
Summary Review Documentation for

“Fathom: A Browser-based Network Measurement Platform”
Authors: M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver, and V. Paxson

Reviewer #1
Summary: This paper describes the design, implementation, and
evaluation of Fathom, a Firefox extension that enables measure-
ments from the Internet’s edge. The main idea is that, in order to
gather measurements from end-hosts, a browser extension is more
portable than applications. And once the Fathom browser exten-
sion is installed by a user, websites that wish to perform measure-
ments from the user’s computer can include appropriate javascript
in their site’s code such that this javascript can invoke methods
inside Fathom to gather either active or passive measurements.
Fathom’s architecture takes several measures to address the secu-
rity and privacy of the user.

Strengths: Attempts to solve an important problem. Thorough
evaluation. Real implementation available for public use. Well
written.

Weaknesses:

• Road to deployment is by subversion of users.

• Limitations of architecture are not fully discussed.

Comments to authors: Fathom certainly solves an important
problem and I would be interested to see how much traction this
gets.

My main concern is that your envisioned path to deployment is
effectively by conning users. You state that you expect that users
can be incentivized to install Fathom to avail of its ”diagnose web
connectivity” feature, and thereafter Fathom can be used for mea-
surements by all websites. How is this different from all those ran-
dom browser toolbars that get you install them for useful features
like search, shortcut buttons, etc. and then end up gathering passive
measurements? It is hard for me to distinguish Fathom from spy-
ware! I know you state that users can selectively grant permission
to each site to gather measurements. But, to get widespread de-
ployment at the scale you envision, you surely need users who will
not understand anything about what they are being asked to grant
permission for, at which point they will either uninstall Fathom or
blindly click ”yes”, which again leaves me wondering: how is this
different from spyware ...

Its unclear to me that portability is really the primary motivation
for in-browser measurements. What is the problem with Java stand-
alone applications? Java-based programs can run on most systems.
In fact, I would expect Java programs to run on more systems than
the number of machines with a given browser (for which the exten-
sion is written). With the browser market getting more and more
fragmented, portability of the extension across browsers may be a
bigger concern than the portability of Java-based applications.

In fact, the current Fathom architecture has two significant limi-
tations compared to stand-alone applications:

1. a website can perform a measurement for only as long as
that site’s page is open. If I visit news.google.com and close the
page before the javascript on that page finishes gathering relevant
measurements, too bad for google. In general, Fathom does not
support scheduling of (possibly a batch of) measurements for the
future.

2. measurements can only be gathered by web pages that the user
visits. So, even though you state this as part of your motivation, it
is unclear how researchers can benefit from this platform.

It appears to me that the motivation for in-browser measurements
lie elsewhere from portability: 1) a browser extension enables pas-
sive measurements (such as load times to websites), whereas a
stand-alone application will require root privileges to do the same,
and 2) an extension is better at being ”invisible” to the user (which
goes back to my point above of trying to trick users).

By the way, the paper would be significantly stronger if it elab-
orated on the types of measurements that websites cannot perform
themselves today (by embedding appropriate javascript in their web
pages), but is enabled by Fathom. You allude to this in your exam-
ples, but a more direct treatment would help validate your point
about offering ”rich measurement capabilities”.

Reviewer #2
Summary: This paper presents Fathom, a browser extension for
Firefox that enables in-browser access to network and system re-
sources for the purposes of network experiments, measurements,
and debugging. Web site operators can include Fathom scripts
(written in Javascript with special access to a Fathom object) in their
pages, and can receive the results back from end users. The authors
implement Fathom, present microbenchmarks showing that Fathom
imposes low overhead, and use Fathom in three case-studies to
demonstrate different use cases.

Strengths: The paper presents a nice, complete, usable system
for performing network measurements, experiments, and debug-
ging in browsers. The paper is well-written and is a pleasure to
read.

Weaknesses: As the authors admit, using a browser extension
greatly reduces the possible user base (due to user action required,
and the Firefox-specific nature). I am somewhat skeptical of the
security/privacy story, as most end users would not likely be able to
understand the implications of the various permissions.

Comments to authors: Overall, I enjoyed reading this paper. I
like the novel use of the browser as a measurement tool, and of the



API that you’ve developed to enable third-party sites to use user
browsers. I have a few comments, divided into high-level and low-
level ones below.

