

A Middlebox-Cooperative TCP for a non End-to-End Internet

Support from:

Ryan Craven (NPS / SPAWAR)

Robert Beverly (NPS) Mark Allman (ICSI)

ACM SIGCOMM 19 Aug 2014

TCP's knowledge of end-to-end path conditions a priori

- 555
- 555
- 555
- 555
- **■** 555

But TCP has questions...

- How fast can I send?
- How much should I send at once?
- Did the other end get my data?
 - Was a piece lost?
 - Was it in the right order?
 - Was it error-free?

...so it makes inferences

- How fast can I send?
- How much should I send at once?

Congestion Control

- Did the other end get my data?
 - Was a piece lost?
 - Was it in the right order?
 - Was it error-free?

- **Duplicate Acknowledgements**
- Selective Acknowledgements

One more...

- How fast can I send?
- How much should I send at once?
- Did Bob get my data?
 - Was a piece lost?
 - Was it in the right order?
 - Was it error-free?

Am I being misinterpreted?

NAVAL POSTGRADUATE SCHOOL

NAVAL POSTGRADUATE SCHOOL

"Across all network sizes, the number of middleboxes is on par with the number of routers in a network"

Sherry et al., SIGCOMM '11 (from a survey of NANOG admins)

"A majority of administrators stated misconfiguration as the most common cause of [middlebox] failure"

Sherry et al., SIGCOMM '11 (from a survey of NANOG admins)

Example: ECN

Example: ECN

0b11 == congestion experienced

Switch was copying a value to the ToS byte¹

¹Bauer et al. "Measuring the State of ECN Readiness in Servers, Clients, and Routers." In Proc. of IMC 2011.

TCP/IP Headers

Source: Alice

> Dest: Bob

Window Size 1024

> Win. Scale 7

> > **Data**

Bob

TCP/IP Headers

Alice

Source: Alice

Dest:

Win. Scale

Data

Bob

Window Size 1024

12

Win scale

TCP/IP Headers

Source:

Alice

Sob

Alice thinks her window size is 128k

Bob thinks her window size is 1k

Win. Scale

Data

corbet. "TCP window scaling and broken routers." http://lwn.net/Articles/92727/

Other Examples

- TCP SACK
- Artificial TCP flow control
- Path MTU discovery
 - ICMP blocking
 - ICMP misquoting
 - TCP MSS alterations
- IP and TCP options stripped
 - Extra problematic:
 - Asymmetric (stripped on SYN-ACK but not SYN)
 - Allowed in handshake, then stripped

Middlebox Misconfiguration

- These are real problems
- Will continue to occur
 - The network is not getting any less intelligent
- Are critical and timely right now
 - Multipath TCP
 - TCP Fast Open
 - Gentle Aggression TCP (proactive/reactive/corrective)
 - tcpcrypt
 - ECN (still)

Wouldn't it be great if we had an easy way to detect these?

Challenges

- Available and reliable communications channel
 - Out-of-band ICMP?
 - New IP or TCP option?
 - Redefine a field?
- Capacity
- Incrementally deployable
- Middlebox-cooperative
- Inform both endpoints

HICCUPS

HICCUPS is a lightweight TCP extension that exposes in-flight packet header modification to endpoints

HICCUPS seeks to automate the question:

"Did my packet arrive at the destination with the same headers as sent?"

HICCUPS Methodology

Overloads three header fields in TCP 3WHS...

