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ABSTRACT

The Internet has changed dramatically in recent years. In
particular, the fundamental change has occurred in terms of
who generates most of the content, the variety of applica-
tions used anl d the diverse ways normal users connect to
the Internet. These factors have led to an explosion of the
amount of user-specific meta-information that is required to
access Internet content (e.g., email addresses, URLSs, social
graphs). In this paper we describe a foundational service for
storing and sharing user-specific meta-information and de-
scribe how this new abstraction could be utilized in current
and future applications.
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1. INTRODUCTION

The Internet looks very different today than it did 15-20
years ago. In particular, we highlight three trends. First,
user-generated content has outgrown its humble beginning
in the form of bulletin boards and has emerged as a sig-
nificant presence in the Internet landscape. Normal (non-
expert) users have become significant content generators
alongside traditional content-providing services (e.g., news,
weather and e-commerce sites). Among the Internet’s most
popular services are those that are mere frameworks to be
populated with content as the users see fit (photo and video
distribution, blogs, social networking services, etc.). Second,
rather than simply sending email messages and looking up
information, people are now using a myriad of applications
to engage in rich interactions with each other, e.g., by shar-
ing information (e.g., via photo or video sharing services),
participating in live communication (e.g., audio/video chats,
instant message, multi-player games) and finding each other
(e.g., social networking sites). Third, users access the net-
work from an ever-increasing number and variety of devices
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and access points (e.g., computers at work and home, lap-
tops in coffee shops, smartphones from anywhere).

The increased heterogeneity in terms of content providers,
applications and access methods employed by users to obtain
and provide information on the Internet is a testament to
the power and flexibility of the basic Internet architecture.
However, the situation has also created a large amount of
user-specific meta-information that is required to access the
actual content’ such as URLs for photos, videos and blogs;
buddy lists for instant messaging and voice-over-1P systems;
cryptographic certificates; email addresses; relationship in-
formation; etc. This meta-information explosion is born out
of necessity, but leads to a mess of formats and redundant
data scattered across applications and devices.

Current applications cope with meta-information in two
basic ways. First, applications generally cope with their
own information reasonably well (e.g., email programs track
email addresses, calendar tools track calendar subscriptions,
etc.). Further, applications are sometimes given pair-wise
capability to interact with each other (e.g., a social net-
working site bootstrapping friends from an address book
application). Second, applications can utilize cloud comput-
ing platforms to aggregate meta-information at some central
point in the network that is accessible from any connected
device. This centralized approach removes the need indi-
vidual devices have for information at the cost of trusting a
third-party to hold users’ data. Given these two suboptimal
paths, we view the meta-information explosion as an oppor-
tunity to build a new primitive for the Internet that is tasked
with coherently, comprehensively and securely dealing with
arbitrary user meta-information.

In this paper we describe the Meta-Information Storage
System (MISS) which is a foundational service that provides
users and applications with a new architectural abstraction
for dealing with meta-information. The system can both
deal with the current mess and more crucially enable new
functionality based on wide-spread ready access to meta-
information. We note that the actual system we describe in
this paper uses off-the-shelf components. Our contribution
is not in designing some novel information store, but rather
in the architecting of a service that offers a better way to
organize meta-information within the network. Further, our
goal is to design a “thin waist” sort of service (akin to the IP
network protocol or the DNS naming system) that is at once
general and simple, even if not always optimal. We view our

'In this paper we consider “content” to be both stored in-
formation such as a blog entry, as well as ephemeral com-
munications such as an audio chat.



re-use of previously developed mechanisms to be a positive
comment on the community’s effort to design generic tech-
nology that is broadly applicable. We view this paper as
representing another step in the process of creating generic,
broadly useful services.

2. META-INFORMATION

The MISS system is tasked with dealing with meta-
information which we define as a range of information that is
not the ultimate content the user interacts with, but rather
the information required to get at that content (names, so-
cial graphs, etc.). In the discussion below we describe MISS
as both extensible and application-agnostic and therefore it
is tantalizing to think about using the system to hold actual
application content. While perhaps possible our focus is on
meta-information and this drives the design and therefore
the resulting system may be suboptimal for storing actual
content. First, as sketched above, we designed MISS with
the idea of it being a “thin waist” for meta-information.
Therefore, the interface is sufficient for that task, but likely
not nearly rich enough to support the general content trans-
actions. Second, the volume of meta-information in relation
to content is incomparable. A system for storing a relatively
small amount of meta-information is feasible, but a general
content store represents a larger and more complex task.

The MISS data store calls for each user to have a collec-
tion of meta-information.? Each collection is comprised of a
set of records, each of which is identified within the collection
by a name and type. The MISS system itself is agnostic to
what is held in these records—except for a few pieces of in-
formation needed by the system itself—leaving applications
to craft records as needed. As an example to aid the reader’s
intuition, consider a record in Alice’s collection containing
her current email address. When Bob sends an email to
Alice, his email client can look her address up in Alice’s col-
lection at the time of email transmission. Whereas today’s
situation calls for Alice to tell Bob when she starts using
a new email address, the late binding facilitated by MISS
allows for Alice to arbitrarily change where her email is sent
with no impact on Bob. This naming scheme is discussed in
more detail in § 4.1.

Before describing collections and records in detail we
sketch several requirements for the system. (1) The sys-
tem should be extensible in terms of the types of meta-
information stored to accommodate an evolving set of ap-
plications. (2) The system should allow the user to control
access to their meta-information on a per-record basis (al-
lowing for records to be private, public, shared within well-
defined groups, etc.). (3) The system should provide for
record integrity such that anyone with access to a record
should be able to validate the record and that it belongs to
the given collection.® (4) The system should be designed
to allow for portability of meta-information with respect to
where a user’s information is hosted. I.e., collections should

2For ease of exposition we frame this paper in terms of each
user having one collection. However, there is no reason a
user cannot have multiple collections within M155—e.g., for
different roles they might play (e.g., home vs. work).
3Related to integrity is trust. We do not require nor pre-
clude a rigorous trust system. MISS can accommodate both
externally developed trust, as well as applications that rely
on looser notions of trust such as “opportunistic personas”
[5] and “leap-of-faith” security [6].

