
Securing Web Content

Joakim Koskela†, Nicholas Weaver‡, Andrei Gurtov†, Mark Allman‡

†Helsinki Institute for Information Technology HIIT / Helsinki University of Technology TKK
‡International Computer Science Institute, Berkeley

ABSTRACT
Security in the WWW architecture is based on authenticat-
ing the source server and securing the data during transport
without considering the content itself. The traditional as-
sumption is that a page is as secure as the server hosting it.
However, modern web sites have often a composite structure
where components of the web page are authored by different
actors and one logical page contains components collected
from disparate servers. Applying a single security policy to
a whole page is inadequate. We introduce a new model to
protect users from web-based malware. We have developed
a new model that uses opportunistic personas to better se-
cure web content by adding integrity and accountability to
individual elements. In this paper we present the overall
design of the mechanism, as well as details derived from a
prototype of the system.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications;
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications

General Terms
Design, Security, Management

Keywords
Network architecture, HTTP design, Accountability

1. INTRODUCTION
The first web pages were simple: a bit of textual informa-

tion with embedded hyperlinks coupled with small graphics
delivered by a single server. However, modern web pages are
complex and a user’s experience of “the web” is often devel-
oped from myriad components from a variety of providers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ReArch’09, December 1, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-749-3/09/12 ...$10.00.

and systems. For instance, a simple blog post might include
(i) content from the blogger, including the posts themselves,
a set of thematic images and backgrounds, etc., (ii) content
from the blog hosting services, which could include naviga-
tional aids, logos, etc., (iii) content from third-parties as-
sociated with the blogger or the hosting service (e.g., ad-
vertisements) and (iv) content from numerous readers who
left comments to the given post. The number of actors con-
tributing to a conceptually simple “web page” is potentially
enormous. While this scenario points out the obvious flexi-
bility inherent in “the web” it also points out a problem: how
do we validate the content from various actors?

Without solid validation components of web pages—or
even the entire page—is vulnerable to a number of issues.
First, plain HTTP permits in-flight modifications to any
content (HTML, images, etc.). A recent study [8] detected
roughly 1.3% of clients from 50,000 distinct IP addresses re-
ceived a modified version of the test web page. Although
most changes were benign, there were malcode induced
changes as well as injected advertisements. Even if TLS
[6] is used to secure HTTP against in-flight tampering there
is no way to carefully validate that (say) a blog comment
purportedly from an acquaintance is legitimate or is from
an imposter, or that a syndicated advertisement does not
contain malicious content. Likewise, phishing scams count
of replicating entire web pages by copying all the content of
some well-known site in the hopes of luring users to provide
their credentials—which are then fraudulently used. TLS
can be used to validate a particular communication chan-
nel, but is not able to provide validation for the myriad of
content from various locations.

In this paper, we attempt to secure composite web page
using the general notion of opportunistic personas [3] and
the flexibility of HTML’s widely used <div> fields to secure
content. The personas notion involves each actor in the sys-
tem (or the system on their behalf) generating their own
pair of public and private cryptographic keys and using that
to sign data they send. While there is no fundamental trust
in such keys they form the platform for trust to be built via
a number of methods: direct knowledge, web-of-trust, track
record, etc. Further, such personas can be used across appli-
cations. For instance, a user might sign their blog comments
and emails with the same key and recipients can leverage two
different track records to build trust in the actor. The <div>
tag defines a division or a section in an HTML document.
It is often used to group block-elements for formatting with

CSS styles [1]. The tag supports standard attributes such as
id that can contains a unique identifier of the element and
event-based attributes that define browser behavior (e.g.,
when the user moves a mouse pointer over a specific area
of the page). Given these two building blocks we design a
mechanism whereby web pages can be secured by signatures
being applied to individual elements of a web page using a
new attribute of the <div> field.

