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ABSTRACT

The computer science research paper review process is largely
human and time-intensive. More worrisome, review pro-
cesses are frequently questioned, and often non-transparent.
This work advocates applying computer science methods
and tools to the computer science review process. As an
initial exploration, we data mine the submissions, bids, re-
views, and decisions from a recent top-tier computer net-
working conference. We empirically test several common
hypotheses, including the existence of readability, citation,
call-for-paper adherence, and topical bias. From our find-
ings, we hypothesize review process methods to improve fair-
ness, efficiency, and transparency.

Categories and Subject Descriptors

A.1 [General Literature]: Introductory and Survey; C.2.m
[Computer Communication Networks]: Miscellaneous
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1. INTRODUCTION

Conference publication unquestionably plays a vital role
in computer science for the timely dissemination of results to
peers. Further, computer science conferences are now often
viewed as the “go to” venues for our best and most polished
work [8]—a role traditionally filled by journals across many
scientific disciplines. This preference for conferences over
journals naturally leads to a number of implications.

e First, competition is fierce at many computer science
conferences, with acceptance rates frequently < 25%
[5] for the top venues'. This is natural as conferences
are crucial to gaining visibility for work and have a
large impact on researchers’ professional development.

e Second, review cycles are short and focused. While
journals have the luxury of time to allow a conver-
sation of sorts between authors and a stable set of
reviewers, top conferences are focused on making bi-
nary accept/reject decisions quickly, often within three
months or less. Time constraints and the sheer num-
ber of submissions can lead to less than ideal review-
ing. Load is further compounded by the lack of shared
state: conferences have little knowledge about previ-
ous versions of rejected submissions.

'e.g. a recent CCR accepted none of 13 submissions [16].
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e Finally, given their importance, the decisions made by
conference committees are held up to much scrutiny.
This is exacerbated by a (necessary) lack of trans-
parency into how a particular submission was dealt
with and discussed within a program committee.

Recent discussions well-illustrate these points [2, 25, 24, 19,
10]. The community is often left feeling as though the pro-
cesses for selecting conference papers need to be improved—
even if there is little consensus on how to improve. However,
ensuring fairness, improving efficiency, and increasing review
transparency, all while maintaining high quality conferences,
is a shared goal of authors, reviewers, and conferences.

Many suggestions have been made about how to improve
the process of assembling a conference program. Below we
offer our own suggestions. However, before delving into pos-
sible solutions we outline two constraints. First, the review
process is fundamentally a human endeavor and therefore
disagreement on outcomes will always be part of the equa-
tion. For instance, prior work shows that score distributions
have many equally “good” papers near the boundary be-
tween accepted and rejected submissions [6]. This illustrates
the inherent ambiguity in attributing value to papers due
to human factors and preferences: individual reviewer dif-
ferences, reviewer group dynamics, current hot topics, and
conference topic emphasis [3, 4].

The second constraint is that the process cannot be fully
transparent. While perhaps the most transparent experi-
ment to date has been to publicly identify reviewers [12],
this still does not capture the discussions about individual
submissions or the set of submissions. Often authors are
left wondering why their submission was not included in the
final program. In the absence of information about the pro-
cess, authors often cling to unsupported notions (e.g. “the
committee is biased against non-fluent English writers” [9]
or other bias [21]). While the reasoning of the program
committee may be sound, there is currently no quantitative
means to express or communicate that soundness. There-
fore, we should strive to be as open as possible with authors
such that they come away feeling confident that their paper
was treated fairly (even if not agreeing with the result).

Within these constraints many suggestions have been made,
and experiments tried, across many conferences. For exam-
ple, to combat the suggestion that reviewers do not have
the requisite expertise we stock program committees with
well-known researchers. To help the community understand
the process, the PC chair(s) will often lay out the partic-
ulars of the path from submission pool to final program in
the proceedings. To combat feelings of bias we ensure that



reviewers with conflicts of interest with authors have no say
in the decisions made about those authors’ submissions. We
sometimes use double blind review whereby authors are not
exposed to reviewers. Further, to help authors understand
the decision making, conferences ask reviewers to answer
pointed questions about each submission. In addition to
a free-form review, these questions can give authors more
information about precisely how a paper was read by a re-
viewer. Finally, some conferences return a summary of the
program committee’s discussion to the authors in an effort
to illuminate precisely which issues were sticking points.