<miss_record>
<name>myemail</name>
<type>email-address</type>
<expires>1278597127</expires>
<signature> [...] </signature>
<email-address>

<exl>alice@somenetwork.com</ex1l>

</email-address>

</miss_record>

Figure 1: Example MISS record.

not be entangled with a particular service provider or meta-
information hosting system.

Finally, we note that while MISS is charged with securely
storing and sharing meta-information, that does not obviate
the applications from conducting tasks such as access control
(as they do now). For instance, a calendar available from a
CalDAV server that is named within MISS (see § 4.1) will
still require access controls at the server to limit who can
access the calendar even if the record in MISS is encrypted
such that only a small number of people can access the meta-
information.

Collections: A collection is a container for all of a user’s
meta-information records. Collections do not have to be
strictly tied to a single person, but could be used for or-
ganizations or groups, however, for convenience we discuss
collections as belonging to individuals. Each collection is as-
sociated with and named by a user-generated cryptographic
key pair (Cs,Cp) for the secret and public halves, respec-
tively. The collection’s name is a fingerprint of C,. By
building MISS on a cryptographic foundation we address
the bulk of the above requirements. Naming collections
with user-generated cryptographic keys allows for portabil-
ity as collections can be generated opportunistically by users
and hosted with any willing service provider and moved at
will. Further, the cryptographic foundation naturally al-
lows both access control via encryption and validation via
cryptographic signatures. We note that our key assump-
tion for MISS is that the users’ key material remain safe.
When this assumption holds the system cannot deliver un-
detectable fraudulent records. In § 3.3 we discuss coping
with the failure of this assumption.

Records: Each record within MISS is identified by a type,
a name and the collection identifier. We place no constraints
on the type and name fields, considering each to be an ar-
bitrary string. The name of each record is chosen by the
user (or by an application on a user’s behalf). Each record
is encoded in XML [9] both (¢) in pursuit of the extensibil-
ity requirement and (i7) because libraries for dealing with
XML are widely available for a large set of languages, allow-
ing for easy integration into existing and new applications.
With the exception of a few standard fields needed to track
records, the system is agnostic to the contents of the records.
This encoding strategy allows for a high degree of flexibility
in the construction of the records. Further, record types can
be added and changed as applications evolve.

Finally we note that each record in MISS has an associ-
ated expiration time which serves two purposes: (i) placing
temporary records in the system can be done in such a way
that no explicit cleanup is required and (i¢) explicit expi-
ration times allow for consumers to cache records to save
querying time and expense on each use of a record (caching
is discussed further in § 3.1). This mechanism is analogous
to the time-to-live scheme used by DNS.



Figure 1 shows a sample MISS record that defines Al-
ice’s current email address, per the example sketched above.
The first few fields are standard to all MISS records and give
the record’s name (“myemail”), type (“email-address”), ex-
piration time and the signature of the entire record. The
collection that holds this record is not explicitly encoded in
the record, but is needed to obtain and validate the record
(as detailed in § 3.2). The remainder of the record (the
“email-address” portion and enclosed address)is defined by
an application and is irrelevant to MISS.

Since MISS is built on top of a cryptographic core the
foundation for protecting users’ privacy is in place and
records can be encrypted such that only certain peers will
be able to access the contents. While this allows users and
applications to control the information placed into MISS,
sometimes the mere presence of a record may violate a user’s
privacy. Therefore, encrypted records are only returned to
users with access to decrypt the records.

We note that the MISS data model focuses on individual
records and there is no index of the contents of a collection.*
A requester must know what they are looking for (collection,
record type and name) to form the request. This allows for
record-level access control without carrying that forth to
some form of index for enforcement. In addition, it offers
a level of privacy in that while public records can be fished
from the system, not readily publishing those records in an
easy to find form prevents others from surfing through all of
a user’s meta-information. Finally, our focus on individual
records keeps the interface between the meta-information
servers and the clients simple (i.e., get()/put()) and only
places minimal trust in the MISS servers themselves (see
§ 3 for a deeper discussion of the interface).

We also note that like transport protocol port numbers
there are two general classes of record types: well-known
and ad-hoc. The division allows for well-known rendezvous
points and ad-hoc customized entries. Technically, the only
difference between the types is that a registry® of well-known
types and their corresponding record format will be kept
(e.g., so two like applications can both understand the for-
mat). To avoid clashes in type names it is recommended
that types expected to see broad use be registered. Addi-
tionally, ad-hoc types should be prepended with the name
of the application to reduce the chances of collision (e.g.,
“Firefox-foo” instead of “foo”). Ultimately, however, appli-
cations must verify the record retrieved conforms to expec-
tations and handle cases when it does not as an error.

3. SYSTEM OVERVIEW

We next provide an overview of the system we have de-
signed and prototyped to store users’ meta-information.
Figure 2 shows a high-level diagram of the system and will
be described in the remainder of this section. We note that
while we believe the design presented in this section is the
best realization of the engineering tradeoffs involved, other
designs were considered and are possible. The main con-
tribution of this paper is in the abstraction and not on the
particulars of the system which could be engineered differ-
ently without impacting the provided foundation.

10f course, various forms of index records could be con-
structed for various purposes since MISS itself is agnostic
to the contents of a record.

5While we have not yet set up a registry the history of IANA
suggests that it is possible and works well.
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Figure 2: Conceptual diagram of MISS system.

3.1 Local Interface

The MISS system requires a local interface between ap-
plications and the global repository. As shown in Figure 2,
this interface is implemented through a local service, missd,
which runs on a user’s behalf on the same device as the
applications and provides several key functions and under-
takes a number of common tasks, as follows. First, the missd
provides applications with a general put()/get() interface to
the meta-information in the overall system without requir-
ing configuration and complexity for each application. Sec-
ond, the missd holds the user’s state (their own records,
cached copies of others’ records, etc.) and provides for
meta-information management—e.g., as the user’s records
need to be added or updated in the global database (e.g.,
as expiration times near). Also, the missd handles com-
mon operations, such as signing and/or encrypting records,
as necessary. In addition, the missd fetches other people’s
meta-information and can cache and pre-fetch these records
to make access to often-used information quick.