2. SECURING CONTENT
The objective of our research is to develop a framework

for introducing accountability into the modern web, which
will create a more secure environment. While some of our
designs are quite general in nature our goal in this particu-
lar case is to introduce accountability without impinging on
the way people currently communicate and collaborate us-
ing the web. As stated in the introduction, the nature of the
web has changed significantly from its early days. Web sites
are increasingly composed of content from different actors,
and the site is only as safe as its least trusted component.
For instance, [5] shows that using bogus types for content
can be used to coax browsers into running code that at first
blush should not be present (e.g., because the code is in the
comments of a PDF file that the browser runs because it is
mis-typed). In the absence of some mechanism for account-
ability the composition of web pages from many actors has
opened a channel for malicious activity.

Because of the disparate nature of web content we take the
approach of adding accountability to the content. Further-
more, we are simply advocating an accountability framework
and leaving policy decisions about how to handle content to
users. In other words, we provide a solid foundation for a
web browser to understand which objects are coming from
which actors and which actors are expected to play a part in
the current page’s composition. However, how each object
or the overall collection of objects is treated is a policy deci-
sion for the user or their browser. We do not dictate policy,
but consider it a tussle-space for users and content providers
to deal with.

2.1 Page structure
The first aspect of securing content concerns protecting

the integrity of the overall web page, which in our framework
is done by using a site’s private key to cryptographically sign
the markup document. This signature is included in a new
HTTP header, along with the web site’s public key (which
becomes its identity). Protecting the integrity of the site
structure is not crucial for the securing the individual con-
tent components (discussed below), but only for conveying
the overall intended composition of those components. Pro-
viding over-arching page integrity is similar to the integrity
protection provided by existing technologies such as TLS.
However, integrity protection of the overall page is only the
first step of our mechanism as illustrated in the subsequent
sections.

By using an overall page layout that is concretely tied to
a given persona the web browser can act more confidently.
For instance, a browser could warn users upon entering a
new site for the first time and if this is not the first time a
user has visited the intended site it may be cause for alarm

(e.g., because the site is actually an imposter). Additionally,
a browser’s password cache could be tied to the key of the
web site and therefore the browser would not be fooled into
placing default passwords into a form that the user would
then submit.

2.2 Content components
The basis of our approach to securing individual content

components is to add cryptographic signatures to content
blocks within the web page. Different blocks can there-
fore be authored by different personas with integrity and
accountability information that directly map the content to
the author. This gives browsers and end users the ability to
enforce policy decisions on what components to render, omit-
ting possibly malicious components based on their knowledge
of the authors.

As explained in Section 1, our framework uses HTML
<div> elements as containers for these components. The
signatures are included in custom attributes of the <div> ele-
ments, making them renderable by nearly all legacy browsers
(which will ignore unknown attributes). (Note, these at-
tributes do break strict HTML conformance.)

We offer two approaches for using <div> elements. First,
the signature can be interpreted literally, meaning that the
signature is made from the actual markup within the <div>.
This ensures that the content of the <div> is precisely what
the author intended and allows for no possibility of the site
maintainer customizing the look or formatting of the con-
tent. This tradeoff may well be useful in some circumstances.
The second approach is to add the signed content as a custom
attribute to the <div>, and use it for decorating the <div>

when rendering the page. The data is provided in a safely
encoded (e.g., base64) format, which is decoded, validated
and inserted into marked locations within the <div>.

Although technologies such as Cascading Style Sheets
(CSS) provide a degree of customization without changing
the markup of a page, the second approach above gives the
maintainer a more freedom in designing the site’s look and
feel because it divorces the content from the formatting.
However, in some cases the formatting of the content is fun-
damental to the content. For instance, consider an HTML
table. In this case, the content author may well wish to
concretely impose the formatting to ensure that rows and
columns are constructed properly. Our framework treats
both options as valid and leaves the decision about which to
use to an author’s policy.

