|
| |
|]

INTERNATIONATI
COMPUTER SCIENCE
I' NS TI1TUTE

|

Psst, Over Here:
Communicating Without Fixed Infrastructure

Tom Callahan,” Mark Allman, * and Michael Rabinovich’

TR-12-002
January 2012

Abstract

This paper discusses a way to communicate without relying on fixed infrastructure at
some central hub. This can be useful for bootstrapping loosely connected peer-to-
peer systems, as well as for circumventing egregious policy-based blocking (e.g., for
censorship purposes). Our techniques leverage the caching and aging properties of
DNS records to create a covert channel of sorts that can be used to store ephemeral
information. The only requirement imposed on the actors wishing to publish and/or
retrieve this information is that they share a secret that only manifests outside the
system and is never directly encoded within the network itself. We conduct several
experiments that illustrate the efficacy of our techniques to exchange an IP address
that is presumed to be a rendezvous point for future communication. Additionally,
we describe a wider channel that can be used to transmit an SMS- or Twitter-like
140-character message.

+ Case Western Reserve University, Cleveland, OH 44106
* ICSI, Berkeley, CA 94704

This work was partially supported by funding provided through National Science Foundation grants CNS: 0433702 (“Center
for Internet Epidemiology and Defenses”); CNS: 0831821 (“Relationship-Oriented Networking”); CNS: 0831535
(“Comprehensive Applications Analysis and Control”); and CNS: 0831780 (“Relationship-Oriented Networking”).. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors or originators
and do not necessarily reflect the views of the National Science Foundation.

. INTRODUCTION remains, users could in principle bootstrap to communi-

The Internet has increasingly moved from a system used C&t€ locally even though their usual means for doing so
to disseminate information to users from a relatively small S disrupted.
number of content providers to a system that facilitatesispa This situation begs a questio@an we increase robustness
information among users. This style can be plainly foundha t and flexibility of information sharing services by allowing
most popular destinations and applications: Twitter, Baok, consensual actors to initiate communications over the agtw
Flickr, Skype, BitTorrent, one-click file sharing systenesg, Without a central hub?
RapidShare), etc. The shift from merely consuming informa- Within a small area this is straightforward. For instance,
tion to sharing information has in fact led to several eforwithin a broadcast domain one party could encrypt a message
to change the basic model of networking from host-based with a secret that was pre-arranged with the recipient(g) an
content-based [1], [2] as this latter has become the basitemdhen broadcast the message. The intended recipient(sgwoul
of operations for users. That is, users fundamentally do reg the only ones who could make sense out of the message.
want to access some host in the network, but rather wantRorther, there is no direct targeting of the recipient(shile/
swap a given piece of information. The techniques explorédch a scheme is trivially possible it does not address our
in this paper strive to transfer small amounts of informatioquestion when we scale beyond individual broadcast domains
using a scheme that is not fundamentally host-centric. However, this limited scheme provides for a model of sorts

In a network model where information is generally dissemfor solving the problem in a broader way.
nated upon request, we can readily build highly robust syste In this paper we develop a globebvert broadcast domain
A user interested in buying a book can easily find a bodkat allows actors with only a simple shared secret to exghan
seller using a well-known DNS name (e.g., “amazon.com’3mall messages without the secret ever being directly used
Further, server farms, content delivery networks, repdida within the network (and thus itself becoming a central hub,
DNS servers, geographically disparate replicas, multivad of sorts). This message could be self-contained informatio
connectivity, etc. provide robustness of operation. Werréd or a way to bootstrap further communication. We develop
this as thecentral hubmodel. Even if physically distributed, this covert broadcast domain by using standard DNS servers
the service is orchestrated at some easy-to-find and higkdyhold information not in the traditional sense of serving
robust central location. This model makes perfect sense fecords, but by leveraging the caching behavior of the ssrve
certain activities (e.g., legitimate e-commerce). to convey information. Further, the scheme is not dependent

However, as noted above, users have evolved to become@heany particular DNS server, but rather any DNS server the
most prolific content providers on the Internet. In techgatal actors agree on (as discussed if). In other words, we design
terms this shift has manifested in one of two basic ways: @ technique that factors out the need for a well-defined akntr
using a central hub to connect users and hold the shared doub for information sharing and/or bootstrapping.
tent (e.g., Twitter) or4) using a central hub as a bootstrapping We explain the mechanism in detail in subsequent sections.
mechanism for direct peer-to-peer information exchangg,(e However, as a touchstone the reader can think of breaking
a BitTorrent tracker or, in the trackerless variant, a sy a message into its component bits. Each bit is represented
an existing DHT node). While the role of the central hub iby a cached record in an arbitrary DNS server the actors
reduced in the second approach, it is still required. Aldiou have agreed upon. The value of each bit is represented by
a lightweight central hub may be perfectly reasonable inesorthe returned TTL value of the DNS record—e.g., the one bits
cases, there may be other cases where such a central preseaehave a TTL 10 seconds larger than the zero bits. In this
is undesirable, such as: way we use DNS servers’ natural capabilities of caching and

« For peer-to-peer systems, requiring a central hub to bo@ging recorgls to encode e_phemeral information in the system
strap establishes a system vulnerability that can hamp@fhout relying on any particular fixed infrastructure omme
operation even though the major functionality is disl? the remainder of this paper we show we can accurately
tributed at the peers. For instance, if the central hub lose4blish and query for such information.
connectivity (power, etc.) the larger system would likely
be still functional if not for the inability to bootstrap.
Therefore, for robustness reasons, not depending on as sketched above, we leverage caching DNS servers to
fixed central hub is useful. hold information. To fulfill our vision, the first premise ibat

