start. As expected, table 1 shows that ac-
knowledging every segment all the time is roughly
the same as DAASS for short transfers that are dom-
inated by slow start (either at connection startup or
during loss recovery). Acknowledging every segment
performs better than DAASS for short transfers us-
ing SACK (table 2) because SACK does not revert
to slow start to repair multiple dropped segments.
Therefore, since DAASS is less aggressive during con-
gestion avoidance cwnd does not grow as rapidly as
when an ACK is generated for each incoming segment
and consequently the performance is not as good.
As discussed in section 3.3.2, TCP Reno using UBC

increases the transfer time when considering all trans-
fers, compared to standard TCP Reno in the face
of delayed ACKs. However, when only short trans-
fers are considered, UBC reduces the transfer time as
shown in the tables. Short transfers do not experience
as much loss as longer transfers, thus for short trans-
fers the problems with UBC do not come into play as
often. As discussed in section 3.3.2, TCP SACK does
not have the same problems as TCP Reno when using
UBC. Therefore UBC provides modest improvements
in performance when TCP SACK is employed.
Tables 1 and 2 show that LBC performs better

than the standard cwnd increase algorithm in the
face of delayed ACKs. The performance bene�t is
more dramatic in short transfers that are dominated
by slow start. LBC does not perform as well as the
standard cwnd increase algorithm when the receiver
ACKs each incoming segment. However, limited byte
counting does increase performance without increas-
ing the number of segments injected into the network.

4 Competition Tests

This section provides a discussion of the various ac-
knowledgment generation and usage mechanisms in
the presence of competing tra�c. The simulation
setup is given followed by a comparison of the various
mechanisms in a drop-tail queueing environment and
a comparison in a RED queueing environment.

4.1 Simulated Environment

The topology for these tests is the same as used in
the previous section (�gure 1). TCP SACK is used
in all tests and all ACK generation and utilization

mechanisms except UBC are used. As shown in sec-
tion 3, UBC hurts the performance of a single TCP
connection in many cases and therefore it is not stud-
ied in the context of competing 
ows. The adver-
tised TCP window size is 20 segments, or roughly the
delay-bandwidth product of the bottleneck link. The
maximum queue length in the gateway is set to 40
segments which is roughly twice the delay-bandwidth
product of the bottleneck link. The �rst set of sim-
ulations utilizes a drop-tail queue in the gateway. In
the second set of simulations RED queueing [FJ93]
[BCC+98] was used at the bottleneck link. Table 3
provides a list of the RED parameters used in these
simulations.

Parameter Value

minth 7
maxth 21
wq 0.002
maxp 0.1

Table 3: RED Settings

The transfer size for each TCP connection is ran-
domly picked between 5 KB8 and 100 KB. The num-
ber of TCP connections started in each simulation
is varied from 50 to 500 (in increments of 50 con-
nections). The time at which each transfer starts is
picked randomly between 0 seconds (the beginning
of the simulation) and 100 seconds. The simulation
ended when all transfers completed.

4.2 Drop-Tail Queueing

Figure 9 shows the average per 
ow throughput as
a function of the number of TCP connections com-
pleted during the simulation. In this simulation, the
router uses a drop-tail queue. This �gure shows
that using the standard cwnd increase algorithm and
ACKing every segment provides the best through-
put. Additionally, using the standard cwnd increase
algorithm with delayed ACKs provides the worst
throughput. LBC and DAASS provide throughput
that is close to standard TCP with ACKing every seg-
ment, however LBC generally provides slightly better
throughput than DAASS. When the network is un-
der heavy load (400-500 
ows during the course of
the simulation) all mechanisms exhibit similar per-
formance. In a highly congested environment TCP
is only able to utilize a small cwnd, so the slow start
phase is relatively short. Since the slow start phase is
short and the mechanisms being studied mainly help

8In this paper, 1 KB is 1,000 bytes.
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slow start it is not surprising that all variants of TCP
perform similarly in a highly congested environment.

