
Satellite Network Performance Measurements Using
Simulated Multi-User Internet Traffic

Hans Kruse
 J. Warren McClure School of Communication Systems Management, Ohio

University; hkruse1@ohiou.edu

Mark Allman
NASA Lewis Research Center/Sterling Software; mallman@lerc.nasa.gov

 Jim Griner,
NASA Lewis Research Center; jgriner@lerc.nasa.gov

Shawn Ostermann
 School of Electrical Engineering and Computer Science, Ohio University;

ostermann@cs.ohiou.edu

Eric Helvey
Lucent Technologies; helver@alliances.org

Abstract

As a number of diverse satellite systems (both Low Earth Orbit and
Geostationary systems) are being designed and deployed, it becomes
increasingly important to be able to test these systems under realistic traffic
loads.  While software simulations can provide valuable input into the system
design process, it is crucial that the physical system be tested so that actual
network devices can be employed and tuned.  These tests need to utilize traffic
patterns that closely mirror the expected user load, without the need to actually
deploy an end-user network for the test.  In this paper, we present trafgen.
trafgen uses statistical information about the characteristics of sampled network
traffic to emulate the same type of traffic over the test network.  This paper
compares sampled terrestrial network traffic with emulated satellite network
traffic over the NASA ACTS satellite.

Introduction

When designing and deploying new network technologies and infrastructures,

designers must be able to test the characteristics of the new system under a

realistic load.  Although software simulation of the system can provide valuable

information about the expected system characteristics and point out problems

early in the design process, it's extremely difficult to correctly model all the

subtleties of a working network and its usage patterns.  A complementary

approach that often proves beneficial is to test the new network (or a subset

thereof) under actual traffic.  Unfortunately, it's often difficult to generate

suitably-accurate network traffic to conduct such tests, particularly when that

traffic is the product of the interactive behavior of many users.

In this paper we present trafgen [5], a software system capable of creating

TCP/IP traffic flows that statistically mirror those of an observed network.

Trafgen takes as input the traffic characteristics of a network with usage

patterns similar to the ones expected for the network to be tested.  trafgen then

randomly initiates TCP-based data flows that reproduce the input pattern,

traffic types, and connection data sizes of the measured network, subject to an

overall scaling factor.  We describe here a system which can replicate a

network of interest, provided that a suitable description of the expected traffic

patterns can be obtained.

This paper describes a preliminary series of experiments run over the NASA

ACTS satellite network.  We gathered network statistics from an actual Internet

Service Provider and built a version of trafgen which emulates this traffic.  We

then conducted a series of experiments at different multiples of the sampled



traffic load over the satellite network to test the behavior of trafgen and verify

that it preserves the characteristics of the original terrestrial traffic.  The

following sections describe the trafgen program, the TCP traffic library tcplib

[4] on which it is built, the satellite network that we constructed to test the

program, the experiments that we conducted, and an analysis of the results.

How Trafgen Models a Network

A single trafgen program is able to model a network in which TCP data is

generated by a computer running trafgen and absorbed by a second computer.

A simple example of this is seen in Figure 1.

Computer  A
Trafgen

Computer  B
Discard

Data

Network

Figure 1: A simple network model using trafgen

trafgen does not directly model bi-directional communications such as the

request-response nature of HTTP connections.  However, trafgen can model the

aggregate behavior of many such conversations by generating data that

correctly emulates the characteristics of both the requests and responses.  If the

network over which trafgen is running is a shared medium (as in Ethernet in

which the requests and responses would travel over the same physical channel),

a single trafgen program can emulate both the requests and responses.

However, in most wide-area network links the traffic flow in one direction uses

a separate channel than the traffic in the reverse direction. This is true for the

satellite network used in the experiments reported in this paper. For these

networks it is necessary to have an instance of trafgen at both ends of the

network to emulate requests and responses originating at either end of the

media, as shown in figure 2.