We note that the simple get()/put() interface missd
provides has proven sufficient for managing the meta-
information in all applications we have worked through
and/or implemented (see § 4). Therefore, to keep complex-
ity low we have not constructed a richer interface based on
hypothesized needs. That said, the interface may well need
to be enlarged as needs arise.

3.2 Global Access

We now turn our attention to the structure of the global
meta-information storage system. The system is comprised
of the collection of MISS servers shown in the upper portion
of Figure 2. These servers are presumed to be infrastructure-
level nodes run by ISPs or institutions for their respective
users (e.g., similar to email servers). Each collection of
records is stored on at least one MISS server (and possibly
several for robustness). Each missd is configured to know
the MISS server(s)—denoted by the server outlined with a
double-line in the figure—for its collections and stores its ap-
plications’ records there. (The figure only shows one MISS
server—i.e., no backup servers—associated with the missd
for clarity.)

When querying the system for a record, the missd must
first determine which MISS server holds the relevant collec-
tion. The MISS servers together form a distributed hash ta-



<miss_record>
<name>collection</name>
<type>miss</type>
<expires>1278684469</expires>
<signature> [...] </signature>
<miss_collection>
<owner>
<name>Joe Smith</name>
<email>jsmith@foo.com</email>
</owner>
<pub_key> [...] </pub_key>
<server>128.1.2.3</server>
<server>132.25.30.35</server>
<server>68.45.100.7</server>
</miss_collection>
</miss_record>

Figure 3: Example master record.

ble (DHT) that stores a mapping of the collection identifier
to the particular MISS server(s) on which the records are
stored in a master record. Therefore, to retrieve a meta-
information record the missd first queries the DHT with
the collection identifier to retrieve the master record—as
denoted by the double-arrowed line in Figure 2. An exam-
ple master record is shown in Figure 3. The record starts
with the four standard fields (name, type, expiration time
and signature). Next, the collection information is enumer-
ated, including the collection owner’s name, email address
and public key. Finally, there are a list of MISS servers
which hold the records in the collection. Once the MISS
server(s) for a given collection has been identified, the client
queries one of the MISS server directly for particular records
within the collection—shown with the two dotted lines on
the figure. Each record is identified by a three tuple (c,t,n)
where c is the collection identifier, ¢ is the type of record
and n is the name of the record. It is presumed the servers
will be queried in the given order, however, to support load-
balancing the record may include additional information to
better direct the missd’s choice (e.g., an indication to choose
a random server).

As noted, MISS naturally supports the use of multiple
MISS servers for robustness. This is akin to DNS’ notion
of listing multiple authoritative servers for particular names.
When publishing a record the missd attempts to publish the
same record on each of the MISS servers the user employs
(and retries failed put()s, as necessary). The MISS servers
independently age information out based on the expiration
time and therefore no additional coordination is required to
remove stale information.

It is possible that a user updates a record on one MISS
server but cannot reach another MISS server (e.g., a backup)
at that moment, which creates an inconsistency. However,
(7) the inconsistency will be fixed as soon as the missd
can re-establish a connection with the unreachable MISS
server and (i7) while the lagging MISS server may not pro-
vide queriers with the most recent meta-information, any
returned records will not be expired and therefore should
still be valid (e.g., the given record could be used from some
missd’s cache at that point). This system of loose consis-
tency has proven reasonable within DNS and therefore we
expect it will also be reasonable for MISS.

Since MISS queries represent a new lookup layer that
must be used before various application operations begin, we
must consider the added delay in performing these lookups.
To combat this extra delay, the system can heavily use
caching and pre-fetching. We expect expiration times to

be relatively long in many cases. E.g., recording a name for
an email address (as discussed in § 2 and § 4) with an expi-
ration of one week would allow for both reasonable email ad-
dress changes and record caching to prevent users from con-
stantly looking up a common correspondent’s current email
address. Further, for regularly used items (which missd can
easily track since all interactions happen via this compo-
nent) records can be pre-fetched as the expiration time ap-
proaches. Using caching and pre-fetching means that for
common records there will be only negligible delay imposed
by MISS. However, the delay for looking up less commonly
used records will remain (see experiments outlined in § 6 for
initial data on the extra delay). While we do not have a
good estimate of how many records people will utilize, we
note that if we assume records are stable and time-out every
week, that means pre-fetching one record per minute would
allow a missd to keep 10K records fresh.

Finally, we note that the system readily supports the
portability requirement outlined in § 2, as moving a col-
lection from one server to another merely involves altering
the pointer to the MISS server(s) in the master record.

3.3 Managing Collections

We now delve into three issues the system must deal with

in terms of managing the stored meta-information.
Bootstrapping: The first problem MISS faces is a boot-
strapping issue between users. To access another user’s in-
formation (e.g., an email address as outlined in § 2) the
user’s collection’s public key (or fingerprint thereof) is re-
quired. The collection ID can be transmitted in a number
of ways that are already used to exchange contact informa-
tion, e.g., email header fields, optional HT'TP headers, meta-
fields in HTML documents [14], email signatures, vCards,
etc. In addition, we could setup well-known registries (built
from MISS collections) such that people could map their col-
lection ID to some human-understandable name in a well-
known place. While the names would have to be unique
within the registry, this is for bootstrapping only. After
learning someone’s collection ID it can be readily stored
within one’s own collection under some context-sensitive
name (e.g., “Dad”). This allows for users to interact with
the system in a natural way. As sketched in § 4.1 we have
built a naming system within MISS that can handle such
tasks.
Security: Recall that in § 2 we noted our crucial assump-
tion is that the key material associated with a collection not
be compromised. As long as this assumption holds, the in-
formation retrieved from MISS can be verified as legitimate
by the consumer. An attacker compromising components of
the system (e.g., MISS servers) can prevent (or slow) record
retrieval, but cannot provide undetectable fraudulent infor-
mation given that the consumer must have the collection’s
legitimate public key to request information.