Finally, we note that signatures may or may not be in-
cluded in the main markup for external objects. In some
cases it may be trivial for the main markup to also include
a signature for an object. For instance, signatures could be
easily attached to static images that come from the same
actor as the markup. Or, content that is signed and given to
the actor serving the markup could clearly include the signa-
tures. As noted above, such signatures given integrity and
accountability benefits. In addition, such signatures allow
for a de-coupling of where the given content comes from trust
placed in that content. For instance, content that comes
from proxies or content distribution networks can be read-
ily validated. While including signatures for components is
clearly useful it is not always possible. For instance, a page

might want to include a small weather graphic from some ex-
ternal service, but will not be able to include a signature of
the current graphic because the actual content is outside the
main site’s control. Therefore, there must be an allowance
made for including components that do not have signatures.
See below for a longer discussion of “partner” sites.

2.3 Collecting content
Next we need a method for users to produce signed con-

tent suitable for the framework described above. For this,
we add browser functionality that cryptographically signs
user-submitted data to a web page (for instance via a form)
with the user’s private key (their persona). This enables the
web site to receive signed blocks of data, which it can then
re-use as content that is accountable to the originating per-
sona. Such a system requires careful planning in the web
site construction so that the submitted data will be readily
usable as content (if appropriate—which of course all form
input is not). The structure of forms and the names of input
elements need to be chosen to match the <div>s they will
ultimately reside within.

2.4 Partnerships
Web sites commonly have a number of partners, either for

purely economic reasons (advertisements) or for enhancing
the browsing experience through sharing of content. When
rendering a page which relies on these partnerships, the main
site will not be able to provide digital signatures of all the
expected content (as discussed above). Therefore, another
aspect of our approach is to be able to convey to the web
browser the identity of a partner that is expected to con-
tribute components to a given web page. These identified
partnerships are indications that within a well-scoped con-
text (the current web page) the web browser should expect
some content from some given cryptographic key. How to
treat such keys that are previously unknown is a matter of
policy. That said, our vision is that these actors are treated
independently (to a large extent). For instance, the web
browser might want to use identified partnerships as part of
their local trust assessment (but likely not to the point of
full-blown transitive trust). Finally, we note that partner-
ships could include annotations that indicate fine-grained
expectations of the partner. For instance, that the partner
should be serving static graphics and not JavaScript. This
can aid the browser in understanding how to treat or quar-
antine the content.

2.5 Trust providers
The use of opportunistic keys in our framework merely

provides a foundation on which trust can be built with-
out specifying any particular mechanism for building trust.
There are several methods that can be used to develop trust:

• Track Record: Using a peer’s track record of directly
observed good behavior can be a useful way to develop
trust. The downside of this mechanism is that boot-
strapping can be difficult and compromised peers that
were once trustworthy, but have turned malicious can
be difficult to detect.

• Peer Review: A system for reviewing peers could be
developed that let a community vouch for a particular

actor may be useful. This is akin to developing in-
dividual track records except the community develops
a communal track record. This can help individuals
bootstrap, but cedes some control to the community,
as well.

• Web-of-Trust: A global review of peers may be use-
ful, but a further scoping to web-of-trust (a la PGP)
may be useful, as well. This retains some aspect of in-
dividual control in terms of who “reviews” are coming
from, but also may not have the reach of a global pool
of reviewers.

• Trust Databases: It is possible that security and
anti-virus companies may track confirmed malicious
actors in some manner.

While we do not dictate a mechanism for developing trust
we believe the pros and cons of each of the above approaches
suggest that several will be needed.