« Another aspect of using a central hub is that it providabere should be many DNS servers on the Internet that will
a tangible choke point that can be readily blocked hyold the messages we seek to store. Further, actors should be
policy. For instance, blocking a large BitTorrent trackeable to independently discover common DNS servers to hold
could affect many peers even though the peers themseltles exchanged messages. Therefore, before we embark on stor
do most of the work to exchange files independently froing and retrieving information from DNS servers we perform
the tracker once bootstrapped. Another example is theDNS scanning experiment to understand the prevalence of
recent case of Egypt disconnecting its major ISPs fromrsable DNS servers.
the broader Internet—which effectively disconnects usersActors wishing to exchange messages must share a secret
from myriad central hubs. However, if local connectivityS. This is used in a number of the tasks in our overall

II. DNS SERVER DISCOVERY

procedure, and in particular for finding common DNS serversxperiment that was able to identify 60 recursive DNS server
While we consistently refer t& as a “secret”, we note thatwithin 15 seconds using a residential cable modem conmectio
nothing compels the communicating actors to kéegptrictly An alternative to random scanning is hit list scanning (as
private. RatherS must be shared an$l is only needed by the covered in a general way in [5]). Actors could agree on some
endpoints of the communication and not the DNS servers. Fodependent list of servers to scan. For instance, Alexa.co
example, a BitTorrent application could maintain a hardexb tracks web site popularity and the authoritative DNS sexrver
collection of shared secrets for client use. Frénwe define connected with the listed domain names could be checked for

a generator function as: suitability for our purposes. We probed the authoritativéD
servers associated with Alexa’s top 10K web sites to detegmi
G(z) = shal(shal(S) + z), (1) if they would respond to arbitrary recursive queries from

outside hosts and found a hit rate of approximately 3.3%—
where “+” denotes the append operation ands a string. or an order of magnitude more than in our random scanning
By runningG(”IP1”) and using the low-order 32 bits as arexperiments. We note that each server requires an additiona
IP address any actor holding) can independently derive theprobe to determine the IP address of the authoritative DNS
same series of hosts—by replacing “1” in the calt#¢) with server that corresponds to a given name when compared with
linearly increasing integers—to find a usable DNS servers tize random scanning approach given above. While the success
mediate their communication. Each host in the common listiigte means that the hit list mechanisms represent a healthy
probed with a DNS request for a name within a domain thegduction in the number of probes, we cannot say whether the
we know to enable wildcards reduction is enough to fly under the radar.

In our scanning experiment we probed from roughly Finally, we note that such a hit list approach runs counter
80 PlanetLab nodés—-each using its own randorfi—at a to the notion developed i | of not requiring a central
rate of 2 DNS queries/second. A correct response fromhgb to bootstrap communication. However, we note that the
given host is used to trigger two more queries of the sard@proach can first be viewed as an optimization and notlgtrict
server to ensure the TTL is being decreased on subsequegfiessary. In addition, we believe a variety of hit lists ban
retrievals® Assuming the TTL is being correctly decrementedised—e.g., from addresses in mailing list archives, usialg w
we consider the server to be usable. However, as we discgées found in the Twitter public timeline over the course of
in subsequent sections, it is not unusual for a DNS serverg@me time period, etc. This makes correlating the DNS pgbin
pass this initial set of checks only to display non-confargni activity with the hit list more difficult. The DNS requestsnge
TTL behavior during message publication. via a hit list are also more likely to look legitimate on an

Across 22.7 million probes we find that the hit-rate is aghdividual probe basis because they are actually conrgctin
proximately 0.4%. The median number of probes sent betwe®ith DNS servers as opposed to most of the probes in the
identifying subsequent servers is 194, while the mean is 2g&ndom scanning experiment which do not hit active servers.
Further, we find the maximum probes sent before identifyirfyso, since the hit lists come from uninvolved actors they
a server is nearly 9,000, with the @9ercentile being 1,284. may be more difficult to block without shutting down some
These results make probing tractable for our purposes becauseful functionality, however, this varies with the gerera
even scanning at a low rate will turn up multiple servers. E.goopularity of the source of the hit list (e.g., blocking Atex
sending one probe per minute over the course of one day VAIRY cause relatively little harm, but blocking Twitter may
yield five DNS servers on average. Further, once the set G#use an unacceptable loss of functionality).
servers is obtained, i_t can be maintain_e_d with even lower-ra . ABASIC BIT CHANNEL
probes over longer time scale. In addition, DNS servers that) : . ,
simply disappear (as has been noted elsewhere in the literat AS desc.r!bed above, our goal IS to ut|I.|ze DNS servers
[3], [4]) will be readily detected as attempts are made tmestonatural ability to cache and age information to store small

information at the given server. Such knowledge can also giFssages W'th_Ol_Jt_ directly inserting rec_ords mtq t_he DNS
used to trigger a new server detection phase system. As an initial use case, we consider publishing a 32-

While in this paper we use relatively low rate scans f it IPv4 addres; using this system as a.ba_sic k.)it channel.
all our experiments—at most 10 queries/second—we n e start with this use case because a bit pipe is the most

?ﬁ%sic communication channel. Further, we presume that once

that using a higher scanning rate could be possible in so) .
circumstances and allow us to find a large number of usa fgown, an P e}ddr.ess can pe useq to form the basis of higher
er communication. In this section we use the procedure

DNS servers quite rapidly. For instance, we conducted alsmay® : .) :
q picly outlined above ir§ 1l to find suitable recursive DNS servers

