

† Case Wester Reserve University, Cleveland, OH 44106
* ICSI, Berkeley, CA 94704
§ Oberlin College, Oberlin, OH 44074

This work was partially supported by funding provided to ICSI through National Science Foundation grant CNS: 0722035
(“Architectural Support for Network Trouble-Shooting”). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors or originators and do not necessarily reflect the views of the National
Science Foundation.

On Browser-Level Event Logging

Owen Bell, † Mark Allman, * and Benjamin Kuperman§

TR-12-001

January 2012

Abstract

In this paper we offer an initial sketch of a new vantage point we are
developing to study “the Web” and users' interactions with it: we have
instrumented the Web browser itself. The Google Chrome browser
provides an API to developers that allows the building of extensions to the
base functionality. As part of this system, Chrome allows developers to
add listeners to various browser events. Our extension adds listeners that
log these events. We discuss the data we obtain from Chrome, our method
for addressing privacy issues in the collected data, and initial findings
from observing a small set of real users' Web browsing activities. The
findings are modest in absolute terms, but serve to show the efficacy of
our monitoring approach.

1. INTRODUCTION

The “web” is built on top of HTTP [8], a flexible
protocol that allows information to be gathered from
myriad places (servers, databases, content-delivery net-
works, advertising systems, etc.) and integrated into a
logical whole for users. Our understanding of the web
largely comes from (i) anecdotes, (ii) network-level pas-
sive observation of users’ browsing behavior, and (iii)
rudimentary probing of web servers. Arguably, each of
these has offered much insight into the system over the
years. However, there are still gaps in our understand-
ing due to our incomplete vantage points. For instance,
passive observation allows a wealth of information to be
harvested about actual user-produced web transactions,
but can derive little insight about encrypted transac-
tions. Further, determining which transactions are com-
bined to form the logical whole that the user views
is often tricky when stitching the story together from
packet traces. Even tracking a “user” is difficult since
often users get network addresses dynamically and/or
share an address simultaneously using network address
translators (NATs). On the other hand, synthetic prob-
ing allows us to piece together an understanding of how
the overall system is structured (how CDNs are utilized,
which protocol features are implemented, etc.), but of-
fers no insight into how these features and structures
manifest when faced with actual user activity.
In this paper we offer an initial sketch of a new van-

tage point we are developing to study “the web”: we
have instrumented the web browser itself. The Google
Chrome browser provides an API to developers that al-
lows for building various extensions to the base browser
functionality. As part of this system, Chrome allows de-
velopers to add listeners to various browser events. We
simply add listeners that log the time the event happens
and the arguments passed to the listener. This model
of event recording—with no analysis in the browser—
closely follows a model that has proven useful in other
areas of network data collection (e.g., RouteViews [12],
intrusion detection [14]).
As described in § 2, Chrome’s set of events run the

gamut from creating windows and tabs to bookmark-
ing a web page. By recording these events and then
analyzing the resulting logs we can create an accurate
user-centric picture of web browsing. We believe this
viewpoint can shed significant light on various aspects
of user behavior that are not apparent from network
traces. For instance, from passive observation we can-
not determine anything useful about encrypted HTTP
transactions, whereas from our browser logs we can gain
insight into this traffic (see § 3.1).
In addition to simply characterizing user behavior

in web browsers, we believe that a fine-grained log of
a user’s actions may well provide operational benefits
in terms of troubleshooting. That is, when a web site

is not loading for some reason (local network problem,
CDN outage, DNS issue, web server under attack, etc.)
the user’s behavior may well be different than when all
components are working as expected. If we can detect
this from the browser event logs, we can then design
browsers to also detect such events and perhaps alert
operators. While our data analysis shows that develop-
ing these causal event chains is possible, in this prelim-
inary work we do not tackle this troubleshooting issue
in detail.
This paper is a modest initial foray into the space.

Our Chrome extension is in its formative stages, our
data collection is small in scope (15 users), and our
data analysis is preliminary. We hope to use this short
paper to show the promise of the technique and engage
with the community on further interesting questions we
might ask and further data we might collect.