2.6 Security policies
So far, we have only discussed different methods for gain-

ing an understanding of a content provider’s trustworthiness,
without considering how this information is used, and how it
affects the web browsing. The trustworthiness of content can
obviously run the gamut from fully trusted to completely un-
trusted. Trusted content is fairly easy to handle. However,
there are different approaches to dealing with untrusted con-
tent. The harshest option is to block untrusted content com-
pletely, not rendering or loading it at all. Although effective
against potential threats, this easily cripples the browsing
experience, rendering the web useless. A better option is to
sanitize the content by turning all or part of the markup
into plain text. As for the presentation, we could prevent
certain elements which can result in disturbing the layout of
the site, such as positioned <div>s, while allowing changes
in text color or other minor modifications. Further, func-
tional components—such as embedded JavaScript or exter-
nal Flash applications—could be either disabled completely
or allowed to run in a restricted environment. Sandboxing
such content is effective but requires close cooperation from
the run-time environment. JavaScript, due to its dynamic
nature, allows partial restrictions to be applied within the
browser. We could for instance disable popups, network ac-
cess (“Ajax”) or browser redirects. Obviously, when content
is received with an invalid signature great precaution should
be taken, preferably not rendered at all. The particulars of
how which of these restrictions are imposed and how they
are applied are policy decisions and should be set according
to the browser preferences (either set by the user or an ad-
ministrator). We stress that these policies are local and not
setable by remote web pages or components thereof.

3. IMPLEMENTATION
As part of our research, we created a prototype imple-

mentation to gain a better understanding of the feasibility,
technical challenges and usability of our model. The proto-
type was implemented as a Mozilla Firefox plugin for Linux,
which leverages a persona daemon, a system service provid-
ing the track-record database and cryptographic operations.

Our prototype model for using track records to manage
trust was simplistic. We use a single trust value recorded
for each persona and the length of the track record. As a
Firefox plugin, the development and deployment was consid-
erably easier than actually modifying the browser, but this
model did also impose restrictions which meant that all fea-
tures could not be completed. The prototype has, however,
provided a solid initial understanding of how the model we
sketched could be implemented and the technical challenges.

3.1 The persona daemon
The persona daemon acts as the proxy for the user, main-

taining a record of all the personas, identity keys, and user
encounters, as well as the user’s own persona. It was imple-
mented as a stand-alone Python-based daemon accessed by
a simple language independent interface through the D-Bus
session bus.

The functions offered by the key daemon are:
Sign (): Employs the user’s persona key to sign the given
data.
Verify (): Verifies a signature. Although this can be done
independently of the key daemon, this function streamlines
the use of different types of data normalization methods.
GetStatement (): This function provides the application
with a statement about a persona which consists of a sum-
mary of the experiences with the given persona.
Add (): Records an event or experience with a persona.
This is used to build the track record on which the user
and applications base their trust decisions in our prototype.
Each addition is accompanied by information regarding the
context of the event and how it should affect future encoun-
ters. For instance, simply reading a blog post does not in-
dicate we know or trust the author, only that we have seen
something authored by that person. Furthermore, we might
want to add remarks to the database to explicitly indicate
mistrust towards a person. Our prototype uses three param-
eters to codify our experiences. The context parameter indi-
cates the environment in which a persona was encountered
(such as web page or blog post). A trust parameter indicates
whether the experience increased, decreased or had no effect
on the trust for a given persona. Finally we encode whether
the event affected our overall knowledge of the persona, i.e.,
whether it increased our history with it (the amount of con-
tent encountered that was produced by that persona). This
does not directly affect trust, but hints of consistency and
what we can expect.

3.2 Browser implementation
Our prototype was implemented as a plugin for the Fire-

fox browser. The plugin consists of three parts; an XP-
COM1component that processes the raw HTTP streams, a
JavaScript application that alters the rendering and a small
user interface for displaying security information and for con-
trolling the security policies of the prototype.

1XPCOM (Cross Platform Component Object Model) is the
component model used by Firefox to expose much of the
functionality (as object components) of the browser to plu-
gins, and allow custom components to be added or replace
existing ones.

3.3 Page signing
We use custom HTTP headers for both indicating support

for the overall mechanism and for carrying page signatures.
Support for the scheme is indicated (both by the client and
server) with the X-OP-Supports: true HTTP header. Page
signatures are inserted in the X-OP-Signature HTTP header
(SHA-1-based RSA signatures in our prototype). Finally,
the X-OP-Key HTTP header contains the user’s public key,
base64 encoded.