...with a function of the packet headers

HICCUPS Methodology

- Spread over 3 fields in case one is changed
- Lightweight hash function
 - Only have three sets of 12-bits
 - Assume no shared secret available
 - Preimage and hash sent together
 - Primary goal is to reduce collisions
- Add randomness (salt) to ISN

HICCUPS Methodology

- Creates an end-to-end tamper-evident seal over the packet headers
- Different than a checksum
 - If mods occur, we still accept the packet

Using HICCUPS

Once a host's TCP stack is HICCUPS-enabled,

HICCUPS can be used without endpoint coordination

Our long-term vision: all TCP stacks include HICCUPS

TCP Congestion Control

Infers e2e congestion state

TCP HICCUPS

Infers e2e packet header modification state

Implementation

Patch written for Linux kernel v3.9.4 TCP stack

- Requires no action by applications
- However, we do provide optional features:
 - Get HICCUPS status
 - Manually specify fields to check
 - Engage AppSalt mode (see paper)
- Set of cross-platform userspace tools

Performance

- Analyzed HICCUPS kernel overhead with ftrace
- Increases mean processing time by about 10µs
 - About 8.5% of the total SYN/ACK processing time

If load gets too high, automatically mitigates with SYN cookies

Validation

Measurements

- Over 26k directed port/path pairs across 197 ASes and 48 countries
- Different ports: 22, 80, 443, and 34343
- Range of parameters

Trial	MSS	ECN		$\begin{array}{c} \text{Win} \\ \text{Scale} \end{array}$	Time stamp	MP- TCP	Exp
1	1460		Y	7	Y		Y
2	1460		Y	7	Y	Y	
3	1460		Y	7	Y		
4	1460	Y					
5	480						
6	1460						
7	1600						
8	None						

Meas. Summary

Almost half of the nodes saw at least one in-path header modification

More than we expected to find

Saw asymmetric cases

Mods Detected

Change	Both	Fwd	Rev	Flows	Affected
HICCUPS not capable	72	0	2	13044	0.57%
NAT	9818	0	0	12958	75.77%
ISN translation	924	226	0	12970	8.87%
IPID changed	0	0	0	12970	0.00%
RCVWIN changed	0	0	0	12970	0.00%
ECN IP added	28	0	0	12934	0.22%
ECN IP changed	27	1684	48	12958	13.57%
ECN TCP added	22	0	0	12931	0.17%
ECN TCP changed	35	46	0	12960	0.63%
MSS added	129	143	1176	12926	11.20%
MSS480 changed	26	0	1271	12955	10.01%
MSS1460 changed	1247	12	12	12953	9.81%
MSS1600 changed	1245	311	12	12966	12.09%
Timestamps added	21	0	0	12936	0.16%
Timestamps changed	36	2	0	12951	0.29%
Window Scaling added	54	0	0	12930	0.42%
Window Scaling changed	29	0	0	12948	0.22%
MPCAPABLE changed	32	837	0	12940	6.72%
Exp. option changed	33	884	0	12942	7.09%

What can go wrong?

Change	Both	Fwd	Rev	Flows	Affected
HICCUPS not capable	72	0	2	13044	0.57%
NAT	9818	0	0	12958	75.77%
ISN translation	924	226	0	12970	8.87%
IPID changed	0	0	0	12970	0.00%
RCVWIN changed	0	0	0	12970	0.00%
ECN IP added	28	0	0	12934	0.22%
ECN IP changed	27	1684	48	12958	13.57%
ECN TCP added	22	0	0	12931	0.17%
ECN TCP changed	35	46	0	12960	0.63%
MSS added	129	143	1176	12926	11.20%
MSS480 changed	26	0	1271	12955	10.01%
MSS1460 changed	1247	12	12	12953	9.81%
MSS1600 changed	1245	311	12	12966	12.09%
Timestamps added	21	0	0	12936	0.16%
Timestamps changed	36	2	0	12951	0.29%
Window Scaling added	54	0	0	12930	0.42%
Window Scaling changed	29	0	0	12948	0.22%
MPCAPABLE changed	32	837	0	12940	6.72%
Exp. option changed	33	884	0	12942	7.09%

Potential SACK disruption

What can go wrong?

