Detecting DNS Root Manipulation

Ben Jones¹

Nick Feamster¹, Vern Paxson², Nicholas Weaver^{2,3}, and Mark Allman²

Princeton¹ ICSI² Berkeley³ April 1, 2016

Motivation

- DNS is critical infrastructure
 - The Internet needs DNS
 - The DNS root is part of this infrastructure
- But can users talk to the real DNS root?
 - Implications for security and Internet governance

What is the DNS root?

- DNS root is top of hierarchy
- 13 logical servers
- Servers anycasted to varying degrees
 - L root has 144 instances
 - B root has one instance

Do we care about unauthorized roots?

- We care because DNSSEC is not enough
 DNSSEC only provides integrity, not availability
- **Censorship** is an attack on availability

Countries can and do attack DNS

- Masquerading roots affect Internet
 Governance
 - Countries could create their own version of DNS

What are we looking for?

ISP or National Internet

Problem Statement

• Problem:

– Can users talk to the real DNS root?

- Solution:
 - Collect data from a large set of users
 - Look for anomalous response times and server identities
 - Focus on B root because there is only 1 instance

Outline

- Motivation
- Dataset and Methods
- Results

Dataset RIPE Atlas

Measurements	Dates	Manipulation that can be Detected
Ping	July 6-13, 2014	Proxies and root mirrors
HOSTNAME.BIND	July 22, 2014	Proxies and root mirrors
Traceroutes	July 6, 2014	Root mirrors
BGP		
Measurements	Dates	Manipulation that can be Detected
RIPE RIS	July 6-13, 2014	Root mirrors
RouteViews	July 7, 2014	Root mirrors

Methods

- Response time
 - Did the response beat the speed of light?
 - Use RIPE Atlas pings
- Server identity
 - Is the user talking to the real root?
 - Use RIPE Atlas HOSTNAME.BIND queries, traceroutes, and BGP data

Response time

- Did the response beat the speed of light?
 - Geolocate probes with RIPE and MaxMind
 - Find the minimum RTT from a week of pings for each probe from RIPE Atlas
 - Compare all responses from a region with expected RTT and look for outliers

Server identity: HOSTNAME.BIND

- Does the server identity match B root?
 - Collect server identity and DNS response time
 - Compare HOSTNAME.BIND identity to expected value for B root
- Compare ping and DNS response times
 - Expect DNS and ping response time to be similar
 - If DNS response time is substantially lower, then DNS proxy in use

Server identity: traceroutes

- Hypothesis: root mirrors may have different last hop (Penultimate Router or PR)
 - Extract and compare the last hop/ PR from traceroutes

Server identity: traceroutes cont.

- Hypothesis: an ISP may redirect multiple root addresses to the same instance
 - Compare the similarity in paths to different roots

Measurement Probe

Server identity: BGP

- What if an ISP tried used BGP to redirect to their root mirror?
 - What if their route was propagated?
- Is anyone doing a prefix hijack on B root?
 - Collected RIBS from RouteViews and updates and RIBs from RIPE RIS
 - Looked for unexpected announcements for B root's prefix

Outline

- Motivation
- Dataset and Methods
- Results

Comparing HOSTNAME.BIND responses

- We saw 11 anomalous responses
 - B root responses have the form *b[0-9]*
 - 3 responses with no answer, 3 with name of ISP, and 5 other responses
- What is the purpose of the DNS proxy?
 - Servers identifying with the ISP may be intended to improve performance
 - Other servers appear to be placed by end user,
 e.g. in one ISP, 1/4 probes had a DNS proxy

Detecting DNS proxies

The outlier with a much smaller DNS response time is a DNS proxy

Detecting unauthorized roots

The outlier with a much smaller ping time is a DNS root mirror

Detecting root mirrors is not easy

Results summary

Analysis Method	Manipulation Found
HOSTNAME.BIND	10 DNS proxies and 1 root mirror
DNS and ping response time	10 DNS proxies
Ping response time	1 root mirror
Traceroute penultimate routers	No evidence of manipulation
Traceroute path sharing	No evidence of shared paths between roots
BGP hijack analysis	No evidence of hijacks

Conclusion

- Addressed important research question: DNS root manipulation
- Developed novel measurement techniques
- Analyzed data from RIPE Atlas to find 10 DNS proxies and 1 root mirror
- Ben Jones: bj6@cs.princeton.edu

Root mirror pings