In this paper we argue for a way to potentially improve the
computer science review process: use the tools of computer
science to analyze the data naturally generated by a program
committee. In particular, we believe that data analysis has
benefits: (i) during review to help the program committee
chairs and members detect and address issues (e.g. bias)
directly within the process; and (i¢) after review by exposing
aggregate properties and decisions of the process (e.g. to
show no bias along some axis).

As an exemplar of this approach, we analyze data from
the 2010 ACM Internet Measurement Conference (IMC) [1]
review process. Our analyses focus on how such data might
be used to improve the process by examining readability,
citations, bids, and topics. We do not claim these analyses
to be an exhaustive set, but rather use them to illustrate
both useful tools and the approach. Finally, we note that
data from a single conference is not enough to draw sweep-
ing conclusions about our techniques. We stress that this
research is initial work on a promising approach, and not
the last word on the analysis or metrics.

2. IMC REVIEW PROCESS

The IMC 2010 process was driven by a program commit-
tee of 26 community members. The authors of the present
analysis in this paper include a PC member and the PC
chair. PC members were asked to “do all or nearly all of
the paper reviewing” themselves. Our data set includes the
full submissions, PC bids on the submissions, review as-
signments, reviews, scores, and final disposition of the 211
papers submitted. IMC accepts two types of submissions.
IMC 2010 received 102 short papers which were to convey
“less mature but promising work” [1] and were at most six
pages, with a seventh page of references. Additionally, IMC
2010 received 109 long papers of up to 14 pages which de-
scribe “original research with succinctness appropriate to
the topics they discuss.” Submissions exposed author infor-
mation to the reviewers and were written in English. Of the
211 submissions, 47 papers were accepted for the final pro-
gram (24 long and 23 short). The review process revolved
around the HotCRP [18] review system.

The exact review process varies by conference, but in our
experience the IMC 2010 is typical of large top-tier venues
in that it was iterative. The process started with bidding,
in which PC members express a relative interest in each
submission based on abstracts and titles. Additionally, at
this time the PC members also reported conflicts of interest
and were recused from any further involvement with con-
flicting submissions. The bids facilitate the next phase of
the process in which the PC chair assigned each submis-
sion two reviewers. After the first two reviews for a paper
were submitted, a quick discussion between the reviewers
and PC chair was initiated to decide whether the paper

should be rejected—with roughly 40% of the submissions
being rejected at this point. If both reviews were quite neg-
ative and the PC chair concurred, the paper was removed
from further consideration. Otherwise, another reviewer was
assigned. After the third review was completed, another dis-
cussion ensued to decide whether the paper (i) was so strong
it could be accepted without discussion in the PC meeting,
(74) was so weak it did not merit discussion in the PC meet-
ing or (i4i) was a reasonable candidate for inclusion in the
program and hence should be discussed at the PC meeting.
In a small number of cases (= 5%) this discussion lead to
soliciting an additional review. The final step of the process
was a day-long PC meeting—attended by all but one PC
member—in which final decisions were made.

Each PC member reviewed 19-23 submissions. In sev-
eral cases the PC utilized external reviewers where addi-
tional expertise was needed. Further, all papers for which
the PC chair had a conflict of interest were handled outside
the HotCRP system by three senior members of the PC such
that the PC chair had no visibility into the process. These
reviews were eventually entered into HotCRP under a sin-
gle “anonymous” pseudonym. We omit external reviews and
anonymous reviews from our analysis below.

3. METHODOLOGY

We require the raw ASCII text of each submission to per-
form analysis. While all submissions were in PDF format,
the myriad PDF versions and distillations rendered auto-
matic extraction unfeasible. We therefore manually extract
ASCII text from each submission, collate each paper’s ref-
erences, and verify correctness.

We note that we do not attempt to validate the accept or
reject decisions of the PC for our dataset, or otherwise de-
termine paper quality in a technical sense. Instead, we take
the PC’s decisions as ground-truth and evaluate our various
metrics with respect to these final decisions. Therefore, no
correlation for some metric between accepted and rejected
papers only indicates that the metric was not discrimina-
tory in our dataset (i.e., with respect to the IMC 2010 PC’s
decisions). Past “shadow PC” experiments show that a dif-
ferent PC would have arrived at a different program [14].
Thus, any extant bias may be attributable to the PC, or
may be due to the distribution of paper quality among top-
ics. Assessing paper quality is subjective and even with an
independent evaluation of quality, it is difficult to tease out
the ultimate source of bias. Our goal in this work is simply
to discover and report any such discriminators. In future
work, we plan to perform a more general analysis across a
large cross-section of conferences.