High-level:

• My primary concern is over the incentives for users to install
the extension (to be fair, this is a topic that you discuss at some
length). Unfortunately, I wasn’t swayed by the argument that
the extensions significantly aids users through ”built-in trou-
bleshooting capabilities”. There exist a number of alternative
troubleshooting facilities (e.g., Apple’s Network Diagnostics,
Netalyzer, etc), and Fathom would not seem to provide a sub-
stantial benefit beyond these existing systems (at least, not
enough to convince random users to install it). It seems that,
overall, the primary direct beneficiaries of Fathom are the web
site operators who are able to gain significantly more infor-
mation about the end systems their web page is rendered on
(esp. since Fathom’s implementation strategy is an in-browser
framework). It therefore might be a more convincing case to
argue that web site operators could offer incentives for users
to install the extension, possibly in response to requests for
troubleshooting assistance.

• My secondary concern is over the user interface issues that
Fathom introduces. From your description in 4.3, it would
seem that the user must configure the local policy, and then po-
tentially make decisions along the lines of ”should the Fathom
script at page X be able to access resource Y?”. As you ad-
mit, this is likely to be difficult for many users. However,
I’m somewhat skeptical that the signed code would provide
much assistance – the signed code would only verify that (say)
cnn.com is the author of the code, but wouldn’t tell me much
about what the implications are of enabling access to the ex-
tension. Moreover, I suspect that most users will no modify
the local policy from the default, making the choice of the de-
faults incredibly important. But, I don’t see any discussion of
what the defaults are.

Lower-level:

• In 5.1, you note that Java applets have poor code portability,
citing Android as an example where the full Java API is not
available. I found this a bit odd, as Fathom would seem to
have little hope of running under Android (no Firefox, to be-
gin with). Given that I was already convinced about the down-
sides of Java applets (lowering supporting for Java runtimes
on end hosts, to begin with), I would recommend reworking
this comparison.

• I don’t quite understand while Plugin (runtime) [representing
Java et al.] gets an ”X” for both Browser and OS portability.
For most of the stuff that Fathom supports, the Java runtime
would seem to work just fine (with the caveat that the user has
to approve the applet being run with full privileges).

• At the end of 5, you argue that Fathom code writers are dis-
couraged from using too many resources, as the user may sim-
ply close their browser tab in response. But, I don’t quite see
how a user would figure out which tab was causing the prob-
lem – most browsers that I know of don’t give you much in-
sight into how many resources different tabs are consuming,
and even looking at the ”ps aux” output (or equivalent) would
only show that it was the browser using the (say) CPU.

Reviewer #3
Summary: A measurement plug-in for the Firefox web browser
to support user performance measurements as well as researcher
experimentation. Seems like the kind of paper IMC was designed
for, will generate a lot of interesting conversation at conference.

Strengths: The platform design goals, and its implementation,
are spelled out clearly, likewise Fathom’s design. Much of the
section about this is taken up with detailed comments about the
programming and execution enviroments inside various browsers -
that’s certainly interesting, and will be new territory for many read-
ers.

Section 6, performance evaluation, shows that Fathom is capable
of high network throughput (I hope it warns users that testing avail-
able bandwidth by transferring big files will impact other network
users), and that it adds little overhead to normal browser operations.

The examples given to demonstrate how Fathom can be used, e.g.
implementing Netalyzer, are interesting too, and do demonstrate its
strengths. Paper weaknesses The only thing that could usefully be
added to the paper would be some brief comments on what a user
has to do to install it, and some experience by real users.

Weaknesses: The only thing that could usefully be added to the
paper would be some brief comments on what a user has to do to
install it, and some experience by real users.

Reviewer #4
Summary: This paper describes an extension to Javascript, that
will let researchers run latency and throughput experiments directly
from the browser, rather than asking users to install new software
to run end-user experiments Paper strengths The authors have de-
signed a Javascript extension to expose various APIs to the web
page developer. The extensions not only allow browser-based mea-
surement experiments, but also allows ping and traceroute-like ex-
periments.

To provide security, the authors request the user to confirm the
set of APIs that the user will allow, and for accountability, requires
the experimenters to sign the code. The users can also allow a set
of IP addresses (although, they don’t seem to have a blacklist of IP
addresses, but that may be trivial to do)

The authors show that measurements performed from the
browser are accurate, and implement three case studies using
Fathom—a Netalyzer alternative, a connection debugger applica-
tion, and a web services debugging application. The main point of
these case studies is to show that these capabilities can easily be
implemented using Javascript without a lot of effort (e.g., 400 loc
for the debugging application)

Weaknesses: Fathom has been designed to allow experimenters
to easily deploy their experiments (see intro). Yet, I wasn’t sure
how Fathom will be used by experimenters. Should the user visit a
particular web page to run an experiment. If so, how will it be used
to do continuous (or at least near continuous) measurements, with-
out requiring the user to continually visit a site. Injecting Fathom
into a popular webpage such as Google Maps is not a viable option,
as that may need changes to the server.