The stream processor inserts these headers in every re-
quest made by the browser, signaling to supporting servers
that pages should be signed. The browser plugin, acting as
a Firefox stream decoder, verifies the page signatures before
passing the content to the renderer. The result of this verifi-
cation is stored in the instance variables of the page window,
accessible for the other components of the plugin.

The stream processor also captures and signs the data
of HTTP POSTs made by the browser to supporting sites.
These signatures are carried in the same headers as used by
the server for the page signatures.

3.4 Content processing
Our plugin alters the rendering process by executing a

JavaScript application after constructing the initial DOM
tree. This approach has flaws (allowing possible mali-
cious JavaScript or content to be loaded), but allows post-
processing of the page, and alterations similar to what a
proper implementation would do.

Our prototype supports only the second of the two meth-
ods of securing <div>s discussed in Section 2.2—by including
both the data and signatures in element attributes. Three
attributes are used: op key contains the public, op signature
contains the signature, and op data for the actual signed
data. Both the signature and key are (as in the HTTP head-
ers) base64 encoded. The data attribute contains the data as
URL-encoded key-value pairs as this is the format in which
we encode HTTP POSTs. Therefore, data posted by users
can be used unmodified in these blocks.

These <div>s were rendered by decorating the content in-
stead of completely replacing it. After verifying the signa-
ture, the plugin uses the key-value data to complete fields
within the <div>. The target elements are located by match-
ing the keys of the source data to the element identifiers
(ids). As these are page-unique, we use the parent <div>’s
ID as a prefix to create an unique namespace within the
<div>. For instance, a <div> with an ID of msg01 and a
data key title caused the renderer to replace the content of
the child element with the id msg01 title. To support bet-
ter customization of the appearance, the rendering processor
adds the result of the verification as an attribute op status
to the element. This is used to select a suitable style when
rendering. Figures 1 and 2 illustrate this process. Figure 1
displays (truncated for readability) a signed <div>, which is
rendered (when judged as trusted) as shown in Figure 2.

As only the content of certain elements is modified, it al-
lows the site maintainer to control the visual appearance.
Using the op status attribute, the site maintainer can pro-
vide a style sheet (such as the one illustrated in Figure 3)
highlighting in a site-specific manner the trustworthiness of
the content blocks.

<div id="sdiv5" class="entry"
 op_data="header=Hi&message=Testing+123"
 op_signature="OyjONQTCAR6Mv/sBjRaF.."
 op_key="LS0tLS1CRUdJTiBQVUJMSUMgS0..">
 <div>Posted 11:43:51</div>
 <div id="sdiv5_header"></div>
 <div id="sdiv5_message"></div>
</div>

Figure 1: The HTML source of a signed block.

<div id="sdiv5" class="entry"
 op_status="trusted">
 <div>Posted 11:43:51</div>
 <div id="sdiv5_header">Hi</div>
 <div id="sdiv5_message">Testing 123</div>
</div>

Figure 2: The signed block after processing.

Before rendering the data values, the plugin sanitizes the
data according to security policies. In our current prototype,
we support only full sanitation (escaping all markup) which
normally is applied to all content, although the user can
choose to bypass this from trusted personas (i.e., that have
a good trust score).

In future versions we plan a more fine-grained sanitation
process, where different elements could be neutralized de-
pending on the threat or disturbance they might cause. In
addition, embedded JavaScript could be partially sandboxed
as explained in Section 2.6.

3.5 Control interface
The control interface of our prototype is used to display

information about the current page and the signed <div>s, as
well as to control how the content is rendered. The interface
is implemented as a small popup-menu located at the bottom
status panel, showing the trust status of the current page,
similar to HTTPS indicators.