We use several metrics and techniques to test our vari-
ous hypotheses. We consider the population of submissions
divided among long and short papers, and those accepted
or rejected. To determine if there exists a dependence be-
tween a particular metric and a paper’s accept or reject de-
cision, we first compute the Pearson correlation coefficient
[22]. The Pearson correlation varies from [-1,1] with 1 in-
dicating exact linear dependence between two variables, -1
exact inverse linear dependence, and 0 indicating no rela-
tionship. We also calculate the permutation test (p-value)
for any correlations. The p-value, ranging from [0,1.0], is
a confidence measure that indicates the probability of two
uncorrelated systems generating as high of a correlation co-
efficient by chance. A large p-value reduces the confidence
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Figure 1: Distribution of readability metrics.

in the observed correlation. For topical emphasis and word
discrimination, we employ a mutual information score, while
a vector space model provides a document similarity metric;
these discriminators are detailed in §4.4 and §4.5.

When considering distributions, we employ the two-sample
Kolmogorov-Smirnov (K-S) test [20]. The K-S test forms a
null hypothesis that samples from two populations (e.g. ac-
cepted and rejected short papers) are drawn from the same
distribution. The test returns a K-S statistic from [0,1] and
a two-tailed p-value from [0,1] indicating the probability of
the null hypothesis. When the K-S statistic is small, or the
p-value is high, we cannot reject the hypothesis that the dis-
tributions are the same (i.e. the metric under consideration
does not discriminate between accept and reject).

4. MINING FOR BIAS

Amid a deluge of papers [15], even the most well-meaning,
fastidious reviewer may introduce unconscious bias. For in-
stance, a reviewer may unintentionally discriminate against
particular topics, writing style, or methodology. Conceiv-
ably, paper discrimination may be intentional. Our goal is
to facilitate automated mechanisms that expose potential
biases so that the PC can evaluate, in real-time, whether
they are intended and warranted, the result of the under-
lying quality of the submissions, or unintentional mistakes
that should be addressed as part of the process. Further,
statistics about bias could be exposed to the community to
improve the transparency of the process.

While bias comes in a myriad of forms, we test for four
specific types based on our experience and public discourse:
readability, citations, topics, and keywords. We do not claim
that these tests are inclusive of all sources of bias. Rather,
they provide a starting point to rigorously examine common
perceptions. Our methodology can be readily extended to
assess additional forms of bias.

4.1 Readability

A paper is only as good as its ability to convey its con-
tribution. In our discussions with authors, a common bit of
folklore is that technically sound, but poorly written papers
have a lower chance of acceptance—and, hence non-fluent
English speakers are at a disadvantage. A 2008 SIGCOMM
blog post exposed many of these same beliefs [9]. To explore
this hypothesized bias we consider two metrics: vocabulary
size and writing complexity.

As a first step, we seek to ascertain whether vocabulary
size influences paper acceptance. We tokenize each paper
in our dataset and compute the distribution of unique word
counts across populations. In addition, we construct distri-
butions after root-word stemming and stop-word removal.

We find that the minimum number of unique words for
rejected long papers is lower than the minimum among ac-
cepted papers. For both long and short submissions, the
maximum number of unique words is higher for accepted
than rejected papers. However, the K-S test over vocabulary
size between accepted and rejected papers yields p-values
of 0.74 and 0.56 for long and short papers respectively—
suggesting that vocabulary size was not a factor in IMC 2010
decisions. Using stopping and stemming does not qualita-
tively affect the results.

For a deeper understanding of writing level, we examine
several widely-accepted readability tests [11] in Figure 1.
The Flesch Reading Ease score is a measure of contempo-
rary academic English comprehension difficulty, with higher
scores indicating more easily understood writing and scores
under 30 indicative of university-level text. The Gunning
Fog [11] and Flesch-Kincaid indices[17] are similar measures
that use the number of words, sentences, syllables, and com-
plex syllables to determine writing grade level.