Un particular the name we use is “dns.researchprojeittdris- and, as they are found, publish and retrieve 32-bit messages
scan.icir.org.if.problematic.HASH.ws” to be up-frontaalh what we are doing
should our experimental queries trip alarms. A. Procedure
2PlanetLab often experiences node churn and, while we toednbose The process of storing messages in DNS servers starts with
reliable nodes, the number of nodes used in each individistlthroughout a pre-arranged secrét between all parties involved in the
the paper varies slightly. .= . . .
communication. Usmg this secret, we define a generator as

3We found in early experiments that some DNS servers do noedemnt : .)
the TTL of their cached records, leading to this test. shown in equation 1. We also need a domain we know to

support wildcard DNS queries, that is, queries for unknown | | TTL Method | RD Method |

names within the domain still return some record. As will |_Pub- Attempts 125K 87K
become clear, we also need the domain to assign a sufficiently Unusable Servers 21K 129K
i A -) Non-Responsive Servers 742 520
large TTL to its DNS responses. Domains supporting wild- | Non-Recursive Servers 2.6K 1.7K
cards are widespread [6], and we found that many also returrj Non-Decrementing TTL 15K 9.8K
TTLs sufficient for our needs. In all our experiments we use | Weird TTL Decrementing 2.8K 898
the “ws” domain (an arbitrary choice that returns TTLs of | _lgnores RD=0 N/A 2.6K
3 .hours).. Note, we consider alternate designs that do na& hav U;?J%Ife?;mers 19024{ ng.gK
this requirement in§ V. Failure: Packet Loss 3.6K 4.8K
Let M be the message we wish to transmit and be its Failure: No Data Found 3.6K 3.3K
it" bit. We now outline two procedures for encodimgwithin Failure: Corrupt Data 5.0K 5.4K
a DNS serverD. TABLE |
TTL Method: The first method we employ is based on BIT-PIPE PUBLICATION RESULTS

inserting records corresponding to all bits i in such a
way that the zeros and ones are distinguishable by the TTLs

returned in lookup responses after publication. The pabbta there h b . tation to determine aheth
process proceeds as follows: ere has never been any experimentation to determine ahe

the scheme works or how effective it may be. The procedure—
which we denote the “RD method"—works as follows:

Ri = G(" Record%d” i), @ 1) uWS?nggnerate a name for each Bif; of the message
where “Record” is just an arbitrary identifier that all R; = G("Record%d” i), (4)
actors involved know (here and in the rest of the paper
we use gri nt f -like notation to compose strings).

1) We generate a name for each Bif; of the message
using:

2) Next we form a sel/, wherei is inserted intoU if

H H 1 H ” H . MZ = 1‘
2) Similarly, we generate a "barrier record” using: 3) For eachyj € U we execute a recursive DNS request to
B = G(“Barrier") (3) D for the hostname R;.ws”, retrying until a response

is received for each record.

! | > . The general idea behind this approach is that the records
inserted intoZ if M; =0 andU otherwise. corresponding to the one bits il are cached by, whereas

4) For eachy € U we execute a DNS request 1o for the e 7610 bits are not encoded i in any way. We leverage
hostname ;.ws", retrying until a response is receivedps when retrieving the data by sending queries for each of

for each record. i . the 32 names iR with DNS’ “recursion desired” flag set to
5) We next pause for roughly five seconds. The choice plige This indicates thab should only look in its own cache
five seconds is arbitrary. The value needs t0 be MOgg the given name and not recurse up the DNS hierarchy to
than one second as that is the granularity of DNS’ TTLggqve the given name. We initialize ad’ to all zeros and
We leave optimizing the publication time as future workiyen any ‘7 ws” query that returns a valid response indicates
6) We then execute a DNS request f@.Ws”, retrying if iy M} should be set to one. After considering each of the

necessary. _ 32 recordsM’ should be equivalent to the original.
7) We again pause for roughly five seconds.

8) For eachk € Z we execute a DNS request fo for the B. Results

hostname F.ws”, retrying until a response is received e tested the accuracy of both publication mechanisms
for each record. described above by storing a 32-bit message (a la an IPv4
The general idea behind this process is thawill cache address for bootstrapping) in a DNS server and then attempti
the requested records with associated TTLs that origimate f to retrieve the message. We use the procedure outlingdlin
the authoritative server. Given the publication pattein/l to probe for DNS servers and upon finding each such server
records that have a TTL shorter than that of the barrier tecowe publish a message and then attempt to retrieve it. Each
B correspond ta//; = 1 and records having TTLs longer thanpublication strategy is tested in its own scanning passdwhi
that of B correspond taV/; = 0. run in sequence, not parallel). We use roughly 80 PlanetLab
The data retrieval process borrows steps 1 and 2 from thedes for the test. Each node performs independent scans to
procedure outlined above. We then query f&.Ws” and each identify DNS servers and start the subsequent tests.
record in R, recording the TTLs for each returned record as After each publication the host waits 10 seconds and then
BT and RT. We then setM/ to one if R < BT and zero retrieves the message to assess the efficacy of the dattdnser
otherwise. At this point the retrieveld’ should be equivalent process. Table | shows the results of our publication attemp
to the messag@/ that was published. First we note that in spite of our efforts (sketchedgifl) to
Recursion-Desired Method: The second method wasidentify unusable DNS servers during the scanning phase we
sketched in a Black Hat presentation [7]. To our knowledgstill ended up with problems in roughly 15% of the servers

3) Next we form sets of bit numberg, andU, wherei is

we tried. The largest problems come from TTL decrementing
issues—even though we tried to weed out servers with this