Computer  A
Trafgen

Computer  B
Discard

Data

Network

Computer  C
Discard

Computer  D
Trafgen

Data

Figure 2: Using trafgen to independently model both sides of a bidirectional
traffic flow

The Tcplib Library

The first step in using trafgen is to determine what network conditions are to be

emulated.  The input to trafgen is a set of traffic characteristic histograms for

tcplib [4].  The original tcplib library gathered statistics about the application

protocols FTP[10], NNTP[6], SMTP[11], TELNET[9], and PHONE (the

application protocol PHONE is no longer widely used and was not modeled).

Missing from this list, but a large presence on modern networks, was HTTP[1],

which we added to the library.  We also added information on connection



interarrival times. Our modified version of tcplib uses the following network

characteristics:

conv.conv_time Conversation Interarrival Time, the
time from the beginning of one
connection to the beginning of the
next

breakdown Percentage of connections from each
of the applications

ftp.ctlsize The total number of bytes in an FTP
control connection

ftp.itemsize The total number of bytes in a single
FTP file transfer

ftp.nitems The number of file transfers initiated
from a single FTP control connection

http.itemsize The number of bytes in an HTTP
connection

nntp.itemsize The number of bytes in an NNTP
connection

nntp.nitems The number of transfers in an NNTP
connection

smtp.itemsize The number of bytes in an SMTP
connection

telnet.duration The length of time that the TELNET
connection exists

telnet.pktsize The size of a single TELNET packet
telnet.interarrival The time between successive

TELNET packets
Table 1

Each of these data sets is modeled as a cumulative probability table.  For

example, a portion of the telnet duration table is given in Table 2; 17% of the

connections (35 connections) had duration between 100ms and 500ms, 24% of

the connections (49 connections) had a duration between 100ms and 600ms,

etc.  The longest connection lasted 4823.1 seconds.

Duration (ms) % Conversations Running Sum Counts
100 0.1724 35 35
500 0.2414 49 14
600 0.3498 71 22
700 0.4089 83 12
800 0.4138 84 1
1000 0.4187 85 1
…
4800300 0.9951 202 1
4823100 1.0000 203 1

Table 2

A portion of the TCPLIB input distribution for Telnet conversation lengths.

Using a pseudo-random number generator, the tcplib library provides

representative samples from this distribution using the probabilities given.

Obtaining Tcplib Source Data

Historical tcplib-style data is widely available.  However, because the purpose

of our experiments was to model current networks, we needed current statistics.

To accomplish this in our work, we identified a local Internet Service Provider

that was willing to allow us to collect packet headers.

The network that was emulated for the experiments presented in this paper was

NewWave Internet in South Charleston, West Virginia, which provided us with

several large tcpdump-format trace files from various times of the day.  For this



paper, we used a trace file collected starting at 11:15pm (a typically busy time

of day for this ISP) on Feb 4th, 1998.  The file contained 2.9 million packets

spanning an hour and 20 minutes.  This data file was divided into two data

sets: data flowing into the ISP from the Internet and data flowing out of the ISP

to the Internet.  The “incoming” data was used to drive the trafgen emulation at

one end of the satellite link and the “outgoing” data was used to drive the other

end of the link.

We captured network packets using tcpdump[7] at various times of the day and

then analyzed those packet traces to generate tcplib-style data tables. To

generate tcplib data tables from the source data, we wrote a module for

tcptrace[8] that can quickly analyze large packet traces and generate the

necessary data.  For example, from the packet trace mentioned above, the

subset of 27,000 connections initiated from inside the ISP can be converted to

tcplib data in about 50 seconds on a current-generation Sun Sparc Ultra-2

workstation.

Once a set of tcplib data is obtained, a version of the tcplib library is compiled

against this data and then linked against the trafgen program to emulate a

particular set of network conditions.