2. LOGGING FRAMEWORK

Chrome provides an interface to allow users to create
extensions, which are small programs that modify the
behavior of the browser. We created an extension that
listens for relevant browser events and simply records
the event, a timestamp, and all ancillary information
provided to the listener. The event handling and logging
will add overhead to the operation of the browser. How-
ever, since our extension only saves information on each
event it is hard to envision it causing user-perceptible
overhead, and in fact subjectively we do not notice it
nor did any of the users who installed the extension and
reported back to us. In addition, we do the bare min-
imum in the browser, therefore reducing the overhead
will necessarily reduce the amount of data collected.

2.1 System Architecture

Our logging extension registers a set of event listeners
with Chrome. When the extension receives an event, it
saves single line of text representing the event. Each
record includes: (i) a timestamp, (ii) the event name
(e.g.,“tabs.onCreated”), (iii) the Chrome-assigned win-
dow and tab identifiers for the tab where the event oc-
cus, (iv) the URL and (v) any additional information
based on the given event type.
Chrome makes extensive use of sandboxing to protect

the host OS from potentially malicious software making
it difficult or impossible to get direct access to the file
system to save logs. However, the HTML 5 standard
includes a specification for a persistent data storage
of key-value pairs in web browsers called localStor-

age [10] which is where we stored our log. At present,
users emailed the generated log manually. While this
worked fine as a proof-of-concept, near-term future work
will entail automatic submission and log rollover capa-
bilities.
Finally, note that not every browser action generates

an event—e.g., there is no event associated with browser
startup. This can complicate some of our analyses as
we will now have to infer what happened rather than di-
rectly observing it. That said, the application-layer log
provides a better basis for such inference than network-
level or host-level logs.
At present the events logged by our Chrome extension

can be broken into four broad classes, as follows:

• Windows: creation, removal, focus on/off

• Tabs: creation, removal, update (e.g., starting or
stopping a web page load), attach/detatch to a
window, focus on/off

• History: visiting a web page component, remov-
ing URL from browser history

• Bookmarks: creating, changing, removing, im-
porting from another browser/file, being manually
rearranged, being sorted by the browser

We further log various events caused by our extension
itself—e.g., when the user clears the log, when logging
is stopped/started, that the user’s secret (see § 2.2)
changed, etc.

2.2 Privacy Issues

When building a log of web browsing activity for use
by someone besides the user, privacy concerns abound.
We leveraged three principles to address these concerns
in developing our extension: (i) users control their own
logging, (ii) users can readily observe what is being
logged, and (iii) logs can be optionally encoded to ob-
scure the most sensitive portions (e.g., URLs visited).
Our goal is to protect the privacy of users such that
they will be comfortable turning over their data to us
for analysis while also retaining enough rich logging that
we can mine the data for useful results. Our small pilot
tests have shown reasonable success in this goal, how-
ever broader tests may of course cause an evolution in
our techniques. We next discuss our implementation of
the privacy principles listed above.
Logging Control: Within our extension users can
start and stop logging with a single button press. While
these logging on/off events are recorded such that we
are able to understand that the logs are incomplete,
nothing else is recorded about any facet of browsing
while the user has explicitly stopped logging. Further,
Chrome disables extensions while the user is in “incog-
nito” mode and therefore we log nothing about users’
activities during such periods.
Understanding Logged Information: Next, we pro-
vide users with an understanding of what information
has been logged and therefore what will be returned to
the researchers. All logging is done in plain text such
that the user can directly see what will be returned.
Additionally, event names are specified and parameters
labeled. While not all users may wish to poke through
the log in detail, we believe providing the option to view

what the researchers are requesting provides users with
confidence that we are not collecting any sort of per-
sonal data in a clandestine fashion. Similarly, the code
is readily available for inspection—which we do not ex-
pect many users to do, but does present an open posture
that we believe is useful.
Obfuscate Sensitive Data: Finally, even with the
above considerations some of the information we wish
to log is sensitive. For instance, the events expose URLs
accessed, page titles, etc. Therefore, we give users the
option to obfuscate their logs. The extension picks a
random secret S when it is first executed.1 The secret
is stored within the browser but never exposed outside
the local host (i.e., in the log). We then define an ob-
fuscating function as:

G(x) = MD5 (x+ S) (1)

We then log page titles as G(title). URLs are encoded
to retain their structure. Consider the URL:

http://foo.com/script.cgi?args

Rather than running G() across the entire URL we en-
code the components as:

http://G(foo).com/G(script.cgi)?G(args)

This mechanism follows the spirit of prefix-preserving
IP address anonymization [16], whereby the goal is to
obfuscate the values themselves, but retain the struc-
ture of the values. By encoding in this fashion we pro-
tect privacy as each user’s log is different (due to S).
But, we retain certain aspects of the URL, such as the
application protocol, the top-level domain, etc. As al-
ways, obfuscating is a tradeoff between privacy and re-
search usefulness [13]. We believe we have struck an ap-
propriate balance, and the users in our initial data col-
lection effort seemed satisfied with our methods (some
asked specific questions about the high-level mechanism
we sketched during recruiting and ultimately were sat-
isfied in our safe-guards).
We also stress that we are not trying to anonymize

the data in such a way that it could be released publicly
(and therefore should be able to withstand all manner
of attacks). Rather, we are obfuscating the data such
that the users are comfortable turning over the data to a
small group of well-known researchers. We expect that
this will lower the obfuscation burden for most users.

3. DATA ANALYSIS

We next turn to an initial analysis of the browser-
event logs we collected from the 15 users who used
our extension. Our goal in this paper is to illustrate
the sorts of analyses that we can undertake with the
data provided by our framework and show some results

1The user can enter their own secret, if desired.

User Events Dur.

(K) (days)

U0 10.5 5.4
U1 6.0 4.6
U2 12.5 2.8
U3 11.5 8.1
U4 10.0 15.1
U5 12.1 6.6
U6 3.6 7.5
U7 7.0 5.8

User Events Dur.

(K) (days)

U8 8.2 6.4
U9 3.9 6.9
U10 5.1 6.1
U11 2.6 6.1
U12 1.2 6.1
U13 1.9 2.0
U14 2.7 13.8
Total 98.8 103.3

Table 1: User characteristics.

that are suggestive that this measurement methodology
holds promise. In particular, we note that neither our
sample of users nor the length of our observations are
enough to draw general conclusions. Further, one can
readily think of many additional analyses that could be
conducted, however, we present only a sample to show
the power of the framework and leave a more compre-
hensive analysis as future work.
To help us both ensure our Chrome extension was

working and to provide data for initial analysis we re-
cruited colleagues and friends we knew to be running
Chrome.2 The participants enabled logging for 2.8–
15.1 days and logged between 1.2K–12.5K events (see
Table 1). In total the logging encompasses over 100 days
worth of user activity and captures nearly 100K events.
The table shows the users have different browsing rates.
For instance, U2’s log spans less than half the time cap-
tured in U12’s log and yet contains an order of magni-
tude more events. Finally, we note that our data has
an obvious “geek bias” given who was asked to install
and run our extension. As discussed above, we do not
find this problematic for our initial foray because we
are vetting the method more than drawing general con-
clusions. However, this must be addressed in future
collection efforts.

3.1 Hidden Performance Issues

As sketched above, one of the benefits of logging in-
side an application is gaining visibility into events that
are obfuscated on-the-wire. HTTPS is widely used to
encrypt web sessions to thwart attackers who can snoop
a network—e.g., on an open wireless network—from
stealing sensitive information and/or engaging in man-
in-the-middle attacks. While this use of encryption is
obviously beneficial, the drawback is that researchers
and operators lose understanding of what is happening

2Note, due to the varying abilities of web browsers some
users in our sample did note that they used other browsers
for certain activities (e.g., sites written specifically for In-
ternet Explorer). Therefore, in some cases we did not cap-
ture all a given users web browsing and in fact our sample
might be biased. We leave an assessment of this bias as fu-
ture work, but note that our initial data collection effort has
shown us the importance of providing users with a survey
to better understand the context of the returned data.