In our dataset, 60% of all papers have a reading ease score
between 60 and 70 indicating relatively simple English. The
Pearson’s correlation between reading ease and acceptance
(-0.01 and 0.12 for long and short) is not statistically signif-
icant and indicates that there is no reading ease bias. Fur-
ther, the K-S p-value between accept and reject reading ease
distributions is 0.71 and 0.45 for long and short papers re-
spectively, indicating that the distributions are similar, and
there is no evidence of bias.

Commensurate with the reading ease, we see relatively
low inferred writing levels. The Gunning Fog K-S p-value is
0.89 and 0.34 for long and short papers, respectively. The
Flesch-Kincaid p-values are 0.80 and 0.58 for long and short
papers, respectively. The correlation coefficients in all cases
are small with large p-values.

We note that readability metrics do not fully capture nu-
ances particular to technical academic writing, e.g. precise
and direct sentences. While there is no statistically sig-
nificant bias evident for these three readability metrics, in
future work we wish to examine other metrics such as gram-
matical correctness.

4.2 Citation Discrimination

A crucial component of any research is understanding
prior work and the current state-of-the-art in the field. Ci-
tations serve as both requisite knowledge to understand a
paper, and to distinguish submissions from similar prior re-
search. Here we consider citation bias. Figure 2 displays the
cumulative fraction of accepted and rejected papers versus
the number of references contained in the paper. Unsurpris-
ingly, short papers generally contain fewer references than
long papers. A larger fraction of accepted short papers have
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Figure 3: Dist. of references to TPC members.

more than 20 references as compared to rejected shorts (65%
vs. 35%). All long papers with fewer than 15 citations were
rejected, manual inspection of these found that half were
less than the 14 page limit, suggesting that the authors ran
out of time rather than space. We find a K-S p-value of 0.91
between the distributions of accepted and rejected long pa-
pers, indicating no bias. However, we find a weak positive
correlation between longer reference lists and short paper
acceptance: a K-S value of 0.30 with a p-value of 0.07, and
a correlation coefficient of 0.14 with a p-value of 0.17.

Next, we consider whether citing work by members of the
Technical Program Committee (TPC) is important for ac-
ceptance. For instance, one paper writing “strategy” is to
attempt to engender reviewer favor by gratuitously citing
papers authored by likely reviewers. Figure 3 shows the
cumulative fraction of paper type versus the number of ref-
erences to the IMC TPC members. Accepted papers, on
the whole, contain more references to papers by TPC mem-
bers than rejected papers. For long papers, the correlation
is 0.21 which was statistically significant (p< 0.03), with a
somewhat weaker correlation of 0.15 for short papers at a
p-value of 0.12. The corresponding K-S p-values are 0.31
and 0.57. One explanation for this disparity is authors suc-
cessfully biasing reviews positively.

To better understand the effect, we ran the same analysis
of IMC 2010 submissions, but this time use the IMC 2009
TPC members who were not also IMC 2010 TPC members.
There is less strategic reason to expect papers from 2010 to
cite TPC members from 2009. Again, accepted 2010 papers
generally contain more references to the 2009 TPC members
than rejected papers. However, the effect is weaker: there
is a 0.13 correlation for long papers (with a p-value of 0.19)
and a -0.04 correlation for short papers (with a p-value of
0.66). We also find that 35% of accepted 2010 short papers
reference none of the 2009 TPC members as compared to
only 9% that referenced none of the 2010 TPC members.

Table 1: Example topic bias evaluation: P(Y |token),
where P(Y) =0.223

Token: | “wireless” (unbiased) “jpv6” (unbiased)
present | absent present | absent
accept 0.216 0.226 0.235 0.222
reject 0.784 0.774 0.765 0.778
Token: “p2p” (mild bias) “qos” (bias)
present | absent present | absent
accept 0.145 0.255 0.115 0.238
reject 0.855 0.745 0.885 0.762

While the Pearson correlations are stronger for the 2010
TPC citations than the 2009 TPC citations, the K-S scores
show a stronger relationship for 2009 TPC citations. Future
work includes analyzing more conferences to determine the
extent of this effect. For instance, the correlations we ob-
serve may be due to citation bias, or may simply be because
the TPC members are experts in their research domains —
and therefore more likely to have authored important works
that are thus likely to be cited by accepted submissions.