100 %

issue during our scanning pasi I{)*. We note that when & 90 %
using the RD method, we find servers that ignore the RD=0 g ? o T
ing i - ivi S 80% P

setting in our requests. This would be trivial to also exelud £ \\
in the scanning phase and in future efforts based on the RDS 70% <
method we would certainly do so. While these problems do 3 60% | Look ?:ut?mssgﬂtl-olgkupﬁ 1
not spea_\k to the efficacy of our information sharing Fechejqu. g 50%| ngkﬂg ngll/Dgta %gmﬁ;’tgd,,*,,, 1
they do illustrate that one must exercise some care inchgosi &,/ | Lookup Fail/Packets Lost--a- |
suitable DNS servers. %i . Lookup Fail/Not Responding---=-—-

The lower portion of the table shows the results for usable » 309%
servers. We find a publication success rate of roughly 88% for 3 20% s
the TTL method and 81% for the RD method. The largestand @ 10% e g
most problematic publication issue is data corruption. Whs 00 b T
the other issues listed in the table—no data found and packet 10 100 1000 10000
loss—can be readily identified during the retrieval process Seconds after Publication
corrupted data gives no outward signs of problems. As we

. U : —~ 100 %

have designed a generic bit pipe, it would be possible toyappl § "
Forward Error Corruption (FEC), or simply a parity bit, to ¢ 0% T
the bit-stream to reduce the number of corruption errors (at 2 80% \
the expense of requiring more bits, of course). Also, we note § 70 % <

T

that packet loss is an issue—even though we re-try pendingg g o Successful Lookups—— |

i ; i = Lookup Fail/No Data Found-=---
gueries every two seconds until we receive a response or havea 50 % Lookup Fail/Data Corrupted- - -

T

m

transmitted four queries. The final problem of no data being & Lookup Fail/Packets Lost &
found likely comes from DNS servers that recursively lookup < 40% 1 Lookup Fail/Not Responding—=-—
records, but do not cache names (for long). g 30%

We next turn to a more general investigation of information 37 20 % >
retrieval. For the successfully published messages wedsche & 10 % S e
uled retrievals from a set of 55 different PlanetLab nodes 0% ot I S Lo e
chosen via round robin across our list of roughly 80 PlanietLa 10 100 1000 10000
nodes. We schedule five retrievals (from different nodes) at Seconds after Publication

each of eleven intervals between 10 seconds and 128 minutes

after publication. This methodology allows us to test bajh (Fig.hl.d Bit pipe retrieval results for the TTL (top) and Resion Desired
whether the information is available to a breadth of hosf&™%

around the network andii} the storage longevity we can

expect from the mechanisms. time period.

Figure 1 shows the results of retrieving the information we Finally, to ensure that the PlanetLab platform itself was
published as a function of time since publication. We noga th,; biasing our results in some fashion we replicated the
just after publication the TTL method shows a roughly 90%poye experiments from a host at ICSI. While the PlanetLab
retrieval success rate, whereas the Recursion Desiredothetphirievals were conducted from 55 disparate machines we use
is nearly flawless. The success rate two hours after_ pultitatihe same machine at ICSI for all aspects of our tests (scgnnin
drops to roughly 70% for both methods. As shown in the plgbplication and retrieval). The results from the ICSI runs
the predominant cause of the dropoff in success is an ineregge consistent with the PlanetLab experiments. The reriev
in the instances of not finding the data on the server as th&yts are similar with the RD method showing higher susces
time since publication increases. This is a natural restilt g,on after publication than the TTL method, but both drogpin
names being evicted from the cache. Even though the nand@Sover time. The predominant cause of failures over time
nominally have TTL left, the names are to a large extent Nt finging no data on the DNS servers, just as we find in
being used and so it is natural that some LRU-like poliGye planetLab results. Therefore, overall we conclude that

would evict the names corresponding to all our queries. Wge planetLab platform itself is not significantly biasirget
also note that failures to contact the DNS server rise Withyclusions we draw from our experiments.

the time since publication, likely due to the transient natu
of many of these DNS servers. The remainder of the failu® Discussion

causes remain fairly constant and relatively small acrbss t We now briefly touch on additional ways to enhance the

.)) basic bit pipe we have constructed.
4Non-conforming TTL handling does not render a server uniesabthe Robust - A traditi | t k bit ch |
case of RD method; however, we wanted to compare both methogtsa ~OPUSINESS. radiuonal way to make a bit channel more

similarly-selected set of DNS servers. robust is to add coding to the message. For instance, a Reed-

Solomon code that doubled the size of the message (to 64-b#s Procedure
could detect any bit error and correct up to 16 bit errors & th
message. For corrupted retrievals, we find that the coonpti
rate is less than half the message across both our method
both mean and median. Coding would also help reduce

We now outline our explicit and implicit methods for storing
content within DNS servers.

licit Barriers: Our first channel-widening procedure sim-
@/ adds more barrier records to the TTL method discussed in

impact of losses in our results. . . .
P : . the last section to differentiate more symbols. The prooedu
Widening: A natural way to widen the channel in the TTLfgIIows several steps:

method is to add more barrier records, which allows for mor i) o
symbols to be transmitted. For instance, using two barrierl) For each possible data value in our dlctlon.ary (1-56),
records we could encode three symbols—enough to encode W€ generate a corresponding barrier record:
messages in Morse Code (using dots, dashes and spaces). We B — Q" Twi , .