The prototype uses the key database’s statements to clas-
sify the page as being either trusted, untrusted or invalid. In
addition to this classification, the interface can display a sim-
ple human-readable description of the track record, such as
You trust this person, knowing him well (through browsing).
Although currently discrete and rudimentary, we expect to
improve the interface as well as include more advanced trust
rating based on the track record. In addition, we plan to
include methods for user’s to express rich policies (perhaps
through additional code).

The controls allows the user to block or completely hide
untrusted and invalid data blocks, and choose whether to
sanitize content from trusted personas.

3.6 External objects
Our approach to external objects (such as media files or

JavaScript source code) embedded in a page mirrors our
handling of <div>s, by adding op signature and op key at-
tributes. Due to how the page rendering in Firefox is struc-
tured, we are not able to intercept or prevent these external
objects from being loaded. However, we experimented with
post-processing images, changing how they are displayed

div.entry[op_status="trusted"] {
 background: green; font-size: large;
} div.entry[op_status="invalid"] {
 display: none;
} div.entry[op_status="untrusted"] {
 background: red; font-size: small;
}

Figure 3: A CSS style sheet declaration highlighting
the trustworthiness of the content.

based on the track record of the keys. As with <div>s, im-
ages can be hidden completely, blocked or displayed with a
warning.

3.7 Partnering
The partnering scheme was implemented with a custom

HTTP header in server responses. The server indicates the
partners by adding their persona keys in X-OP-Partner-n
(where n ≥ 0) HTTP headers.

As discussed in Section 2.4, how users should react to part-
nerships is not straightforward. Trust should not be treated
as transitive, and partnerships should be seen more as sug-
gestions, recommendations and expectations. In our proto-
type we use a policy where the partner keys are added to
the key database when encountered, but without raising the
level of trust in them (affecting only the history length).
However, within the scope of the current page, the browser
plugin gives these partners the same privileges as the page
provider, unless the partners are already mis-trusted.

This model does not provide ideal safety, but it is both fea-
sible to implement and likely to provide a fairly high degree
of safety. In future revisions, we will explore finer-grained
security policies which would allow us to indicate what to
expect from partners and assign privileges accordingly.

3.8 Server library
As our mechanism only affects the HTTP headers and

HTML content, it can be implemented on servers using
server-side scripting (without changes to the HTTP server
itself).

We created a PHP library for Apache’s HTTP server
which automates the page signing process. Applications
need only initialize the library with their private keys, and
call flush() at the end of each page transmission. The mech-
anism enables the key to be application-specific, instead of
site-specific (as in TLS).

4. RELATED WORK
Our approach is in some ways similar in spirit to data-

oriented architectural notions [4, 7]. However, while previous
work has considered such a concept in general our goal is to
build better security within the data delivery architecture
that is currently deployed.

In addition, our mechanism is similar to the scheme used
by OpenPGP to sign either whole pages or individual sec-
tions [9]. The OpenPGP mechanism presents syntax similar
to our’s for validating the integrity of external objects. How-
ever, the focus of OpenPGP is only on validating the source
and data integrity, without considering how the content is
handled. The scheme appears also too rigid (relying on the

exact HTML formatting of the data) to be easily adapted
by web applications.

Sandboxing individual HTML elements is discussed in [2]
and shares ideas with our approach. In particular, the idea
of downgrading the privileges of individual content compo-
nents. However, [2] considers only how elements could be
protected from each other and does not consider protecting
the user from the content.

5. DISCUSSION
The framework we present in this paper has the potential

to offer a more secure web environment for users, but there
are also downsides, including the additional processing re-
quired to sign and verify web pages, increases the size of
web pages and the resulting increased load on both servers
and clients. Also, the scheme may not work well with certain
types of content, such as streaming media.

On the other hand, the mechanism works well with ex-
isting protocols, making it possible for servers to simultane-
ously serve clients that support the scheme and those that
do not. Using the indicators in the HTTP request headers,
servers can select which clients are sent the secured version,
while omitting the signed version—and resulting overhead—
for clients that will not use it. Even if legacy clients do get
the secure content, the syntax is backwards-compatible and
clients will still be able to display a default, server-sanitized,
version.