However, in reality the key material will be compromised
on occasion. Once an attacker takes possession of the user’s
private key, records can be fraudulently inserted and mod-
ified which could have far-reaching implications (e.g., redi-
recting email (see § 2 and § 4.1) to an account controlled
by the attacker). In the limit, users can recover from this
breach by simply populating a new collection and informing
their peers out-of-band about the new collection. This is
an effective, but high cost solution. Therefore, we design a
reasonable—although not fool-proof—procedure to mitigate



such events without requiring a start-from-scratch approach.

We extend master records in three ways. First, updat-
ing a master record adds a new copy of the record rather
than replacing the old version (and all non-expired versions
are returned in a lookup), preventing an attacker from sim-
ply over-writing legitimate information placed in the sys-
tem. Second, a master record can redirect the requester to
a different master record to indicate that the collection is
migrating to a new collection ID (i.e., from a compromised
collection to a fresh and uncompromised collection). Third,
a master record advertises a so-called secondary public key
(SPK) at all times. The SPK of various collections will
be cached in the consumer’s missd as a matter of course
when using the system (i.e., before a collection is compro-
mised). A master record indicating a redirect to another
collection must be signed by the private key corresponding
to the well-advertised SPK. Since this key is only needed for
constructing the redirect (a rare occasion), the private key
can be kept offline (e.g., on a USB stick), making it harder
to compromise. Use of the SPK prevents the attacker from
transitioning to new key material for the user by inserting
a fraudulent redirect. Meanwhile, the legitimate user will
possess the private half of the SPK and therefore be able to
publish a legitimate redirect to a new and uncompromised
collection.

This scheme does not provide iron-clad guarantees. For
instance, if the collection’s primary and secondary key mate-
rial are stored together and both compromised, there is little
recourse besides starting from scratch—and even that may
be fruitless if the attacker still controls a user’s device (and
hence can readily steal the new key material). An attacker
that controls both the primary key and part of the MISS in-
frastructure, e.g., the DHT node holding the user’s master
record, can thwart legitimate key transition by blocking le-
gitimate redirects to keep consumers in the dark. Another
attack involves consumers with no prior use of a collection
and hence no SPK on file. In this case the SPK itself can
be undetectably forged. The presence of legitimate redirects
can of course raise a red flag in this case. Overall we note
that these key transition attacks require a confluence of sev-
eral events and /or breaches across the system and therefore
raise the bar for the attacker significantly. While we believe
that further mitigation of these attacks is possible with addi-
tional layers of monitoring (e.g., charging MISS servers with
announcing key transitions to users’ out-of-band or tasking
the missd with re-requesting master records to build a his-
tory if none exists), we leave these mechanisms to future
work.

Sharing Collections: We finally note that for a user to
share their entire collection across multiple devices will re-
quire the missd’s state (e.g., records, collection IDs of peers
the user interacts with, etc.) to be kept within the user’s
MISS collection.® Note: the state can be kept in an en-
crypted form such that no other user can access the data. In
addition, the user’s MISS key pair will have to be distributed
to the various devices from which they will access MISS. In
addition, updating MISS from more than one location in-
curs the risk of update collisions. Our focus on individual

S Alternatively a user could keep their state on a portable
USB fob, access it via some networked filesystem, copy it to
the local device via scp, etc. But, for ease of exposition and
as a generally pragmatic path we assume the user utilizes
MISS for this purpose.

record operations enables us to use simple timestamp-based
concurrency control. MISS returns a timestamp ¢ with each
get() and put() that indicates the timestamp of the current
copy of the record on the MISS server. When updating a
record, the t from the previous get() is included with the
put(). If the corresponding record on the MISS server is
newer than ¢ an error is returned. The caller can then fetch
the current record and update that as needed.”

4. USE CASES

We now turn to sketching several use cases for MISS.
The first two (§ 4.1 and § 4.2) leverage MISS to provide
fundamentally new functionality while the latter two (§ 4.3
and § 4.4) illustrate how MISS can help users more easily
deal with current meta-information. We stress that the use
cases sketched below are exemplars and, per § 4.5, we believe
MISS has many additional uses.

4.1 Naming

Within the Internet many ad-hoc naming systems have
been designed and implemented independently and gener-
ally provide application-specific names to uniquely identify
a given resource. On the one hand, the ability to name re-
sources as needed by applications in an ad-hoc manner is
central to the general flexibility of the Internet architecture,
and forcing all applications to use some rigid naming system
would likely hinder innovation. On the other hand, the ex-
plosion of names, namespaces and artifacts of these makes
the system difficult to grapple with for normal users. The
two key problems with Internet names is a requirement for
uniqueness and a tight coupling with a hosting provider.

At a basic level, names need to be unique such that one
name cannot refer to multiple resources. This leads to names
that are obtuse, ambiguous to users and difficult to share [12,
21, 3]. Consider the URL [8]. The URL may contain infor-
mation about the application-layer protocol (e.g., “http”,
“https”, “ftp”, etc.), the machine that hosts some resource
(either a hostname or an IP address), the transport-layer
port number, the filename on the server’s disk and/or argu-
ments to some server-side program. The representation is
inclusive and offers the flexibility to name a large number of
resources, but at the cost of complexity. This complexity in
turn makes the names hard for users to cope with directly
and share. Further, global uniqueness leads to ambiguity
for humans. E.g., does “ou.edu” embedded in a URL indi-
cate the University of Oklahoma or Ohio University?® Since
both of these institutions are referred to as “OU” in their
respective regions the Internet name becomes ambiguous.
In sum, while global uniqueness is required, forcing users to
use such names comes with a complexity cost.