. : ; ! P = tterB d’, 5
explore this further in§ IV. The RD method is not directly ("Twitter Barrier%d”, i) ©)

amenable to widening due to the reliance on a fundamentally?) We also generate names for each character of the mes-

binary property of the system (namely the RD flag). sage (1-140) as above:

Synchronization: Note that messages in the system have a

higher probability of being successfully retrieved withime R; = G TwitterQuery%d’ , j) (6)
7 9

first several minutes after publication. While retrievalsttier
out in time have reasonable success rates, it may behoowe sonB) Finally, we iterate through the symbol values frém-
uses of such a channel to roughly synchronize publicatian an 1...56. For eachk we find the setC of all characters

retrieval. For instance, when swappisgout-of-band, actors in the message whereby,, = k. Then for each index
may also agree that publications will take place at the top x € C we queryD for the hostnameR,,.ws"—ensuring
of every hour. Even with imperfectly synchronized clockss th we receive a response—which inserts all characters with

could increase the chances of successful message traimsmiss symbolk into the DNS. We then wait two seconds and
Callisions: One issue with a single secret is that if multiple query for By, to insert the barrier between symbohnd
actors are publishing to that secret they will corrupt each symbolk + 1. We then wait an additional three seconds
other’s messages. A straightforward way to deal with thisis before repeating this step fér+ 1.

assign roles to actors with respect to a particular seci@tglu ot retrieval borrows steps 1 and 2 from the publication
the secret exchange. For instance, for some sefretlice qcess above. We then query for &) and R; records and
may be designated as the publisher and Bob the recipiefibre the corresponding TTLs for each B§ and RY. For
while the opposite could hold for a second sedgt eachRT we find thek such thatr? falls betweenBJ,"{ and

IV. WIDENING THE CHANNEL: A TWITTER-LIKE SERVICE B,’{H. We then assign thg'" element of the new message

Our focus in the last section was a basic bit pipe thdd asMj=Fk+1.
can be constructed through DNS for rendezvous purpose$ne downside to this approach is that the publication
(as discussed if§ 1). In this section we tackle the problemtime requires 5 seconds per symbol in our dictionary (or
of widening the channel, asking: can we widen the chanré80 seconds for our 56 symbol dictionary). We may be able to
enough to encode actual message contents in the DNEggrease this time, but the process fundamentally depemds o
This would allow for message exchange without dedicatédnoticeable interval between queries and given DNS’ TTL is
infrastructure or central hub, which—as discussed; irn— Measured in units of one second the publication process will
is sometimes useful to avoid policy constraints or becaustll remain lengthy for any reasonable dictionary sizeotkrer
the system’s entire infrastructure is not reachable. Tavans downside is the requisite extra barrier records that comeey
our question we design a Twitter- or SMS-like service th&ontent directly. This means that in our case of 56 symbols
can convey 140 character messages using recursive DN¥l @ message length of 140 characters, only approximately
servers. We use two different mechanisms for conveyingethe€0% of the records contain content.
messages. The first technique is a simple extension of ff@plicit Barriers: Above we rely on a record’s TTL relative
barrier record mechanism used in the last section that atsou© explicit barrier records to determine the value of the lsgin
for more than two symbols. The second mechanism uses fhe alternative is use the difference between the TTLs of
DNS TTL values on various records as implicit barrier resordindividual character records and some base record to provid
We start both schemes with a dictionary of 56 symbot§e value of the given character. For instance, if we wanted t

(enough for letters, numbers and several additional patiotu encode thel5"" symbol in our dictionary we would publish
marks, etc.). Each symbol is mapped to a value (1-56) wie record 15 seconds after some base record such that the
the mapping known by all actors. As Il we rely on a TTL of the record upon retrieval is 15 seconds greater than
secretS, a generator functio(z) (defined in equation 1) the base record. While such a procedure is intuitive it is als
and a recursive DNS servdp. The 140-character message
we wish to send isV/, with M; denoting theit” character in °Note, an optimization to decrease the required publicaiie would be

to arder our symbol dictionary by character popularity sticat unpopular
the message (all characters are assumed to have been ma

; - @ ters would be concentrated at the end of the processarnd be
into our custom 56 character dictionary). ignored.

| | Explicit | Implicit |

brittle in that the timing has to be quite precise. In actyali

; ; . Pub. Attempts 80K 86K
we use the following procedure to publish a message: Uniusable Servers TOR 3K
1) We make one name for each character of the message Non-Responsive Servers| 461 208
using character’s positiohusing: Non-Recursive Servers 981 5
, , Non-Decrementing TTL 8.5K 11K
R; = G(" TwitterQuery%d” i) (7) Weird TTL Decrementing| 816 1.4K
- B . Usable Servers 70K 73K
2) Similarly, we generate a “base record” using: Successful 53K 47K
B » Failure: Packet Loss 6.6K 6.3K
B = G("Twitter Base”) (8) Failure: No Data Found 1 1
3) For eachM; we set M; = M; x 4. This spreads Failure: Corrupt Data 10K 20K
the values into 4 second windows such that we build TABLE Il

P . . TWITTER-LIKE PUBLICATION RESULTS
robustness to timing and TTL decay issues. l.e., anything

falling into a given 4 second time window will be treated
as the given character.
4) We send three back-to-back queries Bbto DNS server
D in a (in an attempt to ensure one arrives in a timely
fashion) and record the time of the first transmission as
t. This signifies the beginning of the publication process Table Il shows the results from our publication of 140 char-
and will be used as the basis for the content records doter Twitter-like messages. As was the case in our bit-pipe
be inserted. experiment, the table shows that despite our usabilitys test
5) Each of the 4 second windows represents a particuliuring scanning, we still find a sizeable number of serveas th
value in our dictionary and all characters with that valuexhibit problems when trying to leverage them for publighin
are inserted within the window (with re-retries as necshort messages. The middle section of the table shows that
essary and allowed by the window length). Thereforayound 14% of servers ended up unusable in both experiments.
for eachM;, we schedule a DNS request I» for the The bottom section shows the results from the usable DNS
hostname R;.ws” at timet + M; + 1, t + M; + 2 and servers. We find the publication success rate to be 76% and
t+ M, +3. The latter two are retries, which are cancele@4% for the explicit and implicit mechanisms, respectively
if the previous request returns a correct response pribhne difference in success rates is caused nearly entirely by
to their execution. data corruption with the implicit barriers showing twicesth