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

H
T

T
P

 L
o
ad

 T
im

e
/

H
T

T
P

S
 L

o
ad

 T
im

e

Percentile

U0
U8

Figure 1: Relative performance of HTTP and
HTTPS across percentiles.

in the network. We are not advocating clear-text trans-
mission for research benefits, but note that the loss of
visibility does have a cost in terms of our understanding
of the network and therefore seek to regain enough visi-
bility to keep our understanding current. In particular,
we find that across our user sample HTTPS comprises
1%–70% of the web pages loaded, with most users falling
within the 10%–35% range.
Chrome fires events when web page loading is ini-

tiated and completed. This allows us to assess the
load time without manually correlating all the disparate
objects that form a page as an on-the-wire analysis
would entail. We find that load times for secure web
pages3 are generally shorter than for normal HTTP-
loaded pages (using means, medians, comparing quar-
tiles, etc.). While we find this result counter-intuitive,
it indeed holds across all users in our dataset. As an il-
lustration, we calculated the ratio between the duration
of HTTP and HTTPS page loads for each percentile of
each user’s distribution of load times. Figure 1 shows
the results for two users. All ratios are greater than
one, indicating HTTP loads are slower than HTTPS.
The differences are more pronounced for U8 than for
U0. We have not yet uncovered the reason why HTTPS
pages load more rapidly. The reasons could range from
content—e.g., a difference in average page sizes4—to
structural—e.g., secure sites frequented by users being
geographically close such as a Blackboard-like system
on campus. Our future work will entail logging much
more information to dig into these kinds of puzzles, but
already one can see our approach bearing fruit in terms
of previously unattainable results.

3Note: just because the main web page uses HTTPS does
not mean all components are delivered via HTTPS.
4While it is natural to assume correlating with the page size
would be trivial, the browser does not provide size infor-
mation to event listeners. One piece of future work will be
using additional means to access this information (e.g., via
querying the cache).

3.2 Tracking Users Across Time and Space

Next, we note that monitoring within browsers can be
used to more accurately track an individual user’s ac-
tivity across both time and network connectivity. While
a network-level monitor may get a reasonable—but not
complete—view of a user’s web activity, with today’s
device mobility a given network vantage point will nearly
assuredly only view slices of the user’s overall activ-
ity. Roughly half the users in our sample employed
Chrome on a laptop that regularly changed connection
point during data collection (with the remainder being
run from a fixed device). Using out-of-band information
(logs of an often- and automatically-accessed service) we
were able to determine that the second author spent his
working hours connected to two different networks dur-
ing his collection period for 23% and 77% of the time, re-
spectively. This illustrates that network vantage points
at either location would miss a non-negligible portion
of his traffic.5 A network’s viewpoint is further compli-
cated by dynamic addresses and NATs which can easily
cause users to be aggregated together without an easy
way to untangle them.
Note that digging activity from network-level data

is cumbersome and time consuming and can therefore
be a logistical impediment to gathering a large amount
of data. However, logging this same activity within a
browser is a simple matter of recording state that al-
ready exists. Therefore, monitoring on an end host or
in an application itself can provide a comprehensive and
low cost view of a user’s activities. While this has been
previously observed [9] we are able to get an even more
detailed perspective given our integration with the ap-
plication. A final point is that using a particular net-
work vantage point (a la a recent study of HTTP we
conducted [4]) includes natural bias in terms of the user
population. While our modest user sample does not
materially change this effect the approach of collect-
ing data from web browsers offers the chance to sample
users much more broadly than can be done from any
one vantage point.
As an illustrative example, we note that our sample of

users loaded roughly 17K URLs during the monitoring
period. Of these, 13K were loaded only once. Figure 2
shows the mean and median number of URL visits per
day for URLs visited more than once as a function of
user (sorted by mean number of URL visits). Due to
mobility and encrypted traffic, this figure could be at
best only approximated without browser level monitor-
ing. The figure shows that of the pages loaded more
than once, the median number of retrievals is fewer than
once per day across most users. However, the mean can
be multiples of the median indicating that the distribu-

5This also suggests that we may need to add an active probe
to our extension—with the agreement of each user—to aid in
understanding when users change their point of attachment.