4.3 Querying for Topical Bias

While biasing the review process against topics that are
out of scope for a given venue is natural and expected, other
forms of bias may be detrimental and should be exposed in
order to permit the PC to understand its source and effect.

As a first step toward understanding topical bias, we em-
ploy a simple single word-based token model to investigate
whether particular keywords were of significance in the fi-
nal accept or reject decision. This subsection examines bias
across all submissions without regard for whether they are
short or long. Each document is tokenized for alpha-numeric
characters separated by any type of whitespace, and then
converted to lower-case. Let ¢; be an indicator variable for
the presence of word ¢ in a given submission. Define class
labels Y=+ 1 as “accept” and ”reject.” The acceptance
rate, or class prior, is thus: P(Y=1) = 0.223. We count the
token prior P(¢;) and the conditional probability: P(¢;|Y).
To compute a diagnosis from these causal probabilities, we
employ Bayes’ rule: P(Y|¢;) = w. Words com-
mon across accepted and rejected papers impart no discrim-
ination, e.g. “the”: P(the|Y=1) = P(the|]Y=—1) = 1.0, i.e.
P(Y|the) = P(Y).

Conditional probabilities provide a powerful tool to form
targeted queries. For example, a TPC might consider IPv6
or wireless new and exciting, and wish to understand if there
exists a bias in the current set of candidate paper decisions.
Table 1 shows the conditional probability for four topical
tokens we imagined might experience bias, based on our
knowledge of current networking research. We see that the
conditional probabilities of “ipv6” and ”wireless” are close to
the class prior (0.223), indicating that they impart no bias.
Next, consider the presence of peer-to-peer via the token
“p2p.” The peer-to-peer token is present in 9 accepted and
54 rejected submissions and presents a mild negative bias:
the acceptance ratio of 0.145 is less than the acceptance
class’ prior. Finally, some words have a clear bias. Em-
pirically, we found that “qos,” or quality-of-service, which
appears in 3 accepted and 23 rejected submissions, has a
stronger negative effect on outcome when present.

Such discrimination may or may not be intended, as re-
viewers may simply be tired of such topics or the papers in
such a well-studied area may be making smaller contribu-
tions. Alternatively, the quality of papers submitted that



Table 2: Most interesting 10 tokens based on MI

[ bi [ P(accept|p;) [ P(accept|not ¢;) ]
revisit 0.611 0.187
allows 0.293 0.085
simulated 0.000 0.250
globecom 0.000 0.244
lot 0.078 0.269
nxdomain 1.000 0.212
iptps 0.000 0.242
traceroutes | 0.500 0.194
“author” 0.800 0.209
discover 0.344 0.170
alert 0.000 0.239

contain these topical terms may be skewed. We advocate
exposing topic bias as an integral part of the review process,
but we do not take a position on what a PC or the chairs
should do about such biases when they are uncovered.

4.4 Word Discrimination

While conditional probability is a simple and powerful
means to query for topical bias, it does not take into ac-
count the fact that a token may be highly discriminatory
for acceptance or rejection and yet only appear in a single
paper, limiting our ability to generalize across all words. We
therefore turn to the Mutual Information (MI) score [13] to
determine the information value of each word:
P(¢:,Y)

I(6sY)= > > P(d)i,Y)logQW
¢;€{0,1} YE£1 ¢

(1)
The basic intuition of MI is that, when ¢; and Y are in-
dependent for some token i: P(¢,Y) = P(¢;)P(Y) and
I(¢i;Y) = 0. In contrast, if ¢; is strongly correlated with
the accept or reject decision, its MI will be 1.

We compute I(¢;;Y) over all tokens 7 and rank order the
results. Of the top 100 discriminatory tokens from MI, we
list 10 of the most interesting terms, discovered via man-
ual inspection in a process we envision similar to how a PC
might use this data, in Table 2. As with other analysis in
this work, we emphasize that correlation does not imply cau-
sation; there are many possible explanations to our observed
data. Again, we seek to expose information.

Among IMC 2010 submissions, the second and third most
discriminatory word tokens are “revisit” and “allows.” We
were at first surprised to find non-technical terms dominat-
ing the MI, however technical terms are often sparsely dis-
tributed. In contrast, the word “revisit” is apropos to IMC
where the CFP explicitly asks for “reappraisal of previous
findings.” Thus, if a submitted paper contains the word
“revisit,” or other, similar words—e.g. “repeat,” “breadth,”
and “updated”—it was more likely to be accepted.