Figure 10 shows the average goodput9 as a func-
tion of the number of TCP 
ows completed during
the simulation. Using a standard TCP sender with
delayed ACKs provides the highest goodput, while
using LBC provides the worst goodput. Using de-
layed ACKs makes the cwnd increase less rapid and
less bursty which in turn reduces loss. Meanwhile, the
other mechanisms studied open cwnd more aggres-
sively, which leads to burstier tra�c and more loss.
DAASS does not experience as much loss as ACK-
ing every segment or using LBC because it opens the
congestion window less aggressively during conges-
tion avoidance. LBC causes slightly more loss than
standard TCP with ACKing every segment due to
the larger line-rate bursts caused by LBC. When re-
ceiving an ACK for each segment, a standard TCP
sender transmits at most 2 back-to-back segments per
ACK. However, when using LBC an ACK can cover
2 segments, allowing LBC senders to transmit up to
4 back-to-back segments per ACK during slow start.
Figure 11 shows the intervening gateway's average

queue length as a function of the number of TCP

ows in a given simulation. Using delayed ACKs pro-
vides a slight reduction in the average queue length
when compared to the other mechanisms studied in
this paper. The alternate mechanisms studied in this
paper provided an average queue length that is very
similar to the case when the receiver ACKs each in-
coming segment.

4.3 RED Queueing

Figure 12 shows the average throughput as a function
of the number of TCP 
ows active during the simu-
lation. In these simulations, the intervening router
utilizes RED queueing, as described in section 4.1.
Using the standard cwnd increase algorithm while
ACKing every segment provides the highest through-
put, while standard TCP with delayed ACKs yields
the lowest throughput. Unlike the drop-tail case, us-
ing delayed ACKs has a negative impact on through-
put in all simulations, even those consisting of a large
number of 
ows. RED queues are better able to han-
dle small bursts of segments, which allows the more
aggressive mechanisms to obtain better throughput
than the standard algorithm in response to delayed
ACKs. The LBC and DAASS mechanisms were able
to obtain throughput close to the standard algorithm
with ACKing every segment in all cases. LBC again
performs slightly better than DAASS due to less ag-

9We de�ne goodput as the ratio of the number of unique
data bytes sent to the number of total data bytes sent.

gressive nature of DAASS during congestion avoid-
ance.
Figure 13 shows average goodput as a function of

the number of TCP 
ows completed during a simula-
tion. This �gure shows that using delayed ACKs and
TCP's standard cwnd increase algorithm provides the
best goodput (i.e., the fewest drops). Using the stan-
dard cwnd increase algorithm coupled with ACKing
every incoming segment provides the worst goodput.
Using LBC or DAASS provides goodput between the
standard algorithm in response to ACKing every seg-
ment and delayed ACKs. This �gure shows that LBC
achieves better goodput than standard TCP when the
receiver ACKs each segment. This di�ers from the
results of the drop-tail simulations, where LBC expe-
rienced more loss (and therefore, less goodput). This
shows that RED is able to handle the small bursts
caused by LBC better than drop-tail queueing. Also
note the goodput of all mechanisms is less when using
RED queueing than under drop-tail queueing (�gure
10). The reduction in goodput is caused by the early
dropping performed by RED.
Although the loss rate is increased slightly when

using RED queueing, the average queue size is re-
duced. Figure 14 shows the average RED queue size
as a function of the number of TCP connections com-
pleted during the simulation. This �gure shows RED
is able to manage the average queue size and there-
fore better able to handle relatively small bursts of
segments than a drop-tail queue.

5 Telnet Considerations

The last area of our investigation involves the use
of interactive telnet tra�c in conjunction with two
of the ACK generation/utilization mechanisms in-
vestigated in this paper. In this section, we inves-
tigate standard TCP with delayed ACKs and limited
byte counting. For the purposes of this section, stan-
dard TCP with ACKing every segment and DAASS
are su�ciently similar to standard TCP with delayed
ACKs that they are left out of the discussion.
Figure 15 shows the congestion window as a func-

tion of time for a simulated 120 second telnet connec-
tion between the sender and receiver shown in �gure
1. The tick marks along the x-axis show the transmis-
sion time for each segment in the 
ow. For this plot,
the standard cwnd increase algorithmwas used by the
sender and the receiver generated delayed ACKs. The
congestion window was able to reach the advertised
window within the �rst 30 seconds of the transfer.
However, the actual number of outstanding packets
was roughly 2{3 at any given time. Allowing cwnd to
grow as shown in the �gure can cause large bursts of
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tra�c. For example, if a user, who has typed enough
to fully open cwnd, suddenly displays a large �le over
the connection, a large line-rate burst of network traf-
�c occurs. This burst may be inappropriate for the
current network conditions and may cause loss.
We repeated the above simulation employing LBC