 0

 2

 4

 6

 8

 10

 12

 14

V
is

it
s

P
er

 U
R

L
 /

 D
ay

User

Mean
Median

Figure 2: Visits per URL per day.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50000 100000 150000 200000 250000

T
ab

 I
D

Time (sec)

U2
U8

Figure 3: Timeline of completed downloads.

tion is skewed and that some pages are loaded a large
number of times. Finally, we note there are many addi-
tional avenues for tracking users’ patterns across time
with infrastructure.

3.3 Modeling and Troubleshooting

As developed above, one of the issues with attempt-
ing to model or troubleshoot web traffic via network
observation is that the vantage point lacks enough con-
text to fully understand the chain of causal events that
triggered a particular web object to be fetched. At best
the observed behavior is an estimate. Figure 3 provides
a view of web browsing developed from our browser logs
for two sample users. In the figure, each point repre-
sents a completed web page download with the x-axis
representing the time and the y-axis representing the
tab in which the web page was loaded. We plot U2’s full
history and the beginning of U8’s history (for presenta-
tion purposes).6 Using a network vantage point the di-
mension illustrated on the y-axis would be unavailable.
Further, with dynamic address assignment and NATs a

6Note: The tab IDs used on the y-axis are arbitrary and we
offset U8’s ID such that they are greater than 220 while U2’s
tab IDs are all less than 220.

host’s exhibited network behavior may be aggregated
with other hosts and hence obfuscated. This figure
shows some of the sorts of causal aspects a browser-
based log can illuminate. For instance, we see that U8

has a long-running tab open that fairly continuously re-
trieves data—but, this seems invariant of whether the
user is actively browsing the web. Analysis of the logs
indicates this is an automatic updating of a particular
web page every 15 minutes. However, such automated
retrieval should not be confused with the user’s inter-
active browsing.
Additionally, we can see that both users open many

short-lived tabs in close succession. We find that in
10% of the cases a tab is opened within 2.2 seconds
of the last tab open event. In a number of cases we
see a progression of tabs being used as time passes, in-
dicating that users are opening links in new tabs as
they browse. With the browser log we can understand
which page triggered each new tab by noting the fo-
cus when tabs are created. Therefore we can build a
chain of events that can then be used to model browsing
in a way that traffic analysis cannot—yielding a richer
model that better follows actual user behavior. Fur-
ther, such a behavioral history can be the basis of de-
tecting anomalous behavior—e.g., uncharacteristic au-
tomatic page fetching.
As a concrete example, consider troubleshooting net-

work issues by assessing whether a web page has com-
pletely loaded or not. A network-based monitor can
attempt to track the main page and the set of included
objects to determine if they all load successfully. How-
ever, if they do not load properly the network-based
monitor is left with only an indication that there may
be a problem. In our dataset, however, we found 294 in-
stances where the user started a new retrieval before
the previous retrieval in the same tab finished. In these
cases an external monitor may arrive at the conclusion
that a problem could be occurring, but the browser it-
self has enough information to understand that there is
no problem.