If “allows” is present, the paper has a near prior probabil-
ity of acceptance (i.e. same as the overall acceptance rate).
However, if “allows” does not appear, there is a very high
(91%) chance that the paper is not accepted. A random
sampling of five rejected papers without “allows” revealed
that all five were authored by non-fluent English speakers,
suggesting that such papers contained poor English. Other
similar words had a similar effect, e.g. “lot” where there was
only a 7.8% chance of acceptance.

As we include citations in our tokens, references and au-
thors appear in our top token list. Two terms that identify
other conferences, “globecom” and “IPTPS” have high MI;
no papers containing these terms were accepted. Similarity,
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three authors (anonymized in Table 2) proved discrimina-
tory, with a higher-than-prior chance of acceptance.

Finally, among technical terms, “nxdomain,” “traceroutes,”
“alert,” and ”simulated” were all in the top 100 highest MI
terms. Fittingly for an applied Internet measurement con-
ference, no papers containing “simulated” were accepted.

4.5 Adherence to CFP

A Call For Papers (CFP) attempts to outline the spirit
of a conference. While CFPs often list specific topics (e.g.
“peer-to-peer”) and general approaches to be considered
(e.g. “Internet measurement”), often such enumerations are
explicitly labeled as non-exhaustive, e.g. to accommodate a
new or fresh area not envisioned a priori (topics in the IMC
2010 CFP are framed as “examples.”) That said, we as-
sess how well the IMC 2010 submissions adhere to the CFP,
which can help in identifying those with scope issues and
how well the PC is evaluating with respect to the CFP.

To measure similarity between two strings, we employ co-
sine similarity, also known as the vector space model (VSM)
[7]. Let the tokens of a given paper and the CFP be P and
C respectively. We take the CFP verbatim, minus submis-
sion instructions, TPC members, and other non-pertinent
details. Let U = P|JC define the universe of tokens under
consideration, with n = |U|. Define two vectors of length
n: p and ¢ where each element represents the frequency
of that token in the paper and the CFP respectively. The
similarity between the vectors is the distance between them
in an n-dimensional space. The dot product of the length-
normalized vectors determines the cosine similarity:

, p-c
sim(P,C) ElE 2)

Figure 4 depicts the cumulative fraction of submitted pa-
pers versus CFP similarity score. The results are surpris-
ing: accepted papers generally have lower similarity to the
CFP than rejected papers. The K-S p-values between dis-
tributions of accepted and rejected paper similarity are 0.22
and 0.19, indicating an approximately 80% chance that they
are different. Further, the correlation coefficients are both
-0.11, indicating an inverse relationship with a p-value of
0.25. We conjecture that this similarity difference is due to
bias toward new work rather than topics in the CFP. A sec-
ond explanation is that lower-quality work is attempting to
over-fit to the CFP. Again, our goal is to provide more in-
formation to the PC during the process and the community
afterwards: we are more interested in exposing potential bi-
ases during the process than trying to post-facto determine
why these occurred or judge them to be somehow “wrong.”
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S. UNDERSTANDING THE REVIEWER

Next, we aim to gain insight into the reviewers and the
review process in order to improve the system.

Each reviewer has her own “lens” through which papers
are viewed — adding healthy diversity and stimulating dis-
cussion within the process. One crucial job of the PC chair
is therefore the assignment of papers to reviewers. The as-
signment objective is to find persons with sufficient techni-
cal expertise to evaluate a paper, while ensuring a variety
of perspectives on each submission. Automation of the as-
signment process is feasible today. HotCRP [18] includes a
bidding facility whereby each PC member reviews the titles
and abstracts of submitted papers and indicates their level of
(dis)interest. HotCRP can use bids to produce a candidate
assignment schedule that balances the load across the PC.
In our experience, however, it is important to retain a hu-
man in the loop and use the bids as a starting point as there
are a variety of subtle factors to consider, e.g. ensuring that
each paper is reviewed by a seasoned PC member. For IMC
2010, the chair collected bids, but did not use HotCRP’s
automated assignment generator.

