

† Case Western Reserve University, Cleveland, OH 44106
* ICSI, Berkeley, CA 94704

This work was partially supported by funding provided through National Science Foundation grants CNS: 0433702 (“Center
for Internet Epidemiology and Defenses”); CNS: 0831821 (“Relationship-Oriented Networking”); CNS: 0831535
(“Comprehensive Applications Analysis and Control”); and CNS: 0831780 (“Relationship-Oriented Networking”).. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors or originators
and do not necessarily reflect the views of the National Science Foundation.

Psst, Over Here:

Communicating Without Fixed Infrastructure

Tom Callahan, † Mark Allman, * and Michael Rabinovich†

TR-12-002

January 2012

Abstract

This paper discusses a way to communicate without relying on fixed infrastructure at
some central hub. This can be useful for bootstrapping loosely connected peer-to-
peer systems, as well as for circumventing egregious policy-based blocking (e.g., for
censorship purposes). Our techniques leverage the caching and aging properties of
DNS records to create a covert channel of sorts that can be used to store ephemeral
information. The only requirement imposed on the actors wishing to publish and/or
retrieve this information is that they share a secret that only manifests outside the
system and is never directly encoded within the network itself. We conduct several
experiments that illustrate the efficacy of our techniques to exchange an IP address
that is presumed to be a rendezvous point for future communication. Additionally,
we describe a wider channel that can be used to transmit an SMS- or Twitter-like
140-character message.

I. I NTRODUCTION

The Internet has increasingly moved from a system used
to disseminate information to users from a relatively small
number of content providers to a system that facilitates sharing
information among users. This style can be plainly found in the
most popular destinations and applications: Twitter, Facebook,
Flickr, Skype, BitTorrent, one-click file sharing systems (e.g.,
RapidShare), etc. The shift from merely consuming informa-
tion to sharing information has in fact led to several efforts
to change the basic model of networking from host-based to
content-based [1], [2] as this latter has become the basic mode
of operations for users. That is, users fundamentally do not
want to access some host in the network, but rather want to
swap a given piece of information. The techniques explored
in this paper strive to transfer small amounts of information
using a scheme that is not fundamentally host-centric.

In a network model where information is generally dissemi-
nated upon request, we can readily build highly robust systems.
A user interested in buying a book can easily find a book
seller using a well-known DNS name (e.g., “amazon.com”).
Further, server farms, content delivery networks, replicated
DNS servers, geographically disparate replicas, multi-homed
connectivity, etc. provide robustness of operation. We refer to
this as thecentral hubmodel. Even if physically distributed,
the service is orchestrated at some easy-to-find and highly
robust central location. This model makes perfect sense for
certain activities (e.g., legitimate e-commerce).

However, as noted above, users have evolved to become the
most prolific content providers on the Internet. In technological
terms this shift has manifested in one of two basic ways: (i)
using a central hub to connect users and hold the shared con-
tent (e.g., Twitter) or (ii) using a central hub as a bootstrapping
mechanism for direct peer-to-peer information exchange (e.g.,
a BitTorrent tracker or, in the trackerless variant, a site listing
an existing DHT node). While the role of the central hub is
reduced in the second approach, it is still required. Although
a lightweight central hub may be perfectly reasonable in some
cases, there may be other cases where such a central presence
is undesirable, such as:

• For peer-to-peer systems, requiring a central hub to boot-
strap establishes a system vulnerability that can hamper
operation even though the major functionality is dis-
tributed at the peers. For instance, if the central hub loses
connectivity (power, etc.) the larger system would likely
be still functional if not for the inability to bootstrap.
Therefore, for robustness reasons, not depending on a
fixed central hub is useful.

• Another aspect of using a central hub is that it provides
a tangible choke point that can be readily blocked by
policy. For instance, blocking a large BitTorrent tracker
could affect many peers even though the peers themselves
do most of the work to exchange files independently from
the tracker once bootstrapped. Another example is the
recent case of Egypt disconnecting its major ISPs from
the broader Internet—which effectively disconnects users
from myriad central hubs. However, if local connectivity

remains, users could in principle bootstrap to communi-
cate locally even though their usual means for doing so
is disrupted.

This situation begs a question:Can we increase robustness
and flexibility of information sharing services by allowing
consensual actors to initiate communications over the network
without a central hub?

Within a small area this is straightforward. For instance,
within a broadcast domain one party could encrypt a message
with a secret that was pre-arranged with the recipient(s) and
then broadcast the message. The intended recipient(s) would
be the only ones who could make sense out of the message.
Further, there is no direct targeting of the recipient(s). While
such a scheme is trivially possible it does not address our
question when we scale beyond individual broadcast domains.
However, this limited scheme provides for a model of sorts
for solving the problem in a broader way.

In this paper we develop a globalcovert broadcast domain
that allows actors with only a simple shared secret to exchange
small messages without the secret ever being directly used
within the network (and thus itself becoming a central hub,
of sorts). This message could be self-contained information
or a way to bootstrap further communication. We develop
this covert broadcast domain by using standard DNS servers
to hold information not in the traditional sense of serving
records, but by leveraging the caching behavior of the servers
to convey information. Further, the scheme is not dependent
on any particular DNS server, but rather any DNS server the
actors agree on (as discussed in§ II). In other words, we design
a technique that factors out the need for a well-defined central
hub for information sharing and/or bootstrapping.