How Trafgen Models Network Traffic

The trafgen main program loop is an infinite loop as shown below:

trafgen:
    loop forever {

/* ask what type of connection to run next */

switch (next_connection_type()) {
/* create a thread to make one connection

*/
ftp:    MakeThread(doFTP());
http:   MakeThread(doHTTP());
nntp:   MakeThread(doNNTP());
smtp:   MakeThread(doSMTP());
telnet: MakeThread(doTELNET());

}

/* get a conversation interarrival time sample
and wait */

sleep(conv.conv_time());
    }
trafgen repeatedly asks tcplib for the next type of connection to emulate.  It then

creates a thread1 to handle that new connection.  Finally, it sleeps (delays) for

an amount of time determined by tcplib to be an appropriate conversation

interarrival time.

trafgen uses the same model for both SMTP and HTTP.  Each connection

consists of a single burst of data.  The TCP protocol sends the data as quickly

as possible and then closes the connection.  Note that this behavior only

emulates HTTP version 1.0 without persistent connections.   The algorithms

are as follows:

doHTTP:
Send(http_itemsize());
exit;

doSMTP:
Send(smtp_itemsize());

                                                       

1 Under NetBSD we simulate threads using multiple processes.



exit;

The algorithm to emulate an NNTP connection is only slightly more complex

than HTTP and SMTP.  The NNTP protocol allows the sender to deliver

several bursts of data, which tcplib and trafgen emulate using the distributions

nntp_nitems() and nntp_itemsize() as follows:

doNNTP:
for (item = 1 .. nntp_nitems());

Send(nntp_itemsize());
exit;

Since TELNET is used primarily as an interactive protocol, it is emulated by

tcplib and trafgen by alternately sleeping and sending a (usually small) burst of

data until the connection duration has been reached.  The algorithm is as

follows:

doTELNET:
duration = telnet_duration();
while (time < duration) {

Send(telnet_pktsize());
sleep(telnet_interarrival());

}
exit;

FTP is the most complex of the protocols emulated by trafgen.   Recall that FTP

uses a control connection to initiate directory listings and file transfers and then

a separate TCP connection for each transfer of data.  The tcplib library models

the FTP control connection as a telnet connection (with the same data bursts

and quiet time) with a fixed length in bytes.  After that control interval has

completed, a file transfer is initiated on a new TCP connection whose size is

determined by tcplib.

The algorithm is as follows:

doFTP:
for (item = 1 .. ftp_nitems());

num_ctl_bytes = ftp_ctlsize();
while (num_ctl_bytes > 0) {

len = telnet_pktsize();
Send(len);
sleep(telnet_interarrival());
num_ctl_bytes -= len;

}
Send(ftp_itemsize();

}

Once trafgen has been compiled to emulate a particular traffic pattern, the

amount of traffic generated can be controlled with a single run-time parameter,

BRK.  The BRK (affectionately referred to as the “Big Red Knob”) is a

multiplier that is applied to each connection interarrival time.  When the BRK

is set to 0.5, for example, trafgen multiplies each connection interarrival time

generated by tcplib by 0.5, causing new connections to be started at twice the

rate of the source data, effectively doubling the amount of data generated

(subject to the limits of the networks and hardware involved).  Likewise, a BRK

value greater than 1 will produce fewer connections per unit time than the

source data and correspondingly less data.

Accepting Trafgen Data

While the trafgen program accomplishes the traffic generation, the experiments

require a second computer to accept the data.  Recall that trafgen models the

network by generating TCP connections containing data that only flow in one

direction (outbound from trafgen).  The computer at the other end of the



connections needs only to accept and discard the data.  Most Unix platforms

already have a standard TCP discard server. Unfortunately, this server is not

appropriate for these experiments for at least two reasons.  First, the built-in

discard server typically uses a small receive window [2] to limit data

throughput, making it inappropriate for emulating applications which transfer

large volumes of data.  Furthermore, many of these built-in servers contain a

security feature that causes them to stop accepting new connections if the

frequency of incoming connections is too high.