3.4 User-Interface Issues

While our focus is on observing network-related brows-
ing behavior our approach lends itself to studying the
web browser’s user interface, as well. Browser exten-
sions have been previously employed to record so-called
“click streams”the represent user’s interactions with the
application itself (e.g., see [7] as a recent example). Such
data can be used to understand how people use various
browser features and also to point out common usage
scenarios that may lead to better interfaces.
As a modest example, Figure 4 shows two aspects of

how users employ tabs. For each user we determined
the length of time a tab was open for all tabs that the

user both opened and closed during our logging.7 We
then calculated various percentiles of these per-user dis-
tributions and then plot the CDF of those values across
users in the left-hand plot. This plot shows a range of
tab usage. Many tabs are open at most several minutes.
However, we also observed a non-negligible number of
tabs that were open for longer than one day. Further,
we note that user behavior in terms of tab lifetime is
clearly quite broad—spanning three orders of magni-
tude in time at each percentile shown on the figure. A
second aspect of tab usage we are able to assess is the
number of web pages loaded within a given tab. I.e., do
people use a tab for each web page they load? Or, are
tabs used repeatedly for various tasks? The right-hand
portion of Figure 4 shows the distributions of number
of web pages loaded per tab for three sample users. U0

and U9 roughly represent the upper and lower bound be-
havior across all users. We include U11 as a data point
in-between. The plot shows that some users such as U9

load very few web pages per tab—i.e., 90% of the tabs
being used to load one or two web pages. Others such
as U0 re-use tabs a bit more—i.e., the 90th percentile
being ten web pages per tab.
While interface issues are not our focus, collecting

data in this area is a nice bonus to bring more data to
these issues. For instance, the aforementioned browser
study in [7] encompasses click-streams from a mere 21 users
which illustrates the need for more data and there-
fore opportunistic collection and synergistic partner-
ships will be part of our future work.

4. RELATED WORK

The literature is filled with work exposing the oper-
ation of “the web” from various angles. We believe our
work is complementary to the existing body of work and
offers another viewpoint on the process. Below we dis-
cuss the relationship of our work to various categories
of previous work (and provide but a small sample of the
vast references in each category).
Much of the previous work characterizing the web

was conducted using passive traffic monitoring (e.g., [1–
3, 5]). Such studies provide the foundation on which our
understanding of web traffic is built and the method-
ology is useful in a number of ways. For instance, a
large user population can be studied via a single van-
tage point. However, such monitoring has several is-
sues including (i) vantage point bias, (ii) lack of insight
into encrypted traffic (10% of web connections viewed
at one institutional border in a recent study [4]), (iii)
sampling bias due to device mobility and (iv) traffic
ambiguity caused by NATs and dynamic address as-
signment. Each of these leaves either ambiguity or an
interesting subset of the traffic under-studied.

7I.e., we discounted tabs open when the logging started or
stopped.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 100 1K 10K 100K

C
D

F

Tab Lifetime (seconds)

25th 50th 75th 95th

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F

URLs Loaded Per Tab

U0
U9

U11

Figure 4: Tab characteristics: tab lifetime (left), pages loaded in tab (right).

Another closely related set of previous work involves
monitoring on the end host and/or the application itself.
Researchers have previously proposed making applica-
tions monitor certain aspects of their behavior and/or
performance for their own benefit. For instance, many
BitTorrent clients assess performance from various peers
and use this as input in selecting where to next request
pieces of a particular download (e.g., see the BitTyrant
work [15]). In addition, application agnostic end-host
monitoring has previously been conducted (e.g., [9, 11]).
Our approach of logging application-specific details in
web browsers can compliment these more general appli-
cation agnostic measurements.
Finally, we note that end-host measurements have

been proposed for aiding intrusion detection by expos-
ing events that cannot be observed by network-based
sensors due to encryption or lack of context (e.g., see
[6]). Our logs could form the basis of a mechanism for
feeding into such systems.

5. CONCLUSIONS AND FUTURE WORK

We make two main contributions in this paper. First,
we develop a Chrome extension for logging information
about users’ web activity. Our logging strategy is de-
signed around simple logging of browser events without
analysis. In addition, our strategy is built on several
principles that take into account user privacy which is
crucial to any effort to collect data from users. Our
second contribution is a number of initial analyses of a
small set of data (from 15 users) that show the promise
of our monitoring apparatus to observe web browsing
details that have been previously unavailable to the
community’s monitoring efforts. This paper represents
only a small initial step and our future work entails har-
vesting additional information from the browsers and
expanding our user sample in terms of number and
breadth.