We explain the mechanism in detail in subsequent sections.
However, as a touchstone the reader can think of breaking
a message into its component bits. Each bit is represented
by a cached record in an arbitrary DNS server the actors
have agreed upon. The value of each bit is represented by
the returned TTL value of the DNS record—e.g., the one bits
may have a TTL 10 seconds larger than the zero bits. In this
way we use DNS servers’ natural capabilities of caching and
aging records to encode ephemeral information in the system
without relying on any particular fixed infrastructure or name.
In the remainder of this paper we show we can accurately
publish and query for such information.

II. DNS SERVER DISCOVERY

As sketched above, we leverage caching DNS servers to
hold information. To fulfill our vision, the first premise is that
there should be many DNS servers on the Internet that will
hold the messages we seek to store. Further, actors should be
able to independently discover common DNS servers to hold
the exchanged messages. Therefore, before we embark on stor-
ing and retrieving information from DNS servers we perform
a DNS scanning experiment to understand the prevalence of
usable DNS servers.

Actors wishing to exchange messages must share a secret
S. This is used in a number of the tasks in our overall

procedure, and in particular for finding common DNS servers.
While we consistently refer toS as a “secret”, we note that
nothing compels the communicating actors to keepS strictly
private. Rather,S must be shared andS is only needed by the
endpoints of the communication and not the DNS servers. For
example, a BitTorrent application could maintain a hard-coded
collection of shared secrets for client use. FromS we define
a generator function as:

G(x) = sha1(sha1(S) + x), (1)

where “+” denotes the append operation andx is a string.
By runningG(”IP1”) and using the low-order 32 bits as an
IP address any actor holdingS can independently derive the
same series of hosts—by replacing “1” in the call toG() with
linearly increasing integers—to find a usable DNS servers to
mediate their communication. Each host in the common list is
probed with a DNS request for a name within a domain that
we know to enable wildcards1.

In our scanning experiment we probed from roughly
80 PlanetLab nodes2—each using its own randomS—at a
rate of 2 DNS queries/second. A correct response from a
given host is used to trigger two more queries of the same
server to ensure the TTL is being decreased on subsequent
retrievals.3 Assuming the TTL is being correctly decremented,
we consider the server to be usable. However, as we discuss
in subsequent sections, it is not unusual for a DNS server to
pass this initial set of checks only to display non-conforming
TTL behavior during message publication.

Across 22.7 million probes we find that the hit-rate is ap-
proximately 0.4%. The median number of probes sent between
identifying subsequent servers is 194, while the mean is 281.
Further, we find the maximum probes sent before identifying
a server is nearly 9,000, with the 99th percentile being 1,284.
These results make probing tractable for our purposes because
even scanning at a low rate will turn up multiple servers. E.g.,
sending one probe per minute over the course of one day will
yield five DNS servers on average. Further, once the set of
servers is obtained, it can be maintained with even lower-rate
probes over longer time scale. In addition, DNS servers that
simply disappear (as has been noted elsewhere in the literature
[3], [4]) will be readily detected as attempts are made to store
information at the given server. Such knowledge can also be
used to trigger a new server detection phase.

While in this paper we use relatively low rate scans for
all our experiments—at most 10 queries/second—we note
that using a higher scanning rate could be possible in some
circumstances and allow us to find a large number of usable
DNS servers quite rapidly. For instance, we conducted a small

1In particular the name we use is “dns.research.project.visit.dns-
scan.icir.org.if.problematic.HASH.ws” to be up-front about what we are doing
should our experimental queries trip alarms.

2PlanetLab often experiences node churn and, while we tried to choose
reliable nodes, the number of nodes used in each individual test throughout
the paper varies slightly.

3We found in early experiments that some DNS servers do not decrement
the TTL of their cached records, leading to this test.

experiment that was able to identify 60 recursive DNS servers
within 15 seconds using a residential cable modem connection.

An alternative to random scanning is hit list scanning (as
covered in a general way in [5]). Actors could agree on some
independent list of servers to scan. For instance, Alexa.com
tracks web site popularity and the authoritative DNS servers
connected with the listed domain names could be checked for
suitability for our purposes. We probed the authoritative DNS
servers associated with Alexa’s top 10K web sites to determine
if they would respond to arbitrary recursive queries from
outside hosts and found a hit rate of approximately 3.3%—
or an order of magnitude more than in our random scanning
experiments. We note that each server requires an additional
probe to determine the IP address of the authoritative DNS
server that corresponds to a given name when compared with
the random scanning approach given above. While the success
rate means that the hit list mechanisms represent a healthy
reduction in the number of probes, we cannot say whether the
reduction is enough to fly under the radar.

Finally, we note that such a hit list approach runs counter
to the notion developed in§ I of not requiring a central
hub to bootstrap communication. However, we note that the
approach can first be viewed as an optimization and not strictly
necessary. In addition, we believe a variety of hit lists canbe
used—e.g., from addresses in mailing list archives, using web
sites found in the Twitter public timeline over the course of
some time period, etc. This makes correlating the DNS probing
activity with the hit list more difficult. The DNS requests sent
via a hit list are also more likely to look legitimate on an
individual probe basis because they are actually connecting
with DNS servers as opposed to most of the probes in the
random scanning experiment which do not hit active servers.
Also, since the hit lists come from uninvolved actors they
may be more difficult to block without shutting down some
useful functionality, however, this varies with the general
popularity of the source of the hit list (e.g., blocking Alexa
may cause relatively little harm, but blocking Twitter may
cause an unacceptable loss of functionality).