The second fundamental problem with our current names-
paces is that names are tied to service providers [21, 3].
Consider an email address. While a user may get some in-
put on creating the username portion of their email address
the hostname portion to the right of the “@”-sign denotes
a location within the Internet where email will be delivered.
Therefore, if a user wishes to change email providers they

"Note: like DNS, MISS is a “record store” and not a
database. If an application requires multiple semantically
linked records, then it must implement the appropriate con-
currency control (which can likely be done within MISS
given its extensibility).

8The University of Oklahoma




Alice’s Collection:
email myemail = alice@mailserver.com
rss blog = http://blogserver/alice-blog.xml

Bob’s Collection:
pointer Mom = [Alice’s Collection ID]
email Mom = Mom:myemail
URI vacation07-piz = http://www.flickr.com/[...]

Figure 4: Example personal namespaces.

must garner a new address and inform their correspondents
to use the new version. One problem with this scheme is
that changing is costly enough that users are locked into ser-
vice providers rather than having the real ability to choose
providers based on merit, price, etc.

Previously we have proposed a personal namespace system
that allows users to add aliases on top of the Internet’s myr-
iad namespaces, hence creating a meta-naming layer that is
better suited to human use [3]. While the personal names-
pace proposal envisioned a system for storing aliases, the
MISS system is essentially a superset of that system. Two
example personal namespaces—for Alice and her son Bob—
are given in Figure 4.° Each record in the namespace has
a type given in bold, a name given in italics and a value
given in normal text which is the standard unique name for
the given resource. Alice controls the names for her own
resources, e.g., by assigning her current email address to
“myemail”. Her son can set a pointer to Alice’s namespace
using the context-sensitive name “Mom”. He can further set
a pointer to her email address as “Mom:myemail” which will
resolve to Alice’s current email address. Alice can change
her email address—because she wishes to switch providers,
gets a new job, etc.—without any impact to Bob who con-
tinues to simply use “Mom:myemail”. We also note that
Bob’s namespace illustrates the use of MISS to track other
users’ cryptic collection identifiers, as sketched in § 3.3, in
his pointer to Alice’s collection.

Using MISS to allow users to alias their own resources
addresses both fundamental problems with Internet names.
Le., by allowing users to alias unique names we allow for
human-friendly, context-sensitive identifiers that are easy to
use and share. Additionally, we break the coupling between
names and providers by allowing people to operate on aliases
that are controlled by users within their MISS collections.

Together with our prototype MISS system (see § 6) we
have implemented our naming system within the Firefox
web browser and the Thunderbird email client via plugins
(publicly available from [1]). Once enabled this allows users
to access web pages and send email using aliases stored in
MISS that resolve to traditional URLs and email addresses.

4.2 User-Directed Protocols

We next turn our attention to using MISS to allow users to
more directly control the flow of their transactions through
the network. The naming mechanism discussed in the last
section provides one aspect of this by decoupling names
from service providers and by allowing users the flexibility to
quickly change providers. However, such wholesale changes
of providers represent only the beginning of the ways a gen-
eral meta-information storage system can be leveraged to
allow users to control information flow. Below we sketch

9Note: The format used here is for illustrative purposes. As
mentioned previously the information would be encoded in
XML for storage within MISS.

two different ways to employ MISS records to give users
more fine-grained control.

Adding Redundancy: The first use of MISS to allow
users to direct traffic involves the user explicitly request-
ing redundant delivery of data. While we discuss this in the
context of email, the general concept of specifying redundant
delivery is a more widely applicable notion.

While the Internet’s email system generally works well
there are two fundamental problems in the overall mech-
anism. First, email has no end-to-end delivery guarantee,
but rather the system is composed of a succession of SMTP
servers that are each a potential point of failure. Further,
there is no over-arching recovery process to detect and/or
recover from delivery failures. Second, each point in the
process attempts to deliver each email message even when
the next hop is unavailable and this can lead to prolonged
delays in message delivery. For instance, consider the case
when an institution’s email server loses connectivity due to
a prolonged power outage. Mail destined for the institution
will either be queued up in intermediate nodes and retried
periodically or be sent to a backup server as defined in the
DNS. Since messages at the backup server are not likely
available to users (via IMAP, say) both of these situations
leave messages in limbo until power is restored to the recip-
ient’s institution.

There are proposals for solving the first problem. In
fact, the SMTP specifications call for “delivery status noti-
fications” [16] and “message disposition notifications” [13].
However, the system is still largely implemented using hop-
by-hop reliability instead of end-to-end reliability. That is,
once a message has been handed off to the next hop, a mail
server no longer tracks it in any way. Alternatively, Sure-
Mail [2] is a system whereby the sender deposits notations
in a DHT that indicate a message was sent to a given recip-
ient. Only the recipient can retrieve and understand these
notations. Any email that has been noted as sent but has
not been received can be requested from the sender. The
second problem of prolonged delivery times has never been
addressed to the best of our knowledge.

A straightforward use of MISS can mitigate both issues.
As sketched in § 4.1 users can give their email addresses
aliases within MISS. Rather than setting this address to a
single address the user can set it to multiple email addresses
separated by commas. Such a string will be accepted by
the vast majority of email clients with the message being
sent to both addresses. In this way a user can force the sys-
tem to redundantly deliver their email'® and hence mitigate
the reliability and timeliness issues discussed above. Our
prototype supports this use of MISS.

Hooks: Above we sketched aliasing to facilitate choice in
providers and redundancy to increase robsutness and time-
liness as mechanisms users can employ within MISS to con-
trol their transactions. In this section we specify more fine-
grained control. Much like CLISP [11] provides “hooks”
that are run before or after some activity to customize the
process we propose providing such hooks in the Internet.
MISS provides a natural place for users to set such hooks to
inform the system about a user’s preferred delivery process.
We continue with email as our exemplar. An institutional
SMTP server may consult a “pre-delivery” hook in the re-

ONote, email clients can effectively use the Message-ID email
header to remove duplicate messages so the user is only pre-
sented with one copy of each message.



cipient’s MISS collection before delivering a message to the
IMAP server. In this record the user could specify a spam
checking service to which the incoming message is submit-
ted and the returned message is delivered to the user (say,
after adding headers with the checker’s results). This added
flexibility gives users choice in terms of picking the best pos-
sible technologies rather than a bundle of technologies that
is put together by a given provider. While in some sense
users can do this now (e.g., by running their own spam fil-
ter) that is (i) often an impractical path for normal users
and (77) sometimes beyond the abilities of a given device
(e.g., a smartphone).