While I think allowing measurements from the browser (similar
to Netalyzer) itself is useful, I am not sure I buy the motivation
about making deployability easier.



Comments to authors: Other researchers have explored the topic
of extending javascript APIs to have more control. Please see refer-
ence ”Rivet: Browser-agnostic Remote Debugging for Web Appli-
cation”. It will be useful to explain why Fathom is architecturally
different from Rivet.

It appears that some of the more interesting aspects of Fathom,
which allows it to do low level socket I/O can be currently realized
only on Firefox. Can the authors explain how much effort will go
into making this possible on other browsers?

The authors claim that the Fathom’s overhead is not additive as
javascript execution does not block resource loading. While this
is true, javascript execution is infact a huge bottleneck. It stalls the
changes to the DOM tree and newer resources cannot be fetched un-
til the script is executed. It appears that this does not affect the over-
head of the web pages that the authors test, but I don’t know that
this will not affect the overhead of *any* web page. Specifically,
although the authors claim that they test Fathom with web pages
with diverse javascript complexity, they do not quantify/explain this
complexity diversity. In fact, the websites chosen are popular web
pages that are likely optimized.

In Section 5.4, paragraph 2, the authors mention the use of
Chrome threads But I thought Fathom is implemented in Firefox.

I am not sure how easy it is for users to verify the code that ex-
perimenters install. Is there an easy way to let users know all of the
privileges that that javascript or the web page can access. I realize
that this problem exists even when users download experiment soft-
ware. But since the authors discuss a lot about security, I will be
interested in seeing how exactly the user privileges are presented,
for it to be easily understandable Similarly, how does a client set its
policies?

The writing is often grandiose and long-winded. This makes
reading harder. For example, ”We begin my framing desiderata for
a ..”, ”Fathom has a potential to flourish where other measurement
systems have floundered”, etc. Comments to PC(hidden from au-
thors) between 2 and 3. I said 3 because I am not very familiar with
this topic. My main concern was with respect how experimenters
will use Fathom to conduct experiments.

Reviewer #5
Summary: The paper introduces a browser-based measurement
platform called Fathom for Firefox which provides an API to pro-
gram common measurement tasks in JavaScript. The authors have
implemented several measurement capabilities and have designed
the system with emphasis on security and privacy. For example,
fathom uses code signatures to trust executed scripts. Most of the
paper is about the low-level design and implementation details of
the platform. In addition, the paper shows that fathom imposes less
than 3% overhead in page load times. Finally, the paper analyzes a
number of case studies. In particular, they report that it was much
easier to implement Netalyzr scripts in fathom than in JavaScript.
The authors also implemented a feature for debugging web access
failures only in 400 LOC and a useful extension for Google maps
that uses fathom to debug connectivity problems.

Strengths: Fathom is indeed a very useful tool that the authors to
their credit made available to the community.

Weaknesses: Almost the entire paper is about low-level design
and implementation details of a Firefox extension, which I found
boring.

Comments to authors: I liked the code signing feature of
Fathom. It was a bit disappointing to see later on that you have
not implemented this feature yet.

How much cross-traffic does iperf generate? It was interesting to
see that cross-traffic has a significant impact on the accuracy of the
timestamps.

How is the baseline value used in the Google maps case study
determined? It seems that the authors use the metrics from the 20
first sessions, but this was not entirely clear.

PC discussion summary: The reviewers unanimously supported
accepting this paper, but wanted the authors to adjust the text of the
paper to accommodate concerns mentioned in the reviews, e.g., list
of measurements that websites cannot perform themselves today
but that Fathom allows, how the default config supports user secu-
rity/privacy, incentives for users to install the extension, limitations
of architecture.

Response from the Authors
In response to the reviewer’s comments, we have made the follow-
ing changes:

• We have added the evaluation specifics the reviewers have re-
quested.

• We have expanded the Discussion with a treatment of incen-
tives for adoption and support for long-running experiments.

• We have stressed the limitations the Fathom API puts in place
to prevent deeply invasive monitoring as suggested by re-
viewer #1.

• We have strengthened the web site operator use case by clari-
fying specific capabilities Fathom enables in this context.

• We have clarified various technical details e.g. regarding
Chrome workers, Firefox availability on Android, etc.