III. A B ASIC BIT CHANNEL

As described above, our goal is to utilize DNS servers’
natural ability to cache and age information to store small
messages without directly inserting records into the DNS
system. As an initial use case, we consider publishing a 32-
bit IPv4 address using this system as a basic bit channel.
We start with this use case because a bit pipe is the most
basic communication channel. Further, we presume that once
known, an IP address can be used to form the basis of higher
layer communication. In this section we use the procedure
outlined above in§ II to find suitable recursive DNS servers
and, as they are found, publish and retrieve 32-bit messages.

A. Procedure

The process of storing messages in DNS servers starts with
a pre-arranged secretS between all parties involved in the
communication. Using this secret, we define a generator as
shown in equation 1. We also need a domain we know to

support wildcard DNS queries, that is, queries for unknown
names within the domain still return some record. As will
become clear, we also need the domain to assign a sufficiently
large TTL to its DNS responses. Domains supporting wild-
cards are widespread [6], and we found that many also return
TTLs sufficient for our needs. In all our experiments we use
the “.ws” domain (an arbitrary choice that returns TTLs of
3 hours). Note, we consider alternate designs that do not have
this requirement in§ V.

Let M be the message we wish to transmit andMi be its
ith bit. We now outline two procedures for encodingM within
a DNS serverD.
TTL Method: The first method we employ is based on
inserting records corresponding to all bits inM in such a
way that the zeros and ones are distinguishable by the TTLs
returned in lookup responses after publication. The publication
process proceeds as follows:

1) We generate a name for each bitMi of the message
using:

Ri = G(”Record%d”, i), (2)

where “Record” is just an arbitrary identifier that all
actors involved know (here and in the rest of the paper
we use aprintf-like notation to compose strings).

2) Similarly, we generate a “barrier record” using:

B = G(“Barrier′′) (3)

3) Next we form sets of bit numbers,Z andU , wherei is
inserted intoZ if Mi = 0 andU otherwise.

4) For eachj ∈ U we execute a DNS request toD for the
hostname “Rj .ws”, retrying until a response is received
for each record.

5) We next pause for roughly five seconds. The choice of
five seconds is arbitrary. The value needs to be more
than one second as that is the granularity of DNS’ TTL.
We leave optimizing the publication time as future work.

6) We then execute a DNS request for “B.ws”, retrying if
necessary.

7) We again pause for roughly five seconds.
8) For eachk ∈ Z we execute a DNS request toD for the

hostname “Rk.ws”, retrying until a response is received
for each record.

The general idea behind this process is thatD will cache
the requested records with associated TTLs that originate from
the authoritative server. Given the publication pattern all Ri

records that have a TTL shorter than that of the barrier record
B correspond toMi = 1 and records having TTLs longer than
that ofB correspond toMi = 0.

The data retrieval process borrows steps 1 and 2 from the
procedure outlined above. We then query for “B.ws” and each
record inR, recording the TTLs for each returned record as
BT andRT

i . We then setM ′

i to one if RT
i < BT and zero

otherwise. At this point the retrievedM ′ should be equivalent
to the messageM that was published.
Recursion-Desired Method: The second method was
sketched in a Black Hat presentation [7]. To our knowledge,

TTL Method RD Method
Pub. Attempts 125K 87K
Unusable Servers 21K 12.9K

Non-Responsive Servers 742 520
Non-Recursive Servers 2.6K 1.7K
Non-Decrementing TTL 15K 9.8K
Weird TTL Decrementing 2.8K 898
Ignores RD=0 N/A 2.6K

Usable Servers 104K 72K
Successful 92K 58.8K
Failure: Packet Loss 3.6K 4.8K
Failure: No Data Found 3.6K 3.3K
Failure: Corrupt Data 5.0K 5.4K

TABLE I
BIT-PIPE PUBLICATION RESULTS

there has never been any experimentation to determine whether
the scheme works or how effective it may be. The procedure—
which we denote the “RD method”—works as follows:

1) We generate a name for each bitMi of the message
using:

Ri = G(”Record%d”, i), (4)

2) Next we form a setU , where i is inserted intoU if
Mi = 1.

3) For eachj ∈ U we execute a recursive DNS request to
D for the hostname “Rj .ws”, retrying until a response
is received for each record.

The general idea behind this approach is that the records
corresponding to the one bits inM are cached byD, whereas
the zero bits are not encoded inD in any way. We leverage
this when retrieving the data by sending queries for each of
the 32 names inR with DNS’ “recursion desired” flag set to
false. This indicates thatD should only look in its own cache
for the given name and not recurse up the DNS hierarchy to
resolve the given name. We initialize anM ′ to all zeros and
then any “Rj .ws” query that returns a valid response indicates
that M ′

j should be set to one. After considering each of the
32 recordsM ′ should be equivalent to the originalM .

B. Results

We tested the accuracy of both publication mechanisms
described above by storing a 32-bit message (a la an IPv4
address for bootstrapping) in a DNS server and then attempting
to retrieve the message. We use the procedure outlined in§ II
to probe for DNS servers and upon finding each such server
we publish a message and then attempt to retrieve it. Each
publication strategy is tested in its own scanning pass (which
run in sequence, not parallel). We use roughly 80 PlanetLab
nodes for the test. Each node performs independent scans to
identify DNS servers and start the subsequent tests.