Since we have 56 symbols in our dictionary and leveragéimber of failures as the explicit barriers. This illusésathat
4 second windows the publication process takes 224 secontEL decrementing procedures on DNS servers are often gross
As in the explicit case, we may be able to get additionghough to cause ambiguities in our 4 second time windows.
savings by decreasing the window length. However, it is fulVhile this also happens with characters running into barrie
damental to have separation between the symbol values. TRgords in the explicit case the reliance on relative timing
implicit scheme does offer a savings in terms of the number Bgtween explicit records is found to be more robust—at a cost
non-data records required compared with the explicit wersiof 30% more records in the system, as discussed above.
above. The implicit scheme requires only one such recBrd,

The data retrieval process borrows steps 1 and 2 from theAs explored in more detail below, natural language mes-
publication process above. We then query @rand each sages like Twitter or SMS messages can often retain their
record in R, recording the TTLs for each returned recor@verall meaning in the absence of small amounts of loss
as BT and RT. We calculate the value for each record agnd/or corruption. In the investigation of message retiev
(RT — BT) + 4 and store that inM. After M’ is formed below we consider only perfectly published records (ilee, t
from the 140 component characters it should be equivalentigccesses listed in table I1). However, this could be relaxe

the original M if the procedure worked as intended. in a real system. For the messages that experienced loss we
find the median number of losses to be 3 and the mean to be
B. Results roughly 15 across both methods. Arguably this often leaves

We coupled our Twitter-like message exchanges with thes with a usable message. However, when we find a message
DNS scanning outlined if§ Il. Once we identify a recursive to have been corrupted we find the Levenshtein edit distance
DNS server via scanning we attempt to publish a message[&b between the original message and the stored message to
that server. The explicit and implicit mechanisms weree@stbe over 90 at the mean and median across methods. Such a
independently. l.e., we run a scan coupled with the expligitangled message is obviously unusable.
method followed by another scan coupled with the implicit
method. As a first test after publishing our messages we refor the publication attempts classified as successful above
request all records pertaining to that message spaced ower engage with 55 other PlanetLab nodes to retrieve the
12 seconds (such that we do not overload the server) to judgessages at various times from various places just as we
the success of the publication operation. did in § lll. The results for the explicit and implicit methods

without the message losing its overall meanirnye therefore
looked at the retrieved messages and determined that if the

< 100 %) : e

§ 90 % message experienced some corruption but the Levenshigin ed

e o distance [8] between the original message and the retrieved

5 80 % \ message is less than ten (roughly 7% of the message) the

§ 70 % \ overall message likely retains its usefulness and so teeseth

T 60%f Look p%l;ﬁ?g;?gulcla?fﬁgd 1 retrievals “nearly successful”. We find that the percentafje

Q u i u — X —- ;

S 50% Lookup Fail/No Data Found - »~ messages that are nearly successful is roughly constant ove

S 400l Lookup Fail/Not Responding = | time at 2% and 6% for the explicit and implicit schemes,

< . Lookup Fail/Packets Lost =~ respectively. Finally, we note that one reason the explicit

o 30 % P scheme may produce records that are more corrupt than the

S 20% e implicit version is that if one barrier record gets somehow

g 10%p R - perturbed (e.g., ejected from the cache), that will rendler a
Y7 S oS- t-Sewt - - - i records the original barrier was meant to identify as cdrrup

10 100 1000 10000 Therefore, such errors have a magnifying impact.

Seconds after Publication While both mechanisms we test show an increase in loss
= 100% over time, the explicit mechanism falls prey to more message
CEZ ’ experiencing loss in the longer time intervals comparedh wit
S 0% e the implicit version. We attribute this to the additionalgies
§ 80 % \\ that are required by the explicit mechanism making it more
S 70% < likely to experience a loss. As with corruption, we consider
> 60%H Successful Lookups—— | message to be “nearly successful” if the loss is at most about
£ ool tgg'ﬁﬂg Falibata Corupted - | 7% of the message. Similar to the corruption results, we find
g 0% Lookup Fail/Not Responding = | that the percentage of messages that are nearly successful i
z 0 Lookup Fail/Packets Lost =~ roughly constant over all time intervals tested. We observe
"2 30 % B roughly 1.5% and 0.25% nearly successful rates for the @xpli
s 20% e and implicit mechanisms, respectively.

é 10 % SN S ot - Adding “nearly successful” messages due to corruption and
g2 loss, we observe that for the first several minutes after pub-
0% e o) -
10 100 1000 10000 lication the successful retrievals (shown in Figure 2) amal t
Seconds after Publication nearly successful retrievals hover around 95%—slights le
for the explicit and slightly more for the implicit methodghis
Fig. 2. Explicit (top) and implicit retrieval results. is an approximation due to our data collection which did not

record corruption information for messages containing.los
Therefore, it is possible that the messages classified ak/nea

are shown in Figure 8.For both mechanisms we see Sim“a§uccessful due to a small loss rate could turn into failures

behavior. The success rate of retrieving the publishedrinde when also adding corruption information into the judgment.
tion within several minutes of publication is around 90%gTh! herefore, the percentage of nearly successful messages th

last data point shown is over 2 hours after publication afgPerienced loss given above (1.5% and 0.25% for the ekplici
shows the retrieval success rate has fallen to under 65%2fd implicit methods, respectively) should be taken as an

both cases—uwith the explicit mechanism slightly lower thafiPP€r bound on the fraction that might be so considered when
the implicit scheme. also taking into account corruption information. (Note, are