In addition to email filtering, hooks could be used to spec-
ify services for web proxies that remove unwanted content
(e.g., malware or ads). Alternatively a user on a smart-
phone could direct traffic through a transformation service
that reduces picture quality, increases font size, etc. for
both better viewing on a small device and better use of the
scarce network resources often encountered on a 3G link
(say). Another use might be a service that could observe
incoming messages (email, IM, etc.), detect particularly im-
portant messages and send the user a notification to their
phone (e.g., via SMS). We believe that as is the case in pro-
gramming languages hooks could be a powerful concept in
giving users a mechanism to flexibly control network trans-
actions.

4.3 Sharing State

As sketched in § 1, the devices people use to access Inter-
net services are increasing in number and variety. It would
not be atypical for a user to access the Internet via multiple
devices of differing capabilities in the course of a day (e.g.,
desktops, laptops, tablets, smartphones, etc.). One of the
consequences of this access pattern is at any given time the
user does not have access to all their application state. For
instance, setting a bookmark in Firefox at the office does the
user no good when later accessing the web via their tablet.
Likewise, finding and pulling up a web page on one com-
puter is of no use if the user only has time to read the page
when they are away from that computer but have access
to their smartphone. Ad-hoc solutions exist for various ap-
plications (e.g., storing bookmarks in the cloud). However,
MISS provides a framework for addressing the problem in a
coherent and comprehensive fashion. Since applications can
easily push custom records into MISS they can readily save
bits of state in the user’s own collection for retrieval from
another device. E.g., an RSS reader could record the article
IDs associated with articles the user has read such that they
do not appear as “new” when a different device presents the
list of articles to the user.

We prototyped another example application on top of the
MISS system discussed in § 6. We have built a Chrome
extension and Firefox plugin to save and retrieve the state
of a user’s browser in MISS (both extensions are available
at [1]). The plugin takes a snapshot of the URL associated
with each window and tab open at a given time'! and saves
this in the user’s MISS collection as a record that only the
given user can access (i.e., decrypt). When the plugin is
asked to retrieve the state it queries MISS for the given
state record and opens windows and tabs as necessarily and

" Currently the user is required to push a button to save
their state, but we could trivially make the browser save the
state on particular events.

loads the corresponding URLs. Exactly what gets stored in
such records is determined by the applications. For instance,
while we have not yet done so, we could store each tab’s
history, as well—allowing the user to use the “back” button
on the restored state just as they would have on the origin
browser. Again, existing solutions such as remote desktops
can achieve similar functionality but MISS can support it
as part of a foundational service.

While the previous two use cases of MISS have been aimed
at utilizing the MISS data store to provide new functionality
this use case is a bit more mundane. For a number of appli-
cations there are in fact existing ad-hoc mechanisms to share
state between devices (e.g., bookmarks, address books, RSS
aggregaters, etc.). This use case is therefore an illustration
that MISS can be used for current applications, as well.
However, even for existing applications there are benefits
in a standard interface (e.g., we can share current browser
state across Chrome and Firefox). Further, applications can
leverage the missd to handle common tasks and therefore
do not have to be nearly as complex as point solutions to
accomplish the same task.

4.4 Storing Configuration

Similar to storing application state across devices and ses-
sions, MISS can be used to store configuration information.
Such configuration can be complex and therefore cumber-
some to deal with. E.g., consider the configuration for a typ-
ical email client. For each incoming email account the user
accesses the client will require the hostname of an IMAP
server, the TCP port on which the server is listening, a
username, a password, possibly an SSL certificate, configu-
ration options (e.g., whether to keep mail on the server or
not), etc. In addition, to handle outgoing email the client
will also need the name of an SMTP relay, TCP port num-
ber and possibly credentials to access the relay. This infor-
mation needs to be configured into every client a user em-
ploys to check their email (e.g., at least once per device they
use and each configuration change must be manually prop-
agated to all devices). Similar configuration information is
required within many applications (e.g., instant messaging
setup, HTTP proxy settings, simple general preferences in
myriad tools, etc.).

MISS provides an opportunity to encode this configura-
tion information once and then retrieve it for use on various
clients. As with storing application state discussed in the
last section, this use of MISS moves towards a more seem-
less integration of devices. l.e., no longer is it a manual
burden to setup a new device or access information from
a temporary location. In addition, once applications un-
derstand how to retrieve configuration information from a
standard MISS record this will pave the way to remove even
more manual configuration by allowing institutions to pro-
vide most of the information via a institutional collection.
The users would then only have to deal with pointing their
application at the institutions configuration record (using
some canonical name, say) and conducting user-specific con-
figuration (e.g., credentials). And, this latter only needs
done once and then can be used across clients and devices.
Such a system provides flexibility for an institution in terms
of changing the configuration without requiring manual in-
tervention by users or system administrators on each appli-
cation instance.

As with the use case described in § 4.3 this application of



MISS is not a fundamentally new capability. Rather, this
use case illustrates the ability of MISS to help uses cope with
a current source of meta-information. Once a system such
as MISS is in place many incremental benefits such as the
examples we have discussed are likely to be straightforward.
While not necessarily compelling in their own right, we be-
lieve the sum of such benefits will provide a qualitatively
better system.

‘We have developed a Thunderbird plugin to retrieve email
client configuration information from our MISS prototype
(see § 6) and then use that information to configure the
application. Our plugin is available from [1].