After each publication the host waits 10 seconds and then
retrieves the message to assess the efficacy of the data insertion
process. Table I shows the results of our publication attempts.
First we note that in spite of our efforts (sketched in§ II) to
identify unusable DNS servers during the scanning phase we
still ended up with problems in roughly 15% of the servers

we tried. The largest problems come from TTL decrementing
issues—even though we tried to weed out servers with this
issue during our scanning pass (§ II)4. We note that when
using the RD method, we find servers that ignore the RD=0
setting in our requests. This would be trivial to also exclude
in the scanning phase and in future efforts based on the RD
method we would certainly do so. While these problems do
not speak to the efficacy of our information sharing technique,
they do illustrate that one must exercise some care in choosing
suitable DNS servers.

The lower portion of the table shows the results for usable
servers. We find a publication success rate of roughly 88% for
the TTL method and 81% for the RD method. The largest and
most problematic publication issue is data corruption. Whereas
the other issues listed in the table—no data found and packet
loss—can be readily identified during the retrieval process,
corrupted data gives no outward signs of problems. As we
have designed a generic bit pipe, it would be possible to apply
Forward Error Corruption (FEC), or simply a parity bit, to
the bit-stream to reduce the number of corruption errors (at
the expense of requiring more bits, of course). Also, we note
that packet loss is an issue—even though we re-try pending
queries every two seconds until we receive a response or have
transmitted four queries. The final problem of no data being
found likely comes from DNS servers that recursively lookup
records, but do not cache names (for long).

We next turn to a more general investigation of information
retrieval. For the successfully published messages we sched-
uled retrievals from a set of 55 different PlanetLab nodes
chosen via round robin across our list of roughly 80 PlanetLab
nodes. We schedule five retrievals (from different nodes) at
each of eleven intervals between 10 seconds and 128 minutes
after publication. This methodology allows us to test both (i)
whether the information is available to a breadth of hosts
around the network and (ii) the storage longevity we can
expect from the mechanisms.

Figure 1 shows the results of retrieving the information we
published as a function of time since publication. We note that
just after publication the TTL method shows a roughly 90%
retrieval success rate, whereas the Recursion Desired method
is nearly flawless. The success rate two hours after publication
drops to roughly 70% for both methods. As shown in the plot,
the predominant cause of the dropoff in success is an increase
in the instances of not finding the data on the server as the
time since publication increases. This is a natural result of
names being evicted from the cache. Even though the names
nominally have TTL left, the names are to a large extent not
being used and so it is natural that some LRU-like policy
would evict the names corresponding to all our queries. We
also note that failures to contact the DNS server rise with
the time since publication, likely due to the transient nature
of many of these DNS servers. The remainder of the failure
causes remain fairly constant and relatively small across the

4Non-conforming TTL handling does not render a server unusable in the
case of RD method; however, we wanted to compare both methodsover a
similarly-selected set of DNS servers.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 10 100 1000 10000

R
es

ul
ts

 o
f A

tte
m

pt
ed

 L
oo

ku
ps

 (
%

)

Seconds after Publication

Successful Lookups
Lookup Fail/No Data Found
Lookup Fail/Data Corrupted

Lookup Fail/Packets Lost
Lookup Fail/Not Responding

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 10 100 1000 10000

R
es

ul
ts

 o
f A

tte
m

pt
ed

 L
oo

ku
ps

 (
%

)

Seconds after Publication

Successful Lookups
Lookup Fail/No Data Found
Lookup Fail/Data Corrupted

Lookup Fail/Packets Lost
Lookup Fail/Not Responding

Fig. 1. Bit pipe retrieval results for the TTL (top) and Recursion Desired
methods.

time period.
Finally, to ensure that the PlanetLab platform itself was

not biasing our results in some fashion we replicated the
above experiments from a host at ICSI. While the PlanetLab
retrievals were conducted from 55 disparate machines we used
the same machine at ICSI for all aspects of our tests (scanning,
publication and retrieval). The results from the ICSI runs
are consistent with the PlanetLab experiments. The retrieval
results are similar with the RD method showing higher success
soon after publication than the TTL method, but both dropping
off over time. The predominant cause of failures over time
is finding no data on the DNS servers, just as we find in
the PlanetLab results. Therefore, overall we conclude that
the PlanetLab platform itself is not significantly biasing the
conclusions we draw from our experiments.

C. Discussion

We now briefly touch on additional ways to enhance the
basic bit pipe we have constructed.
Robustness: A traditional way to make a bit channel more
robust is to add coding to the message. For instance, a Reed-

Solomon code that doubled the size of the message (to 64-bits)
could detect any bit error and correct up to 16 bit errors in the
message. For corrupted retrievals, we find that the corruption
rate is less than half the message across both our methods at
both mean and median. Coding would also help reduce the
impact of losses in our results.
Widening: A natural way to widen the channel in the TTL
method is to add more barrier records, which allows for more
symbols to be transmitted. For instance, using two barrier
records we could encode three symbols—enough to encode
messages in Morse Code (using dots, dashes and spaces). We
explore this further in § IV. The RD method is not directly
amenable to widening due to the reliance on a fundamentally
binary property of the system (namely the RD flag).
Synchronization: Note that messages in the system have a
higher probability of being successfully retrieved withinthe
first several minutes after publication. While retrievals further
out in time have reasonable success rates, it may behoove some
uses of such a channel to roughly synchronize publication and
retrieval. For instance, when swappingS out-of-band, actors
may also agree that publications will take place at the top
of every hour. Even with imperfectly synchronized clocks this
could increase the chances of successful message transmission.
Collisions: One issue with a single secret is that if multiple
actors are publishing to that secret they will corrupt each
other’s messages. A straightforward way to deal with this isto
assign roles to actors with respect to a particular secret during
the secret exchange. For instance, for some secretS1 Alice
may be designated as the publisher and Bob the recipient,
while the opposite could hold for a second secretS2.