Dat i . - h " is t lanning another set of experiments that will more verbpsel
ata corruption—i1.€., Téceiving a wrong character—is ., corruption and loss information such that we willdav
predominant reason for failure in both methods—especia

.) . i i proper treatment rather than relying on bounds in the final
in the longer intervals. Since the corruption rate increasg

for both sch ti this indicates that at least ersion of this paper.)
of O Schemes bver ime, tis Incicales ta: al 16ast SoMes described irg [Il we conducted a set of experiments from

servers clearly evolve the TTL of cached r_ecords in a way th@ | that did not involve PlanetLab in an attempt to ensuee th
CO;rlijptS thedme?sage :\s thde_ Ca(_:l_he.g entrlessl\;allgel_.kAs PrVIOBR netLab platform itself was not biasing our results. far t
noted, an advantage ot sending fwitter- or mlike messa %plicit and explicit methods the experiments from ICSlsho

is that small bits of corruption can generally be absorbe;ﬁe same general trends as found in PlanetLab. In partjcular

roughly 90% of retrievals are successful shortly after publ
cation with the success rate dropping over time. Addititynal

SNote, due to a measurement glitch the first two time interfatsthe
the predominant source of unsuccessful retrievals is ptionl

implicit mechanism are not available. While we expect thesilts will be
highly similar to those reported for the 40 second interfiedt(point on thez-
axis on the lower plot), we will endeavor to re-run the expenmts to include "This is not universally true as the difference between “lamti “9am”
these two points. is the difference of one character, but much time, for insan

which also aligns with our PlanetLab measurements. THi$ but without the explicit use of the RD bit to query the
double-check suggests the PlanetLab platform is not gvertlache directly. A timing-based cache presence scheme would

impacting our results. share the binary-only property of the RD method and hence
not be amenable to widening. The spirit of this technique can
V. ADDITIONAL CONSIDERATIONS also be used with some content distribution networks (CDNSs)

We now turn our attention to several additional issud¥n€reé we can put objects with fairly arbitrary URLSs in the
surrounding the techniques discussed above web caches and then test for their presence (as described in

Eavesdropping: A third party who can monitor DNS queries[lo])' There are some intergsting properties_of such a.sehem
and responses and understands the algorithms sketchee aéﬁ\g" the message is essentially read-once given th.aﬂesqu
could perhaps decode the messages being transmitted? ﬁreqords pop_ulates the ca_\che), however, timing issudd co
simple way to prevent that is teor the message with bits complicate the implementation. We leave a full treatment fo
derived from the secret. E.g., for Twitter-like messagesgfar future work.
we couldxor the low-order byte produced (" Bits%d", i)
with the i** character of the message before publication.
Even if an eavesdropper intercepts the message it will beAs noted ing§ Ill the only directly related work we are aware
meaningless without the secret used@f). of is that given in a Black Hat presentation [7]. One slide of
Detection: Our mechanisms can be easy to detect by the talk describes the RD method sketched;itil. We are
network monitor due to scanning or unusual DNS trafficiot aware of any empirical evaluation of the idea on thaeslid
This problem remains somewhat fundamental, but we offand therefore we conduct such an evaluation in this paper.
several workarounds. First, pgtll-B, we can replace random Additionally, while not directly comparable, our work skar
scanning with hit list scanning, which both produces lesome of the same goals as a number of other projects described
volume and more valid DNS traffic (i.e., little traffic to hest in the literature. We sketch these below.
that to not respond to DNS). Second, on the recipient side ofCollage [11] is an innovative system for circumventing
the process scanning (in any fashion) might be needed onbnsorship by leveraging Flickr as a communication channel
once, after which an actor could get bootstrapped into th¥e share some of the same principles with Collage, though
system and then get a regularly updated list of servers to wse goals differ. While Collage aims at being a part automati
via some other higher-bandwidth means. part manual method for rigorous censorship evasion, we aim
There are several additional ways to obfuscate the aetivitito enable generic and programmatic communication without a
described in this paper:)(messages could be split acrossentral hub or human intervention.
servers, 4i) messages could be split across wildcard domains,Although the types of communication we enable are much
(z37) follow-up traffic could be generated to make the DNSifferent than those of an anonymizing network such as Tor
requests appear as more normal and productive ang ([12], we note several similarities in emphasis betweenhe t
completely junk DNS requests could be sent into the systesystems. For example, competent network operators will be
regularly to raise the noise floor and therefore make tlable to prevent the usage of both Tor and our system. (Despite
requests used to exchange messages appear more normathis roadblock, we note that Tor has been able to attain & larg
The publication portion of the process will need at leastser base, and therefore we do not see this as major roadblock
some low-rate scanning to ensure information is being pute-our techniques either). Both Tor and our own system etiliz
lished where the recipients will find it. However, where thentermediaries to pass messages from one peer to anotkler, an
publication process is executed is somewhat easier toalonthough Tor takes explicit steps to provide anonymity forteac
since it is only needed at one location. Further, even withonode, in practice, it will be hard for an external monitor to
scanning the publisher will be required to refresh the da#scertain the identity of an actor in our scheme as well (the
in the system periodically which requires a large number &NS server used will often be in a different jurisdictioncha
gueries occurring in a fairly tightly defined time window whi the necessary logs, etc).
will be quite noticeable. Therefore, while some of the above With respect to the bootstrapping application of our scheme
obfuscation techniques may help it will be fundamentallwe note some recent work in this area. For example, [13]
difficult for a publisher to go undetected by a savvy networnlses random scanning to find members of the BitTorrent DHT,
monitor. usually finding success after sending 30K—60K packets, lwhic
Other Channels. An additional avenue for encoding infor-is two orders of magnitude more than our random scanning
mation is to implicitly leverage DNS caching (both of validrcequires. In [14], the authors bias random scanning towards
records and invalid records [9]). We have found that oftés it a prebuilt list of netblocks known to be rich in peers for
straightforward to determine whether a particular DNS serva particular network. While effective for large, estabdéidh
has a record cached or not simply by timing two requestsetworks, these methods are much more difficult for boot-
If the first takes much longer than the second then the fistrapping networks with only a handful of peers. Here, our
was likely a cache miss. Hence, testing for the presenceaalvantage is in that we scan for recursive DNS servers and
absence of records in a server’s cache can be a basis to enemsgethese to bootstrap, rather than scanning for the (ppssib
zeros and ones. This is akin to the RD method sketchedsmall) number of peer nodes directly. In [15], the authors