4.5 Other Uses

We stress that the use cases developed above are illustra-
tive examples that serve to demonstrate the potential ben-
efits of a system to manage meta-information. We envision
additional uses, such as:

e Several proposals have advocated removing social net-
work data from social networking sites like Facebook
(e.g., Authenticatr [18]). MISS would be a natural
place to store users’ social graphs such that they would
be available across applications.

e We have previously proposed the use of “assistants”
to which small housekeeping tasks can be delegated
such that a host can enter a power-saving sleep mode
without losing its standing in the network [4]. Such
delegation information could be conveyed within the
MISS system in a secure fashion.

e MISS could be used to encode mirrors to particular
data. This could be done to load balance the trans-
ferring of some large file (e.g., a Linux distribution)
from multiple large servers. Or, it could be the basis
of some private file trading service among a small, pri-
vate group that does not possess fixed infrastructure.

There are no doubt many more examples. Our contribu-
tion is in a flexible and extensible foundation that can enable
such uses—including those we cannot yet envision.

S. INCENTIVES

We briefly consider the incentives to use and deploy MISS
for three directly impacted constituencies here.
Users: The entire design of MISS revolves around provid-
ing users both ease-of-use and flexibility in dealing with net-
worked systems. As sketched in § 4 the uses of MISS from
the user’s point-of-view are numerous and therefore we be-
lieve an instantiation of MISS that mostly hides the system
complexity will have immediate appeal.
Developers: The incentive for developers to use MISS in
their applications is two-fold. First, there is a natural in-
centive to add value for users and to the extent that users
benefit from MISS then developers will be incentivized to
use the system. Second, applications naturally have meta-
information management needs and so leveraging a gen-
eral system rather than building and maintaining an ad-
hoc mechanism is appealing. This latter may not hold as
strongly for existing applications that already implement an
ad-hoc mechanism, however, migrating to a general frame-
work that allows for both removal of complexity for the ap-
plication and benefit for the user is still an incentive.
Operators: Finally, system administrators and network
operators—at ISPs and institutions—will be required to run

MISS servers. MISS may well help their own processes.
However, the largest appeal of MISS will be to add value
for their users. There is obviously a track record for such
services to be offered to users (e.g., email, web space, etc.).

None of this is meant to suggest uptake of a system like
MISS will happen overnight. There is still a certain chicken-
and-egg property to the system. Our goal in this section is
to note that there are tangible incentives for the use and
deployment of a MISS-like system.

6. EXPERIMENTS

We have prototyped the MISS system, including the
missd, MISS server, DHT functionality and several applica-
tion plugins (as sketched in § 4). Communication between
the various components of the system is handled via XML-
RPC'. We use the Bamboo DHT [7] system to connect the
MISS servers. Our prototype implementation and the plu-
gins discussed above are publicly available [1].

A correctly working prototype is just a beginning, how-
ever. Since storing meta-information in MISS results in an
added lookup time during application processing we now
turn to an initial evaluation of the performance of our pro-
totype. Our experiments concentrate on three aspects of
users retrieving information from MISS: the capacity of a
stand-alone MISS server, end-to-end tests of the system
across a small LAN testbed to better understand the non-
networking costs and finally end-to-end tests across a more
realistic wide-area deployment of MISS to understand the
networking costs. While we briefly touch on record insertion
below, our focus is on information retrieval as we believe that
will be the most prevalent interaction with the system and
information insertion will be relatively rare and can happen
behind the scenes and not hinder users’ activities.

We note that the workload imposed in the following exper-
iments is in some ways contrived. However, in the absence
of a production meta-information system we are not able to
leverage a “typical” workload. There are aspects of such a
realistic workload that will no doubt matter to performance
(e.g., collection popularity, locality, etc.). However, since
there is no realistic model of this new system our goal in
this section is to get an initial understanding of the order
of the imposed delays. In our future work we will endeavor
to refine these experiments based on more realistic usage
patterns as we involve actual users in our experiments.
MISS Server Load: Our first experiment aims to as-
sess whether a reasonable server can handle a query load
from reasonable-sized organization. We setup a MISS server
running Apache 2.2.14 and used a client machine running
ApacheBench 2.3'2 to stress test the server. Both machines
were configured with Ubuntu 10.04 Server, each having two
quad-core 2.40GHz processors with 8GB of RAM. We varied
the load using ApacheBench’s concurrency setting. Table 1
shows our results. An unloaded server—answering one query
at a time—can handle the requests in under 1 msec. Increas-
ing the concurrency to 500, our MISS server can support
over 27K requests/second with an average response time of
18 msec. However, further increasing the concurrency to
3,100 yields both a longer delay—550 msec—and a lower
aggregate service rate (5.6K requests/second).

Obviously in the absence of an operational deployment

2http://www.xmlrpc.org
Bhttp://httpd.apache.org/docs/2.0/programs/ab.html



Concurrency Sustained Avg. Resp.
Req. rate (K/sec) | Time (msec)

1 1.7 <1

500 27 18

3100 5.6 550

Table 1: Stress-testing of a MISS server.

Operation | Median | 95" perc.
(msec) (msec)
Parse/verify 22 26
master fetch 3 6
Record fetch 2 3

Table 2: Overhead of MISS.

we do not have estimates of a reasonable query rate. How-
ever, as a rough approximation we note that at the Lawrence
Berkeley National Laboratory (LBNL) one of the main DNS
servers received an average of 121 requests/second over the
course of one day in July 2010 [17]. While there is not an ex-
act equivalence between DNS lookups and our expectation
of MISS lookups, the DNS load is suggestive of user activity
levels in that web page retrievals, email transmissions, etc.
trigger name lookups. Taken together the experiments and
the LBNL data suggest that a single reasonable server-class
host could handle the load imposed by a large organization
without imposing significant additional delays to the pro-
cess.