IV. W IDENING THE CHANNEL : A TWITTER-LIKE SERVICE

Our focus in the last section was a basic bit pipe that
can be constructed through DNS for rendezvous purposes
(as discussed in§ I). In this section we tackle the problem
of widening the channel, asking: can we widen the channel
enough to encode actual message contents in the DNS?
This would allow for message exchange without dedicated
infrastructure or central hub, which—as discussed in§ I—
is sometimes useful to avoid policy constraints or because
the system’s entire infrastructure is not reachable. To answer
our question we design a Twitter- or SMS-like service that
can convey 140 character messages using recursive DNS
servers. We use two different mechanisms for conveying these
messages. The first technique is a simple extension of the
barrier record mechanism used in the last section that accounts
for more than two symbols. The second mechanism uses the
DNS TTL values on various records as implicit barrier records.

We start both schemes with a dictionary of 56 symbols
(enough for letters, numbers and several additional punctuation
marks, etc.). Each symbol is mapped to a value (1–56) with
the mapping known by all actors. As in§ III we rely on a
secretS, a generator functionG(x) (defined in equation 1)
and a recursive DNS serverD. The 140-character message
we wish to send isM , with Mi denoting theith character in
the message (all characters are assumed to have been mapped
into our custom 56 character dictionary).

A. Procedure

We now outline our explicit and implicit methods for storing
content within DNS servers.
Explicit Barriers: Our first channel-widening procedure sim-
ply adds more barrier records to the TTL method discussed in
the last section to differentiate more symbols. The procedure
follows several steps:

1) For each possible data value in our dictionary (1–56),
we generate a corresponding barrier record:

Bi = G(”TwitterBarrier%d”, i) (5)

2) We also generate names for each character of the mes-
sage (1–140) as above:

Rj = G(”TwitterQuery%d”, j) (6)

3) Finally, we iterate through the symbol values fromk =
1 . . . 56. For eachk we find the setC of all characters
in the message wherebyMx = k. Then for each index
x ∈ C we queryD for the hostname “Rx.ws”—ensuring
we receive a response—which inserts all characters with
symbolk into the DNS. We then wait two seconds and
query forBk to insert the barrier between symbolk and
symbolk+1. We then wait an additional three seconds
before repeating this step fork + 1.

Data retrieval borrows steps 1 and 2 from the publication
process above. We then query for allBi andRj records and
store the corresponding TTLs for each asBT

i and RT
j . For

eachRT
j we find thek such thatRT

j falls betweenBT
k and

BT
k+1

. We then assign thejth element of the new message
M ′ asM ′

j = k + 1.
One downside to this approach is that the publication

time requires 5 seconds per symbol in our dictionary (or
280 seconds for our 56 symbol dictionary). We may be able to
decrease this time, but the process fundamentally depends on
a noticeable interval between queries and given DNS’ TTL is
measured in units of one second the publication process will
still remain lengthy for any reasonable dictionary size. Another
downside is the requisite extra barrier records that conveyno
content directly. This means that in our case of 56 symbols
and a message length of 140 characters, only approximately
70% of the records contain content.5

Implicit Barriers: Above we rely on a record’s TTL relative
to explicit barrier records to determine the value of the symbol.
An alternative is use the difference between the TTLs of
individual character records and some base record to provide
the value of the given character. For instance, if we wanted to
encode the15th symbol in our dictionary we would publish
the record 15 seconds after some base record such that the
TTL of the record upon retrieval is 15 seconds greater than
the base record. While such a procedure is intuitive it is also

5Note, an optimization to decrease the required publicationtime would be
to order our symbol dictionary by character popularity suchthat unpopular
characters would be concentrated at the end of the process and could be
ignored.

brittle in that the timing has to be quite precise. In actuality
we use the following procedure to publish a message:

1) We make one name for each character of the message
using character’s positioni using:

Ri = G(”TwitterQuery%d”, i) (7)

2) Similarly, we generate a “base record” using:

B = G(”TwitterBase”) (8)

3) For eachMi we set Mi = Mi × 4. This spreads
the values into 4 second windows such that we build
robustness to timing and TTL decay issues. I.e., anything
falling into a given 4 second time window will be treated
as the given character.

4) We send three back-to-back queries forB to DNS server
D in a (in an attempt to ensure one arrives in a timely
fashion) and record the time of the first transmission as
t. This signifies the beginning of the publication process
and will be used as the basis for the content records to
be inserted.

5) Each of the 4 second windows represents a particular
value in our dictionary and all characters with that value
are inserted within the window (with re-retries as nec-
essary and allowed by the window length). Therefore,
for eachMi, we schedule a DNS request toD for the
hostname “Ri.ws” at time t+Mi + 1, t+Mi + 2 and
t+Mi+3. The latter two are retries, which are canceled
if the previous request returns a correct response prior
to their execution.

Since we have 56 symbols in our dictionary and leverage
4 second windows the publication process takes 224 seconds.
As in the explicit case, we may be able to get additional
savings by decreasing the window length. However, it is fun-
damental to have separation between the symbol values. The
implicit scheme does offer a savings in terms of the number of
non-data records required compared with the explicit version
above. The implicit scheme requires only one such record,B.