Furthermore, giving the client control of the sanitation has
an interesting side-effect. Currently user input (such as blog
posts) is heavily filtered, removing elements that the site
does not explicitly understand. With our mechanism the re-
sponsibility of sanitizing and sandboxing can be shifted to
the client and therefore we can support much richer interac-
tion. Users can submit content with custom layouts, media
components and even embedded applications and as long as
the consumer trusts the content author this will be relatively
safe. A hosting provider (e.g., blog hosting service) may still
wish to sanitize content for consumers who do not advertise
the ability to understand our mechanisms.

Another feature is that as the scheme provides both in-
tegrity and accountability of the actual content, it enables
the content to be distributed in different ways. We do not
need to trust the party hosting the content, but are able
to use a wide range of distribution mechanisms from public,
untrusted, servers to peer-to-peer networks without compro-
mising either the users or content.

Overall, we believe the framework has much to offer.
There are still a number of issues that need improvement,
especially in the prototype implementation. Fine-tuning the
use of the track record and the setting of security policies
needs additional work. In addition, handling of the persona
keys is inefficient and could be improved with an OpenPGP-
like KeyId scheme. The mechanism should also be imple-
mented at a lower level in the browser to fully support all
the intended features.

6. CONCLUSIONS
Modern websites have a composite structure, often com-

bining content from multiple HTTP servers and many con-
tent authors. This opens the door to a number of threats—
such as phishing and impersonation attacks—with no easy
way to secure the content. We propose a refinement of
WWW architecture by applying the notion of opportunistic
personas with accumulated reputation tracking for securing
web page components. By permitting the content providers
and users to sign fragments of web pages with their pri-
vate key and include the public key as an attribute of <div>
tag, we can enable the browser to present trustworthy and
malicious content differently. In addition, we provide a plat-
form for identifying partners and developing custom security
policy. We have sketched the system architecture, as well
as implemented a prototype as a plugin to Firefox browser.
However, our mechanisms require refinement which we are
undertaking as part of our future work.

Acknowledgments
This research is supported by TEKES as part of the Fu-
ture Internet program of TIVIT (Finnish Strategic Centre
for Science, Technology and Innovation in the field of ICT).
In addition, this work was funded in part by NSF grants
CNS-0831780, CNS-0831535 and CNS-0433702.

7. REFERENCES
[1] Html div tag.

http://www.w3schools.com/tags/tag DIV.asp.

[2] The <module> tag. http://json.org/module.html.

[3] M. Allman, C. Kreibich, V. Paxson, R. Sommer, and
N. Weaver. The strengths of weaker identities:
opportunistic personas. In HOTSEC’07: Proceedings of
the 2nd USENIX workshop on Hot topics in security,
pages 1–6, Berkeley, CA, USA, 2007. USENIX
Association.

[4] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish. A Layered
Naming Architecture for the Internet. In ACM
SIGCOMM 2004, Portland, OR, September 2004.

[5] A. Barth, J. Caballero, and D. Song. Secure Content
Sniffing for Web Browsers or How to Stop Papers from
Reviewing Themselves. In Proc. of IEEE Security and
Privacy Symposium, May 2009.

[6] T. Dierks and E. Rescorla. Rfc 5246: The transport
layer security (tls) protocol.
http://tools.ietf.org/html/rfc5246.

[7] T. Koponen, M. Chawla, B. G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A data-oriented
(and beyond) network architecture. SIGCOMM
Comput. Commun. Rev., 37(4):181–192, 2007.

[8] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting in-flight page changes with web tripwires. In
NSDI’08: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation,
pages 31–44, Berkeley, CA, USA, 2008. USENIX
Association.

[9] J. Willingham. The pgp how’d you do that? page.
http://jim.willingham.com/pgphow4.htm.