Change	Both	Fwd	Rev	Flows	Affected
HICCUPS not capable	72	0	2	13044	0.57%
NAT	9818	0	0	12958	75.77%
ISN translation	924	226	0	12970	8.87%
IPID changed	0	0	0	12970	0.00%
RCVWIN changed	0	0	0	12970	0.00%
ECN IP added	28	0	0	12934	0.22%
ECN IP changed	27	1684	48	12958	13.57%
ECN TCP added	22	0	0	12931	0.17%
ECN TCP changed	35	46	0	12960	0.63%
MSS added	129	143	1176	12926	11.20%
MSS480 changed	26	0	1271	12955	10.01%
MSS1460 changed	1247	12	12	12953	9.81%
MSS1600 changed	1245	311	12	12966	12.09%
Timestamps added	21	0	0	12936	0.16%
Timestamps changed	36	2	0	12951	0.29%
Window Scaling added	d 54	0	0	12930	0.42%
Window Scaling chan	ged 29	0	0	12948	0.22%
MPCAPABLE changed	32	837	0	12940	6.72%
Exp. option changed	33	884	0	12942	7.09%

Potential ToS byte semantics

ECN IP bits

ECN IP bits

What can go wrong?

Change	Both	Fwd	Rev	Flows	Affected
HICCUPS not capable	72	0	2	13044	0.57%
NAT	9818	0	0	12958	75.77%
ISN translation	924	226	0	12970	8.87%
IPID changed	0	0	0	12970	0.00%
RCVWIN changed	0	0	0	12970	0.00%
ECN IP added	28	0	0	12934	0.22%
ECN IP changed	27	1684	48	12958	13.57%
ECN TCP added	22	0	0	12931	0.17%
ECN TCP changed	35	46	0	12960	0.63%
MSS added	129	143	1176	12926	11.20%
MSS480 changed	26	0	1271	12955	10.01%
MSS1460 changed	1247	12	12	12953	9.81%
MSS1600 changed	1245	311	12	12966	12.09%
Timestamps added	21	0	0	12936	0.16%
Timestamps changed	36	2	0	12951	0.29%
Window Scaling added	54	0	0	12930	0.42%
Window Scaling changed	29	0	0	12948	9.22%
MPCAPABLE changed	32	837	0	12940	6.72%
Exp. option changed	33	884	0	12942	7.09%

Options stripped

What can go wrong?

Change	Both	Fwd	Rev	Flows	Affected
HICCUPS not capable	72	0	2	13044	0.57%
NAT	9818	0	0	12958	75.77%
ISN translation	924	226	0	12970	8.87%
IPID changed	0	0	0	12970	0.00%
RCVWIN changed	0	0	0	12970	0.00%
ECN IP added	28	0	0	12934	0.22%
ECN IP changed	27	1684	48	12958	13.57%
ECN TCP added	22	0	0	12931	0.17%
ECN TCP changed	35	46	0	12960	0.63%
MSS added	129	143	1176	12926	11.20%
MSS480 changed	26	0	1271	12955	10.01%
MSS1460 changed	1247	12	12	12953	9.81%
MS\$1600 changed	1245	311	12	12966	12.09%
Timestamps added	21	0	0	12936	0.16%
Timestamps changed	36	2	0	12951	0.29%
Window Scaling added	54	0	0	12930	0.42%
Window Scaling changed	29	0	0	12948	0.22%
MPCAPABLE changed	32	837	0	12940	6.72%
Exp. option changed	33	884	0	12942	7.09%

New behavior

Window Scaling

- Israeli PlanetLab node planetlab2.mta.ac.il
- Window scaling option added
- Only when going to ports 80 or 443

Window Scaling

- Israeli PlanetLab node planetlab2.mta.ac.il
- Window scaling option added
- Only when going to ports 80 or 443

Result: bulk transfer is flow-controlled, doubles when WINSCL ignored

Conclusions

- HICCUPS can help TCP infer whether it is being misinterpreted
 - Integrates nicely with TCP, incrementally deployable
 - Fnd-to-end
 - Middlebox-cooperative
- Demonstrated ease of deployment through mass Internet measurements

http://tcphiccups.org