Local Network Baseline: Next we turn our attention to
assessing the overhead of the basic MISS system we have
built using a small LAN-based testbed. We deploy three
MISS servers which also form a DHT. Each MISS server
holds 100 collections of 100 records each. We next config-
ure three clients to each fetch 30K random records. Each
retrieval involves first obtaining, parsing and validating a
master record followed by retrieving, parsing and validating
the actual meta-information desired from the given MISS
server. The results are in Table 2. The entire process fin-
ished in at most 35 msec for 95% of the cases. We note that
the client operations of parsing and verification—mnot the
networking operations—dominate the time required in this
environment. This experiment shows that obtaining local
data—which we expect to be a common occurrence due to
people’s general habits which tend to have a local focus—is
not particularly time consuming compared with many com-
mon networking operations (e.g., loading a web page).

In the same three-node setup we also tested the naming
plugin we developed for Firefox (sketched in § 4.1). Within
Firefox we retrieved ten records from each of three collec-
tions hosted on the testbed. Over the 30 tests we find a
median retrieval time of 31 msec or 4 msec longer than we
find above when using an automated retrieval tool and not
an actual application. We therefore conclude that our exper-
iments are useful predictors of real application performance.
Internet-Wide Test: Our final set of experiments in-
volve assessing the time required to fetch meta-information
across the Internet within MISS. Our experiments are con-
servative since they do not take into account caching and
prefetching as discussed previously. To understand how such
mechanisms impact performance we would need a model for
user activity that—in the absence of a production meta-
information system—we do not have.

For this experiment we picked 100 random PlanetLab

1 : —
Total Pl
Collection ——--- e
Record -

0.9

0.8

07

06 i /
/i

05 /]

0.4

CDF

03

0.2

0.1

Request Duration (sec)

Figure 5: Duration of information retrieval from
MISS to client at Case.

nodes to act as MISS servers and placed 10 collections with
100 records each on each node. The MISS servers form the
DHT to provide master records. Our first set of experiments
involve using client machines at ICSI and Case to retrieve
meta-information. For each measurement we (i) choose a
record at random from our corpus, (7i) download the asso-
ciated master record from the DHT starting with a random
DHT entry point'* and (iii) fetch the given record from the
MISS server indicated in the retrieved master record.

We retrieved 19K records using the ICSI client and 34K
records using the Case client. Figure 5 shows the distribu-
tion of the retrieval time to the Case client. The distribution
from the ICSI client is similar—with times being slightly
less. The results show that the total time to fully retrieve a
piece of meta-information is over 1 second in nearly 60% of
the cases across both datasets. Further, 10% of the retrievals
take more than 2 seconds to ICSI and more than 2.5 seconds
to Case. The non-networking components of the delay are
similar to that shown in the last set of experiments in ab-
solute terms—which is much less as a fraction of the entire
process for the wide-area experiments. Finally, we find that
the two components of the retrieval process—fetching the
master record and retrieving the meta-information record
itself—take roughly the same amount of time (over 0.5 sec-
onds at median). These results show that meta-information
retrieval in the system we have designed consumes a non-
trivial amount of time relative to the duration of normal
Internet transactions. This is especially so if the meta-
information retrieval is part of a task whereby the user is
actively waiting on the results. The retrieval times suggest
that caching and pre-fetching of commonly used records will
be crucial.

Record Insertion: Finally, we assessed inserting informa-
tion into MISS in the context of our PlanetLab experiments.
We find that inserting master records into the DHT takes a
median of 831 msec (with the 95" percentile being 9.2 sec-
onds) and inserting meta-information records to particular
MISS servers takes a median of 386 msec (with the 95" per-
centile being 1.2 seconds). The former time is of little con-
cern because inserting master records is a rare ocurrence.
The latter time is likely a dramatic over-estimate of real-
ity since we expect in general users will be inserting records
into close MISS servers and our experiment utilizes random

1 Using a random DHT entry point is conservative and may
impose added delay over a situation where the user can sim-
ply use a local MISS server for this purpose.



nodes throughout PlanetLab. While long, we expect these
delays will largely be “behind the scenes” and therefore they
will not impede users.

7. RELATED WORK

We elide an in-depth discussion of related work due to the
shear breadth of topics covered in this paper. However, for
each component and application of MISS we have discussed
in this paper there is much related work. For example, our
notion of indirection—as used in the naming use case—can
be viewed as similar to i3 [22]. Further, meta-information
sharing resembles a number of proposals for Internet-wide
user profile or identity management (e.g.,[20, 15]). While
these approaches focus on data models, MISS attempts to
provide a neutral framework for applications to use however
they see fit. In addition, our use of cryptography to name
principals and encode their relationships has been previously
proposed (e.g., [19]). We also simply re-use previously devel-
oped DHT technology in our current prototype, but nothing
in our design is tied to a specific DHT implementation.'® Fi-
nally, the references given in § 4 as well as others (e.g., [23,
24]), show that in some cases similar tasks have been pre-
viously developed in an ad-hoc fashion. Our contribution
is not in any one of these technologies or applications, but
rather in the development of a pervasive architectural ab-
straction that we believe is useful for an increasing number
of networked applications and services. We believe this new
abstraction holds promise to both simplify current ad-hoc
mechanisms and enable new services due to reducing the
burden in dealing with meta-information.

8. CONCLUSIONS

We make several contributions in this paper. First, we
describe a new architectural foundation to hold users’ meta-
information. The system, MISS, accommodates arbitrary
application-defined meta-information. We build the system
on top of a cryptographic foundation such that access con-
trol and data integrity are built in at the root of the system.
Finally, the MISS system allows for portability of meta-
information—i.e., a user’s meta-information is not tied to
any particular server or provider and can be easily moved
between hosting services. This gives users flexibility and
choices as their situations change. We have sketched a va-
riety of use cases for the system and also illustrate the per-
formance of a prototype we developed. While ultimately
it is difficult to try to assess an undeployed architectural
framework, we believe the system sketched herein offers po-
tential benefits and also that it continues the community’s
conversation on user-centric technologies. This paper repre-
sents only an initial foray into the space. Our future work
on MISS will revolve around deploying test setups and inte-
grating applications into the system such that we can then
get, the system into users’ hands in a non-trivial way. This
will then allow us to better understand how MISS will be
used and any limitations that require better system design.
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