The bidding process has become common across confer-
ences in our recent experience. We also observe that bidding
is a time-consuming affair, with PC members sifting through
hundreds of abstracts to indicate their preferences. This is
further exacerbated because bidding typically occurs before
submission. IMC 2010 is normal in this regard, requiring pa-
per titles, abstracts, and authors to be registered one week
before the submission deadline. Bidding took place during
this week and so PC members were forced to consider the
295 papers registered rather than only the 211 papers ulti-
mately submitted. The burden of this task is evident in that
only slightly more than half (14) the PC bid on all registered
papers, with five members bidding on fewer than 100 papers
and one PC member bidding on only 11 papers.

Figure 5 shows bid values as a cumulative fraction of re-
viewers. We also normalize bids per-reviewer, as individual
reviewers can use vastly different scales. Note that a bid of
-100 indicates a conflict of interest. We observe that only
32% of the papers received a positive bid, demonstrating
that bids are primarily used to indicate disinterest.

We aim to understand the degree to which the bidding
process could be automated to alleviate some of the afore-
mentioned burdens. Rather than manual bidding, each re-
viewer could provide a small corpus of their own research
papers. The system could then infer a level of interest in
each submission, and produce a candidate bid.

To evaluate the feasibility of such automation, we manu-
ally selected a corpus of five published papers for each PC
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Figure 6: Distribution of correlation between re-
viewer’s bids and reviewer similarity to submissions.

0y

1.0

0.6

CDF

0.4

ﬁ = Accept (long)
02 :' == Reject (long)
e—e Accept (short)
& o Reject (short)

100 =50

0.0

0 50 100
Bids

Figure 7: Distribution of paper type and disposition
vs. reviewer bid scores.

member, including one paper that is as closely related to
IMC as possible. As with the submitted papers (P), we to-
kenize the reviewer’s own papers to obtain R (we consider R
inclusive of all tokens across the PC member’s own five pa-
pers and most recent paper). Let P; ; be the ¢’th submission
for potential reviewer j. We use VSM to compute pairwise
similarity of each IMC submission to each reviewer’s set of
authored papers, i.e. sim; ; = sim(P; ;, R;). Figure 6 exam-
ines the correlation between the reviewer’s bids and the sim-
ilarity of the papers to her own work, i.e. corr(siﬁzj, bid;)Vj.
When considering only a PC member’s most recent mea-
surement paper, approximately 90% of the PC members
submit bids that are positively correlated with the inferred
similarity between the submission and the member’s previ-
ous work. We find a similar trend when computing similarity
against each PC member’s five recent papers, but with less
correlation, indicating that the most recent paper is most
reflective of the reviewer’s interests. This positive correla-
tion suggests that automating the bid process may increase
the efficiency of bidding while ensuring that all papers are
bid on appropriately. Naturally, reviewers could override
the suggested bids, for instance to express preference for a
submission outside of the reviewer’s traditional domain.
Finally, we examine whether a PC member’s bid on a
paper is correlated with that paper’s eventual acceptance or
rejection. We wish to determine whether reviewers are some-
how predisposed to give positive or negative scores based on
the bid values. Figure 7 shows the cumulative fraction of pa-
per type and disposition versus the bid score. We see that
the distributions are close across the range of bid scores,
with a K-S test statistic of 0.08 (longs) and 0.07 (shorts),
indicating that the two distributions are the same. Thus,
we see no statistical evidence of bias based on the PC bids.



6. CONCLUSIONS

This initial work seeks to illustrate the potential power of
deeper introspection into the computer science review pro-
cess using data-mining techniques. We believe that expand-
ing our understanding of the process has significant merit in
ensuring fairness, organizational consistency, and promot-
ing transparency. First, automated data-mining can pro-
vide valuable information to overworked PCs, and serve to
enhance the system of checks and balances that ensure high-
quality venues. While we performed all of the analysis in this
paper off-line, the same techniques could be utilized to pro-
vide iterative or continual feedback to the chairs and TPC
during, and within, the review process. Second, publicly
exposing aggregate conference review statistics post-facto
makes the process more transparent, thereby improving the
integrity of the system. Our hope is to incorporate our tech-
niques into popular open-source conference organization and
review systems, e.g. EDAS [23] and HotCRP [18]. Tagging
capabilities already present in Hot CRP suggest an attractive
means to expose some of the metrics we have presented.