The data retrieval process borrows steps 1 and 2 from the
publication process above. We then query forB and each
record in R, recording the TTLs for each returned record
as BT and RT

i . We calculate the value for each record as
(RT

i − BT) ÷ 4 and store that inM ′

i . After M ′ is formed
from the 140 component characters it should be equivalent to
the originalM if the procedure worked as intended.

B. Results

We coupled our Twitter-like message exchanges with the
DNS scanning outlined in§ II. Once we identify a recursive
DNS server via scanning we attempt to publish a message to
that server. The explicit and implicit mechanisms were tested
independently. I.e., we run a scan coupled with the explicit
method followed by another scan coupled with the implicit
method. As a first test after publishing our messages we re-
request all records pertaining to that message spaced over
12 seconds (such that we do not overload the server) to judge
the success of the publication operation.

Explicit Implicit
Pub. Attempts 80K 86K
Unusable Servers 10K 13K

Non-Responsive Servers 461 298
Non-Recursive Servers 981 5
Non-Decrementing TTL 8.5K 11K
Weird TTL Decrementing 816 1.4K

Usable Servers 70K 73K
Successful 53K 47K
Failure: Packet Loss 6.6K 6.3K
Failure: No Data Found 1 1
Failure: Corrupt Data 10K 20K

TABLE II
TWITTER-LIKE PUBLICATION RESULTS

Table II shows the results from our publication of 140 char-
acter Twitter-like messages. As was the case in our bit-pipe
experiment, the table shows that despite our usability tests
during scanning, we still find a sizeable number of servers that
exhibit problems when trying to leverage them for publishing
short messages. The middle section of the table shows that
around 14% of servers ended up unusable in both experiments.
The bottom section shows the results from the usable DNS
servers. We find the publication success rate to be 76% and
64% for the explicit and implicit mechanisms, respectively.
The difference in success rates is caused nearly entirely by
data corruption with the implicit barriers showing twice the
number of failures as the explicit barriers. This illustrates that
TTL decrementing procedures on DNS servers are often gross
enough to cause ambiguities in our 4 second time windows.
While this also happens with characters running into barrier
records in the explicit case the reliance on relative timing
between explicit records is found to be more robust—at a cost
of 30% more records in the system, as discussed above.

As explored in more detail below, natural language mes-
sages like Twitter or SMS messages can often retain their
overall meaning in the absence of small amounts of loss
and/or corruption. In the investigation of message retrieval
below we consider only perfectly published records (i.e., the
successes listed in table II). However, this could be relaxed
in a real system. For the messages that experienced loss we
find the median number of losses to be 3 and the mean to be
roughly 15 across both methods. Arguably this often leaves
us with a usable message. However, when we find a message
to have been corrupted we find the Levenshtein edit distance
[8] between the original message and the stored message to
be over 90 at the mean and median across methods. Such a
mangled message is obviously unusable.

For the publication attempts classified as successful above,
we engage with 55 other PlanetLab nodes to retrieve the
messages at various times from various places just as we
did in § III. The results for the explicit and implicit methods

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 10 100 1000 10000

R
es

ul
ts

 o
f A

tte
m

pt
ed

 L
oo

ku
ps

 (
%

%
)

Seconds after Publication

Successful Lookups
Lookup Fail/Data Corrupted
Lookup Fail/No Data Found

Lookup Fail/Not Responding
Lookup Fail/Packets Lost

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 10 100 1000 10000

R
es

ul
ts

 o
f A

tte
m

pt
ed

 L
oo

ku
ps

 (
%

%
)

Seconds after Publication

Successful Lookups
Lookup Fail/Data Corrupted
Lookup Fail/No Data Found

Lookup Fail/Not Responding
Lookup Fail/Packets Lost

Fig. 2. Explicit (top) and implicit retrieval results.

are shown in Figure 2.6 For both mechanisms we see similar
behavior. The success rate of retrieving the published informa-
tion within several minutes of publication is around 90%. The
last data point shown is over 2 hours after publication and
shows the retrieval success rate has fallen to under 65% in
both cases—with the explicit mechanism slightly lower than
the implicit scheme.

Data corruption—i.e., receiving a wrong character—is the
predominant reason for failure in both methods—especially
in the longer intervals. Since the corruption rate increases
for both schemes over time, this indicates that at least some
servers clearly evolve the TTL of cached records in a way that
corrupts the message as the cached entries age. As previously
noted, an advantage of sending Twitter- or SMS-like messages
is that small bits of corruption can generally be absorbed

6Note, due to a measurement glitch the first two time intervalsfor the
implicit mechanism are not available. While we expect theseresults will be
highly similar to those reported for the 40 second interval (first point on thex-
axis on the lower plot), we will endeavor to re-run the experiments to include
these two points.

without the message losing its overall meaning.7 We therefore
looked at the retrieved messages and determined that if the
message experienced some corruption but the Levenshtein edit
distance [8] between the original message and the retrieved
message is less than ten (roughly 7% of the message) the
overall message likely retains its usefulness and so term these
retrievals “nearly successful”. We find that the percentageof
messages that are nearly successful is roughly constant over
time at 2% and 6% for the explicit and implicit schemes,
respectively. Finally, we note that one reason the explicit
scheme may produce records that are more corrupt than the
implicit version is that if one barrier record gets somehow
perturbed (e.g., ejected from the cache), that will render all
records the original barrier was meant to identify as corrupt.
Therefore, such errors have a magnifying impact.