When designing a new discard server for these experiments, we also needed to

insure that the server would be able to accept new connections at a rate

approaching 10s or 100s of new connections per second.  This seemed to

preclude the possibility of using a new process for each new connection, as

done by the standard discard server.  The discard server that we built runs as a

single process and has been able to absorb any amount of traffic that we’ve

been able to generate (over a 10Mb Ethernet link) without placing a significant

load on the computer.

Results

For our experiment, trafgen was deployed using the NASA ACTS satellite to

provide a T1 link between two routers.  Attached to each router was an

Ethernet segment with a traffic generator and a discard server.  The generated

packet flow is captured (using tcpdump) on each Ethernet segment.  We refer to

the sampled traffic described in the previous section as the “source” traffic.

The traffic generated and recorded in the experiment is referred as “observed”

traffic.

The same analysis code used to create the source histograms is used to analyze

the observed traffic.  Figure 3 shows the cumulative probabilities for observing

FTP item sizes, for both the observed and the source traffic.  The two

distributions clearly track each other.

In order to compare a large number of these histograms, we compute the first

few moments of the distributions.  For these computations, we start with the

FTP Item Size Distribution

0

0.2

0.4

0.6

0.8

1

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Item Size(Bytes)

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
Source Observed

Figure 3: A comparison of source and observed tcplib distributions for FTP
item sizes.



distributions shown in Table 1.  The distributions contain the observable

variables, xi, and the frequency, fi, with which each value xi was found in the

recorded traffic.  The normalized frequency,

  

fi = fi
fi

i
∑

represents the probability of tcplib returning an item size between xi-1 and xi.

For this paper we report on the averages represented by each distribution, based

on this interpretation of the probabilities.  In figure 4 we show the average

values for a number of the observed distributions, plotted against the averages

obtained from the source distributions.  The results for both traffic directions

and four separate experiments of 2 hours each are shown.

If the observed distribution were to reproduce the source distribution perfectly,

the data points in Figure 4 would fall on the line labeled “ideal” in the figure.

Due to limitations in the NetBSD Unix operating system used in these

experiments, our implementation of the simulated Telnet sessions is rather

complicated; and as of yet, incomplete.  We plan to include simulated Telnet

sessions in future experiments.

We find that the observed and source averages in most cases are no more than

10% apart.  Notable exceptions are the FTP control and item sizes.  We have

examined the distributions in detail, and find that the FTP distributions for the

sampled traffic are very sparse in some regions.  The FTP itemsize distribution

in figure 3 shows this behavior  for items sizes in the range between 5000 bytes

and 800,000 bytes.  In this area the cumulative distribution is flat because there

no item sizes in this range appeared in the source traffic.  As indicated above,

tcplib chooses values in such a sparse region with the probability assigned to

the item size at the top of the sparse region, leading to a large statistical spread

of item sizes.  We are currently examining this behavior to decide if this is

indeed a desirable feature of the tcplib mechanism, or if the FTP data needs to

be augmented to better determine the source distribution for tcplib.

As described earlier, trafgen has the ability to scale the conversation

interarrival times to allow the creation of different traffic amounts.  In the

experiment, we have operated trafgen at four values of BRK, between 1.0

(which reproduces the source traffic) and 0.5 (which requests twice the source

Comparison of Source and Oberved Distributions

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Source Average Value

O
bs

er
ve

d 
A

ve
ra

ge
 V

al
ue

FTP Items Ideal FTP Control

HTTP SMTP

Figure 4: The observed average values for various tcplib distributions,
plotted as a function of the averages obtained from the source distributions.



traffic).  In figure 5, we plot the observed average conversation interarrival

times against the expected values, obtained by multiplying the average

interarrival time from the source distribution by the scaling factor.