We have only scratched the surface of possible hypotheses
to investigate, and data-mining to perform. Our intent is to
advocate a general technique and demonstrate instances of
its application to a conference; space constraints preclude a
more exhaustive analysis of many more equally valid ques-
tions. Additionally, the size of our dataset precludes any
larger conclusions from our analysis. Future work will in-
vestigate more than a single instance of a conference, to
understand how these techniques generalize across both con-
ferences and time.

Acknowledgments

We thank Steven Bauer, kc claffy, Ryan Craven, Mark Gondree,

Ratul Mahajan, Vern Paxson, and the anonymous reviewers
for insightful critiques that greatly improved our analysis.
Views and conclusions are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. government.

7. REFERENCES

[1] ACM SIGCOMM Internet Measurement Conference,
2010.
http://www.sigcomm.org/events/imc-conference.

[2] IEEE ComSoc Technical Committee on Computer
Communications mailing list archives, Aug. 2010.
https://lists.cs.columbia.edu/pipermail/tccc/
2010-August/thread.html.

[3] M. Allman. Thoughts on reviewing. SIGCOMM
Comput. Commun. Rev., 38(2):47-50, 2008.

[4] M. Allman. What ought a program committee to do?
In WOWCS, 2008.

[5] K. Almeroth. Networking Conferences Statistics, 2012.
http://wuw.cs.ucsb.edu/~almeroth/conf/stats/.

[6] T. E. Anderson. Towards a model of computer
systems research. In WOWCS, 2008.

[7] N. Belkin and W. Croft. Retrieval techniques. Annual
Review of Information Science and Technology
(ARIST), 22:109-145, 1987.

[8] K. Birman and F. B. Schneider. Viewpoint program
committee overload in systems. Commun. ACM,
52(5):34-37, 2009.

[9] M. Crovella. Openness of the SIGCOMM conference,
2008. http://blog.sigcomm.org/2008/09/openness_
of _the_sigcomm_confer.html.

[10] J. Crowcroft, S. Keshav, and N. McKeown. Viewpoint:
Scaling the academic publication process to internet
scale. Commun. ACM, 52(1), Jan. 2009.

[11] W. H. DuBay. The principles of readability. 2004.
http://www.nald.ca/library/research/readab/
readab.pdf.

[12] M. Faloutsos. IEEE Global Internet Symposium Open
Review Process, 2007.
http://netsec.cs.uoregon.edu/gi2007/.

[13] R. Fano. Transmission of Information. The MIT
Press, Cambridge, MA, 1961.

[14] A. Feldmann. Experiences from the Sigcomm 2005
European shadow PC experiment. SIGCOMM
Comput. Commun. Rev., 35(3):97-102, July 2005.

[15] P. Francis. Thoughts on improving review quality. In
WOWCS, 2008.

[16] S. Keshav. July 2011 editor’s message. SIGCOMM
Comput. Commun. Rev., 41(3), 2011.

[17] J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and
B. S. Chissom. Derivation of new readability formulas.
Technical report, Naval Air Station Memphis, 1975.

[18] E. Kohler. HotCRP Conference Management
Software, 2012. http:
//www.read.seas.harvard.edu/~kohler/hotcrp/.

[19] H. F. Korth, P. A. Bernstein, M. Fernandez,

L. Gruenwald, P. G. Kolaitis, K. McKinley, and
T. Ozsu. Paper and proposal reviews: is the process
flawed? SIGMOD Rec., 37:36-39, September 2008.

[20] H. W. Lilliefors. On the Kolmogorov-Smirnov Test for
Normality with Mean and Variance Unknown. Journal
of the American Statistical Association, 62(318), 1967.

[21] K. Papagiannaki. Author feedback experiment at
PAM. SIGCOMM Comput. Commun. Rev.,
37(3):73-78, 2007.

[22] J. L. Rodgers and W. A. Nicewander. Thirteen ways
to look at the correlation coefficient. The American
Statistician, 42(1):pp. 59-66, 1988.

[23] H. Schulzrinne. EDAS Conference Management
System, 2012. http://edas.info/doc/.

[24] D. S. Wallach. Rebooting the CS publication process.
Commun. ACM, 54:32-35, October 2011.

[25] J. M. Wing and E. H. Chi. Reviewing peer review.
Commun. ACM, 54:10-11, July 2011.