While both mechanisms we test show an increase in loss
over time, the explicit mechanism falls prey to more messages
experiencing loss in the longer time intervals compared with
the implicit version. We attribute this to the additional queries
that are required by the explicit mechanism making it more
likely to experience a loss. As with corruption, we considera
message to be “nearly successful” if the loss is at most about
7% of the message. Similar to the corruption results, we find
that the percentage of messages that are nearly successful is
roughly constant over all time intervals tested. We observe
roughly 1.5% and 0.25% nearly successful rates for the explicit
and implicit mechanisms, respectively.

Adding “nearly successful” messages due to corruption and
loss, we observe that for the first several minutes after pub-
lication the successful retrievals (shown in Figure 2) and the
nearly successful retrievals hover around 95%—slightly less
for the explicit and slightly more for the implicit methods.This
is an approximation due to our data collection which did not
record corruption information for messages containing loss.
Therefore, it is possible that the messages classified as nearly
successful due to a small loss rate could turn into failures
when also adding corruption information into the judgment.
Therefore, the percentage of nearly successful messages that
experienced loss given above (1.5% and 0.25% for the explicit
and implicit methods, respectively) should be taken as an
upper bound on the fraction that might be so considered when
also taking into account corruption information. (Note, weare
planning another set of experiments that will more verbosely
record corruption and loss information such that we will have
a proper treatment rather than relying on bounds in the final
version of this paper.)

As described in§ III we conducted a set of experiments from
ICSI that did not involve PlanetLab in an attempt to ensure the
PlanetLab platform itself was not biasing our results. For the
implicit and explicit methods the experiments from ICSI show
the same general trends as found in PlanetLab. In particular,
roughly 90% of retrievals are successful shortly after publi-
cation with the success rate dropping over time. Additionally,
the predominant source of unsuccessful retrievals is corruption

7This is not universally true as the difference between “1am”and “9am”
is the difference of one character, but much time, for instance.

which also aligns with our PlanetLab measurements. This
double-check suggests the PlanetLab platform is not overtly
impacting our results.

V. A DDITIONAL CONSIDERATIONS

We now turn our attention to several additional issues
surrounding the techniques discussed above.
Eavesdropping: A third party who can monitor DNS queries
and responses and understands the algorithms sketched above
could perhaps decode the messages being transmitted. A
simple way to prevent that is toxor the message with bits
derived from the secret. E.g., for Twitter-like message transfer
we couldxor the low-order byte produced byG(”Bits%d′′, i)
with the ith character of the message before publication.
Even if an eavesdropper intercepts the message it will be
meaningless without the secret used byG().
Detection: Our mechanisms can be easy to detect by a
network monitor due to scanning or unusual DNS traffic.
This problem remains somewhat fundamental, but we offer
several workarounds. First, per§ III-B, we can replace random
scanning with hit list scanning, which both produces less
volume and more valid DNS traffic (i.e., little traffic to hosts
that to not respond to DNS). Second, on the recipient side of
the process scanning (in any fashion) might be needed only
once, after which an actor could get bootstrapped into the
system and then get a regularly updated list of servers to use
via some other higher-bandwidth means.

There are several additional ways to obfuscate the activities
described in this paper: (i) messages could be split across
servers, (ii) messages could be split across wildcard domains,
(iii) follow-up traffic could be generated to make the DNS
requests appear as more normal and productive and (iv)
completely junk DNS requests could be sent into the system
regularly to raise the noise floor and therefore make the
requests used to exchange messages appear more normal.

The publication portion of the process will need at least
some low-rate scanning to ensure information is being pub-
lished where the recipients will find it. However, where the
publication process is executed is somewhat easier to control
since it is only needed at one location. Further, even without
scanning the publisher will be required to refresh the data
in the system periodically which requires a large number of
queries occurring in a fairly tightly defined time window which
will be quite noticeable. Therefore, while some of the above
obfuscation techniques may help it will be fundamentally
difficult for a publisher to go undetected by a savvy network
monitor.
Other Channels: An additional avenue for encoding infor-
mation is to implicitly leverage DNS caching (both of valid
records and invalid records [9]). We have found that often itis
straightforward to determine whether a particular DNS server
has a record cached or not simply by timing two requests.
If the first takes much longer than the second then the first
was likely a cache miss. Hence, testing for the presence or
absence of records in a server’s cache can be a basis to encode
zeros and ones. This is akin to the RD method sketched in

III but without the explicit use of the RD bit to query the
cache directly. A timing-based cache presence scheme would
share the binary-only property of the RD method and hence
not be amenable to widening. The spirit of this technique can
also be used with some content distribution networks (CDNs)
where we can put objects with fairly arbitrary URLs in the
web caches and then test for their presence (as described in
[10]). There are some interesting properties of such a scheme
(e.g., the message is essentially read-once given that requesting
the records populates the cache), however, timing issues could
complicate the implementation. We leave a full treatment for
future work.

VI. RELATED WORK

As noted in§ III the only directly related work we are aware
of is that given in a Black Hat presentation [7]. One slide of
the talk describes the RD method sketched in§ III. We are
not aware of any empirical evaluation of the idea on that slide
and therefore we conduct such an evaluation in this paper.

Additionally, while not directly comparable, our work shares
some of the same goals as a number of other projects described
in the literature. We sketch these below.

Collage [11] is an innovative system for circumventing
censorship by leveraging Flickr as a communication channel.
We share some of the same principles with Collage, though
our goals differ. While Collage aims at being a part automatic,
part manual method for rigorous censorship evasion, we aim
to enable generic and programmatic communication without a
central hub or human intervention.