V1. RELATED WORK

propose using well-known P2P networks for bootstrappingp]
smaller networks, and perform evaluations of several ofeghe
services. Our scheme rides on a more essential part of {ﬁoé
Internet infrastructure (and in fact, as we outlined egritan [11]
be extended to use other parts of the Internet infrastrectur
such as CDNs). [12]

VII. CONCLUSIONS [13]

This paper discusses a way to communicate through tﬁa
network without relying on fixed infrastructure at some caht
hub. This can be useful for bootstrapping loosely connected
peer-to-peer systems, as well as for circumventing egusgidlE’]
policy-based blocking (i.e., censorship). Our technigegsr-
age the caching and aging properties of DNS records to create
a covert channel of sorts that can be used to store ephemeral
information. The only requirement imposed on the actors
wishing to publish and/or retrieve this information is thiagy
share a secret that only manifests outside the system and is
never directly encoded within the network itself. Crugialte
piece together a communication fabric fratasses of services
and not from particular instances of those classes. That is,
while we require a recursive DNS server, we have shown
that there are many DNS servers on the network that will
suffice. Additionally, we require domains that offer wildda
DNS entries—which again are widespread. While the process
can be optimized by assuming the actors share more than just a
simple secret—e.g., hit lists to scan in lieu of random sgagn
or roughly synchronizing when messages will be published—
we show in this paper that these are not strictly necessary.
We show that we are able to effectively use these channels
for both bootstrapping information and for short messages (
la Twitter). Future work includes optimizing the processian
looking for ways to make it more robust.

VIIl. A CKNOWLEDGMENTS

This work benefits from discussions with Vern Paxson and
Nicholas Weaver and the comments from the anonymous re-
viewers. This work was supported in part by NSF grants CNS-
0433702, CNS-0831821, CNS-0831535 and CNS-0831780.

REFERENCES

T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, Shenker,
and |. Stoica, “A Data-Oriented (And Beyond) Network Areuture,”
ACM SIGCOMM 2007.

V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggnd
R. Braynard, “Networking Named Content,” iRroceedings of the
5th international conference on Emerging networking eikpents and
technologies ACM, 2009, pp. 1-12.

D. Dagon, N. Provos, C. Lee, and W. Lee, “Corrupted DNSdReion
Paths: The Rise of a Malicious Resolution Authority,” RBroc. of
Network and Distributed Security Symposju2008.

D. Leonard and D. Loguinov, “Demystifying Service Diseoy: Imple-
menting an Internet-Wide Scanner,” Rroceedings of the 10th annual
conference on Internet measuremenfCM, 2010, pp. 109-122.

S. Staniford, V. Paxson, and N. Weaver, “How to Own theeinét in
Your Spare Time,” inProc. USENIX Security Symposiu2002.

A. Kalafut, M. Gupta, P.Rattadilok, and P. Patel, “Suwyivg Wildcard
Usage Among the Good, the Bad, and the Ugly,SecureComp2010.
D. Kaminsky, “Black Ops of DNS,” Black Hat Briefings, 2004

V. Levenshtein, “Binary codes capable of correctingetiehs, insertions,
and reversals,"Soviet Physics Doklagdyol. 10, no. 8, pp. 707-710,
1966.

(1]

(2]

(3]

(4]

(5]
(6]

[7]
(8]

M. Andrews, “Negative Caching of DNS Queries (DNS NCACHE
Mar. 1998, rFC 2308.

S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Contentl®ery
Networks: Protection or Threat?” IBSORICS2009, pp. 371-389.

S. Burnett, N. Feamster, and S. Vempala, “Chipping AaaZensorship
Firewalls With User-Generated Content,”Rmoc. 19th USENIX Security
Symposium, Washington, D2010.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: Thecond-
Generation Onion Router,” iRroc. USENIX Security Symposiug004.
J. Dinger and O. Waldhorst, “Decentralized Bootstiagpof P2P
Systems: A Practical View,NETWORKING 2009pp. 703-715, 2009.
C. Dickey and C. Grothoff, “Bootstrapping of Peer-ted? Networks,”
in Applications and the Internet, 2008. SAINT 2008. Intewai
Symposium an IEEE, 2008, pp. 205-208.

D. Wolinsky, P. St Juste, P. Boykin, and R. Figueireddddressing
the P2P Bootstrap Problem for Small Overlay Networks, P@er-to-
Peer Computing (P2P), 2010 IEEE Tenth International Cagriee on
IEEE, 2010, pp. 1-10.

	TR-12-002 cover
	TR-12-002 no cover