Acknowledgments

Initial development on our browser plugin was conducted
by Siyang Wu. Discussions with and data from a num-
ber of people aided the work, including: Kenneth Atchin-
son, Ethan Blanton, Tom Dooner, Hua Jiang, Aaron
Kanter, Tu Ouyang, Jesse Rowsell, Brain Stack, Sipat
Triukose and Kevin Woods. The work was supported
in part by NSF grant CNS-0722035. Our thanks to all!

References

[1] M. Arlitt and C. Williamson. Web Server Work-
load Characterization: The Search for Invariants
(Extended Version). IEEE/ACM Transactions on
Networking, 5(5), Oct. 1997.

[2] P. Barford and M. Crovella. Generating Repre-
sentative Web Workloads for Network and Server
Performance Evaluation. In ACM SIGMETRICS,
pages 151–160, July 1998.

[3] P. Barford andM. Crovella. MeasuringWeb Perfor-
mance in the Wide Area. Performance Evaluation
Review: Special Issue on Network Traffic Measure-
ment and Workload Characterization, Aug. 1999.

[4] T. Callahan, M. Allman, and V. Paxson. A Lon-
gitudinal View of HTTP Traffic. In Passive and
Active Measurement Conference, Apr. 2010.

[5] M. Crovella and A. Bestavros. Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes. IEEE/ACM Transactions on Networking,
5(6):835–846, Dec. 1997.

[6] H. Dreger, C. Kreibich, R. Sommer, and V. Paxson.
Enhancing the Accuracy of Network-based Intru-
sion Detection with Host-based Context. In Con-
ference on Detection of Intrusions and Malware &
Vulnerability Assessment, 2005.

[7] P. Dubroy and R. Balakrishnan. A study of tabbed
browsing among mozilla firefox users. In Proceed-
ings of the 28th International Conference on Hu-
man Factors in Computing Systems, CHI ’10, pages
673–682, New York, NY, USA, 2010. ACM.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext Transfer Protocol – HTTP/1.1, June 1999.
RFC 2616.

[9] F. Giroire, J. Chandrashekar, G. Iannaccone,
K. Papagiannaki, E. Schooler, and N. Taft. The
Cubicle Vs. The Coffee Shop: Behavioral Modes in
Enterprise End-Users. In Passive and Active Mea-
surement Conference, Apr. 2008.

[10] I. Hickson. Web storage. Last call WD, W3C, Dec.
2009.

[11] D. Joumblatt, R. Teixeira, J. Chandrashekar, and
N. Taft. HostView: Annotating End-host Perfor-
mance Measurements with User Feedback. In ACM
Sigmetrics HotMetrics Workshop, June 2010.

[12] U. of Oregon RouteViews Project.
http://www.routeviews.org.

[13] R. Pang, M. Allman, V. Paxson, and J. Lee.
The devil and packet trace anonymization. In
ACM SIGCOMM Computer Communication Re-
view, volume 36, Jan. 2006.

[14] V. Paxson. Bro: A System for Detecting Net-
work Intruders in Real-Time. In Proc. of the 7th
USENIX Security Symposium, Jan. 1998.

[15] M. Piatek, T. Isdal, T. Anderson, A. Krishna-
murthy, and A. Venkataramani. Do incentives
build robustness in bittorrent? In 4th USENIX
Symposium on Networked Systems Design & Im-
plementation, 2007.

[16] J. Xu, J. Fan, M. H. Ammar, and S. B.
Moon. Prefix-Preserving IP Address Anonymiza-
tion: Measurement-Based Security Evaluation and
a New Cryptography-Based Scheme. In Proceed-
ings of the 10th IEEE International Conference on
Network Protocols, 2002.

	TR-12-001 cover
	TR-12-001 no cover