Although the types of communication we enable are much
different than those of an anonymizing network such as Tor
[12], we note several similarities in emphasis between the two
systems. For example, competent network operators will be
able to prevent the usage of both Tor and our system. (Despite
this roadblock, we note that Tor has been able to attain a large
user base, and therefore we do not see this as major roadblock
to our techniques either). Both Tor and our own system utilize
intermediaries to pass messages from one peer to another, and
though Tor takes explicit steps to provide anonymity for each
node, in practice, it will be hard for an external monitor to
ascertain the identity of an actor in our scheme as well (the
DNS server used will often be in a different jurisdiction, lack
the necessary logs, etc).

With respect to the bootstrapping application of our scheme,
we note some recent work in this area. For example, [13]
uses random scanning to find members of the BitTorrent DHT,
usually finding success after sending 30K–60K packets, which
is two orders of magnitude more than our random scanning
requires. In [14], the authors bias random scanning towards
a prebuilt list of netblocks known to be rich in peers for
a particular network. While effective for large, established
networks, these methods are much more difficult for boot-
strapping networks with only a handful of peers. Here, our
advantage is in that we scan for recursive DNS servers and
use these to bootstrap, rather than scanning for the (possibly
small) number of peer nodes directly. In [15], the authors

propose using well-known P2P networks for bootstrapping
smaller networks, and perform evaluations of several of these
services. Our scheme rides on a more essential part of the
Internet infrastructure (and in fact, as we outlined earlier, can
be extended to use other parts of the Internet infrastructure
such as CDNs).

VII. C ONCLUSIONS

This paper discusses a way to communicate through the
network without relying on fixed infrastructure at some central
hub. This can be useful for bootstrapping loosely connected
peer-to-peer systems, as well as for circumventing egregious
policy-based blocking (i.e., censorship). Our techniqueslever-
age the caching and aging properties of DNS records to create
a covert channel of sorts that can be used to store ephemeral
information. The only requirement imposed on the actors
wishing to publish and/or retrieve this information is thatthey
share a secret that only manifests outside the system and is
never directly encoded within the network itself. Crucially we
piece together a communication fabric fromclasses of services
and not from particular instances of those classes. That is,
while we require a recursive DNS server, we have shown
that there are many DNS servers on the network that will
suffice. Additionally, we require domains that offer wildcard
DNS entries—which again are widespread. While the process
can be optimized by assuming the actors share more than just a
simple secret—e.g., hit lists to scan in lieu of random scanning,
or roughly synchronizing when messages will be published—
we show in this paper that these are not strictly necessary.
We show that we are able to effectively use these channels
for both bootstrapping information and for short messages (a
la Twitter). Future work includes optimizing the process and
looking for ways to make it more robust.

VIII. A CKNOWLEDGMENTS

This work benefits from discussions with Vern Paxson and
Nicholas Weaver and the comments from the anonymous re-
viewers. This work was supported in part by NSF grants CNS-
0433702, CNS-0831821, CNS-0831535 and CNS-0831780.

REFERENCES

[1] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S.Shenker,
and I. Stoica, “A Data-Oriented (And Beyond) Network Architecture,”
ACM SIGCOMM, 2007.

[2] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking Named Content,” inProceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[3] D. Dagon, N. Provos, C. Lee, and W. Lee, “Corrupted DNS Resolution
Paths: The Rise of a Malicious Resolution Authority,” inProc. of
Network and Distributed Security Symposium, 2008.

[4] D. Leonard and D. Loguinov, “Demystifying Service Discovery: Imple-
menting an Internet-Wide Scanner,” inProceedings of the 10th annual
conference on Internet measurement. ACM, 2010, pp. 109–122.

[5] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet in
Your Spare Time,” inProc. USENIX Security Symposium, 2002.

[6] A. Kalafut, M. Gupta, P.Rattadilok, and P. Patel, “Surveying Wildcard
Usage Among the Good, the Bad, and the Ugly,” inSecureComm, 2010.

[7] D. Kaminsky, “Black Ops of DNS,” Black Hat Briefings, 2004.
[8] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,

and reversals,”Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[9] M. Andrews, “Negative Caching of DNS Queries (DNS NCACHE),”
Mar. 1998, rFC 2308.

[10] S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Content Delivery
Networks: Protection or Threat?” inESORICS, 2009, pp. 371–389.

[11] S. Burnett, N. Feamster, and S. Vempala, “Chipping Awayat Censorship
Firewalls With User-Generated Content,” inProc. 19th USENIX Security
Symposium, Washington, DC, 2010.

[12] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: TheSecond-
Generation Onion Router,” inProc. USENIX Security Symposium, 2004.

[13] J. Dinger and O. Waldhorst, “Decentralized Bootstrapping of P2P
Systems: A Practical View,”NETWORKING 2009, pp. 703–715, 2009.

[14] C. Dickey and C. Grothoff, “Bootstrapping of Peer-to-Peer Networks,”
in Applications and the Internet, 2008. SAINT 2008. International
Symposium on. IEEE, 2008, pp. 205–208.

[15] D. Wolinsky, P. St Juste, P. Boykin, and R. Figueiredo, “Addressing
the P2P Bootstrap Problem for Small Overlay Networks,” inPeer-to-
Peer Computing (P2P), 2010 IEEE Tenth International Conference on.
IEEE, 2010, pp. 1–10.

	TR-12-002 cover
	TR-12-002 no cover