It is apparent from this figure that trafgen correctly changes the scale of the

interarrival times.  An early object of these experiments was to determine if the

scaling of conversation interarrival times would translate into a comparable

increase in observed network traffic.  This connection is not automatic, since

trafgen hands each object to the TCP layer for transfer.  TCP’s congestion

control [2,3] combined with the channel bandwidth and the router queues will

determine the rate of packet flow.  For these experiments, the routers used

FIFO queuing, with bottleneck queues of 70 packets, which is approximately

one delay bandwidth product at a link MTU of 1500 bytes.

During each experiment, the routers connecting the Ethernet segments to the

satellite T1 circuit are queried via SNMP for basic interface statistics.  For our

comparison we determine, at various points in time, the number of octects

received on the T1 interface since the start of the experiment.  We convert this

number of octets into a cumulative data rate by dividing by the time elapsed

since the start of the experiment.  Figure 6 shows the results for 3 different

settings of the scaling factor, BRK. Over the region of circuit utilization

explored by our experiment, we conclude that the trafgen scaling mechanism

not only correctly scales the arrival of connections, but also increases the

network traffic by the same scaling factor.  These results indicate that a test

network using trafgen can be placed under a predictable load using the scaling

described in this paper.  Clearly, we expect that this scaling behavior will break

down when the generated traffic flow approaches the capacity of the network.

A study of this scaling behavior is part of the ongoing experiments.

Conclusions

In this paper we have described the implementation of trafgen, and shown how

it relates to the existing tcplib data base.  We have demonstrated that the

network traffic created by trafgen reproduces the characteristics of the tcplib

input data.  Finally, we have introduced a scaling mechanism which allows the

creation of various traffic volumes with otherwise similar characteristic.  Our

Scaling of Interarrival Times

50

100

150

200

250

300

50 100 150 200 250 300

Expected Interarrival Time (sec)

O
bs

er
ve

d 
In

te
ra

rr
iv

al
 T

im
e 

(s
ec

)

Incoming Outgoing Ideal

 Figure 5: This figure shows the observed average conversation
interarrival times against the expected values based on the BRK setting.



experimental data shows how the network traffic scales with different levels of

generated traffic.

Acknowledgements

The work reported in this paper has been supported in part through NASA

grant NCC 3-430.  Access to the NASA ACTS satellite system has been

granted under experiment number 140.

The authors gratefully acknowledge NewWave Internet which made the source

traffic data available to us.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol -
HTTP/1.0, May 1996. RFC 1945.

[2] Douglas E. Comer. Internetworking with TCP/IP Volume I, Principles,
Protocols, and Architecture. Prentice-Hall, Englewood Cliffs, New Jersey,
third edition, 1995.

[3] Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP
Volume II, Design, Implementation, and Internals. Prentice-Hall,
Englewood Cliffs, New Jersey, third edition, 1999.

[4] Peter B. Danzig and Sugih Jamin. tcplib: A library of TCP/IP traffic
characteristics. USC Networking and Distributed Systems Laboratory TR
CS-SYS-91-01, October, 1991. ftp://catarina.usc.edu/pub/jamin/tcplib.

[5] Eric Helvey. Trafgen: An Efficient Approach to Statistically Accurate
Artificial Network Traffic Generation. Master's thesis, Ohio University,
1998.

[6] Brian Kantor and Phil Lapsley. Network News Transfer Protocol,
February 1986. RFC 977.

[7] Steve McCanne, Craig Leres, and Van Jacobson. Tcpdump.
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z.

[8] Shawn Ostermann. Tcptrace. http://jarok.cs.ohiou.edu/software/tcptrace/.

[9] J. Postel and J. Reynolds. TELNET Protocol Specification, May 1983.
RFC 854.

[10] J. Postel and J. Reynolds. File Transfer Protocol (FTP), October 1985.
RFC 959.

[11] Jonathan B. Postel. Simple Mail Transfer Protocol, August 1982. RFC
821.

Network Data Transfer

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000

Elapsed Time (sec)

BRK=0.50

BRK=0.83

BRK=1

Figure 6: Cumulative data rates observed by the network routers for
different BRK settings.