at the sender. As shown in �gure 16, cwnd contin-
ues to increase over the life of the connection. How-
ever, the increase is rather modest given that the in-
crease in cwnd is based on the small number of bytes
ACKed by each incoming acknowledgment, rather
than blindly incrementing cwnd by one segment per
ACK. While cwnd continues to grow, telnet is not
as susceptible to generating bursty tra�c as if the
standard algorithm is used.

6 Conclusions and Future

Work

This paper has presented simulation investigations of
Reno and SACK TCP using both standard ACKing
mechanisms and three alternate methods of generat-
ing and utilizing acknowledgments. Below are some
of our key �ndings.

� ACKing each segment provides the best perfor-
mance across all simulations presented in this
paper. The cost of ACKing each incoming seg-
ment, when compared to using delayed ACKs, is
a slight increase in the loss rate, caused by more
aggressive congestion window growth. Changing
TCP implementations to ACK each segment will
also increase the number of segments transmit-
ted into the network. Whether or not it is safe or
wise to increase the number of ACKs generated
in large shared networks is an open question.

� ACKing each segment only during slow start im-
proves performance over standard TCP with de-
layed ACKs. Using DAASS also modestly in-
creases the segment drop rate due to the in-
creased aggressiveness during slow start. As
with ACKing each segment, DAASS increases
the number of ACKs inserted into the network
and therefore must be carefully considered. Fi-
nally, implementing DAASS requires further in-
vestigation into a mechanism by which the re-
ceiver can determine when the sender is using
the slow start algorithm.

� Unlimited byte counting in conjunction with
TCP Reno drastically increases burstiness dur-
ing loss recovery and many times causes addi-
tional loss. This in turn produces a negative im-

pact on performance. Therefore, unlimited byte
counting is not recommended.

� Limited byte counting provides performance im-
provement across all scenarios presented in this
paper. In addition, this mechanism is easy to
implement and provides performance gains com-
parable to using standard TCP and allowing the
receiver to ACK each incoming segment. The
cost of limited byte counting is a slight increase
in burstiness and loss. As shown in section
4.2, LBC increases the drop rate slightly com-
pared to standard TCP when receiving an ACK
for each segment in networks utilizing drop-tail
queues. However, section 4.3 shows that when
RED queueing is utilized, the additional bursti-
ness caused by LBC is more easily absorbed by
the gateway. Furthermore, LBC achieves added
performance without increasing the number of
ACKs the receiver is required to generate. While
LBC is promising, the mechanism requires fur-
ther study in real networks before it can be rec-
ommended for wide-spread use.

� LBC provides more appropriate congestion win-
dow growth for interactive applications. We be-
lieve that LBC should be used if an incoming
ACK covers less than one segment size of out-
standing data.

� We also feel that unlimited byte counting may
be appropriate for future versions of TCP. When
coupled with SACK-based loss recovery UBC is
no worse than LBC. Also, topologies exist where
an ACK interval of more than 2 segments is ap-
propriate based on the ratio of the bandwidth
in the forward direction to the bandwidth of the
return path [BPK97]. Several researchers have
investigated using an ACK interval larger than
2, as well as varying the ACK interval dynami-
cally [Joh95] [BPK97]. However, using a larger
ACK interval provides fewer ACKs which in turn
can hurt performance on the forward channel.
Therefore, unlimited byte counting is a promis-
ing approach to decoupling TCP's behavior on
the forward path from the behavior on the return
path. However, using a large ACK interval and
UBC can produce very large line-rate bursts. To
alleviate these large bursts of data packets a seg-
ment pacing10 algorithm will likely be required.

10TCP pacing after a long idle period is discussed in [VH97].
An indirect method of pacing segments (by spacing incoming
ACKs) is discussed in [Par98]. In addition, Van Jacobson out-
lined a general method for TCP pacing in the TCP Implemen-
tations and TCP Over Satellite Working Group meetings at
the Munich IETF, August 1997.
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A TCP with the characteristics described above
still requires much more research.
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