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Abstract— The traditional TCP congestion control scheme
often vyields limited performance due to its conservative Slow
Start algorithm, which can require many round-trip times to
reach an appropriate sending rate that well utilizes the available
capacity. A number of techniques in the literature address this
issue, but we offer a different approach that is simple yet
blunt: allow TCPs to begin transmission at whatever rate they
deem appropriate. We term this technique “Jump Start”. While
Jump Start simply removes the traditional startup phase, the
remainder of TCP’s congestion control algorithms (additive-
increase/multiplicative-decrease and timeout mechanism) remain
intact. Our approach in this paper has two components. First,
we attempt to understand the potential implications of removing
TCP’s startup phase. Second, we step back and attempt to
identify network characteristics and techniques that may make
Jump Start amenable to real networks. This paper represents an
initial exploration of these ideas.

I. INTRODUCTION

Traditionally, TCP congestion control begins transmission
by probing for an appropriate sending rate using the Slow
Start algorithm [1]. The general notion of Slow Start is to
begin transmission with a conservative sending rate that is
assumed to be appropriate for the vast majority of network
paths (a handful of segments per round-trip time). From this
modest starting point, Slow Start increases the number of
segments transmitted, which is controlled by a congestion
window (cwnd), during each subsequent round-trip time (RTT)
by a factor of two'. Therefore, if a connection needs a cwnd
of NV segments to fully utilize the network capacity, Slow Start
will take logo N round-trip times to build an appropriate cwnd.
Finally, an application must send 2N segments worth of data
to fully open cwnd, meaning that transfers of less than 2V
will be doomed to suboptimal performance.

High-bandwidth and long-delay both increase the size of N
required to fully utilize the available capacity across a path.
As N increases, Slow Start becomes a time consuming and
data intensive process to determine the appropriate sending
rate. For instance, a TCP connection using 1500 byte packets
over a 10 Gbps network path with a RTT of 100 msec will
require a cwnd of over 83,000 segments. Even with Slow
Start’s exponential growth such a connection will require
over 1.5 seconds to start fully using the available capacity.
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1Depending on whether the receiver uses delayed acknowledgments [2] and
particulars of how the sender increases the cwnd, the rate the cwnd increases
may not be two. For the clarity of our high-level discussion here we ignore
this possible difference and assume the increase factor is two.

In addition, over 100 MB of data will be required to be
transmitted before the cwnd is fully opened.

When a connection has little data to send, such that the data
fits in the standard initial cwnd, Slow Start is not a hindrance to
performance. Likewise, when a connection transmits a massive
amount of data over the course of a long period of time,
Slow Start becomes a small transient at the beginning of
the connection and does not have a large impact on overall
performance. Therefore, faster startup mainly aids medium-
sized connections that take normal TCP longer than one RTT,
but not so long as to relegate Slow Start to a small transient
of the overall connection.

Three broad categories of mechanisms have been introduced
to mitigate the performance problems caused by TCP’s slow
startup phase. The first category includes schemes that at-
tempt to use bandwidth estimation techniques to assess the
available capacity of the network path without consuming
the capacity. For instance, in the Swift-Start algorithm [3] a
volley of 4 segments is initially transmitted into the network
and the packet-pair approach is used to estimate the available
bottleneck capacity, B. TCP then uses B and the measured
RTT to form an estimate for the appropriate cwnd size. [4]
shows that network dynamics can often skew these kinds of
bandwidth estimates.

The second category of mechanisms shares path capacity
information between connections such that all connections
do not have to probe the network path to independently
determine an appropriate sending rate. A connection that
starts between two peers that have not communicated recently
and therefore have no recent path state history will use the
standard Slow Start mechanism. However, parallel connections
or connections that start soon after another connection to the
peer has ended can leverage the previously learned cwnd to
short-circuit Slow Start. The Congestion Manager [5] is an
example of such a mechanism.

The last category consists of mechanisms that use help from
each network element along the path to derive a sending rate
that is explicitly allowed by the entire path. Quick-Start [6]
calls for the advertisement of a desired sending rate in the
SYN segment. Each hop in the path then must either agree
to the desired rate or reduce the rate to an agreeable value.
When each router checks off on a rate then the TCP sender
can immediately increase cwnd to the given level. When one
or more routers on the path do not agree to a rate the TCP
sender must use standard Slow Start. (A router that does not
understand the option is assumed to veto the use of a larger-
than-standard initial cwnd.)



These schemes all have their pros and cons. In this paper,
we present a different approach to the problem. We introduce
Jump Start in which a startup phase is not required and a
host can begin transmission at an arbitrary rate, with the
major caveat that the remainder of TCP’s congestion control
algorithms remain in place. In some sense, Jump Start and
Quick Start are at opposite ends of a spectrum. On the one
end, Jump Start is a simple scheme that makes an assumption
that the network can handle traffic without carefully probing
for an appropriate sending rate. On the other end of the
spectrum, Quick Start carefully checks with all elements along
the network path for explicit permission to begin transmission
with a large sending rate.

In § 1l we outline Jump Start in a bit more detail. Obviously,
Jump Start takes the risk of using a large initial sending rate
which may cause problems for the connection itself and for
traffic competing for resources at congested routers. As we
show in § Il there are clearly scenarios whereby Jump Start
aids performance and others whereby Jump Start can aggravate
an already congested network by causing more harm than
good. In § IV we take a step back and look at several factors
that may mitigate some of the problems that are possible when
using Jump Start. This paper presents an initial discussion of
Jump Start. Our goal is to gain community feedback while
undertaking a more rigorous and well-rounded evaluation of
the proposal. Therefore, the careful reader will find many
lacking aspects of the evaluation, as noted in § V.

Il. JUMP START

Jump Start is a sender-side change to TCP’s congestion
control algorithms?. After the three-way handshake the TCP
determines how many data packets, D, can be transmitted
as the minimum of the receiver’s advertised window and the
amount of data queued locally for transmission. As a matter
of course, the sender takes an RTT sample from the three-way
handshake. The sender then paces the D packets over the first
RTT. Jump Start terminates when all D packets are transmitted
or when an acknowledgment (ACK) arrives (indicating an RTT
has passed). At this point the TCP switches to TCP’s normal
congestion control algorithms (if more data is available to
send), including normal timeout handling mechanisms.

In the case of loss from the first RTT of data transmission,
standard loss recovery algorithms are used. In our simula-
tions, we use a scheme based on selective acknowledgments
(SACKS) [7]. Upon loss detection the congestion window
(cwnd) is halved, per normal TCP [1]. However, at the end of
loss recovery, we further reduce the cwnd to reflect the possible
over-aggressiveness of Jump Start. During loss recovery we
count the number of retransmissions, R. At the end of loss
recovery we set cwnd = 252, which is roughly half of the
load the network was able to support. This is akin to the TCP’s
normal response during congestion avoidance when the load
imposed on the network is slightly too much (due to linear
cwnd growth) at which point the cwnd is halved.

2We discuss Jump Start in terms of TCP, but since it is an algorithmic
change the results should be applicable to other transports that use TCP-like
algorithms.

62

I1l. A FIRST LOOK

We take a first look at Jump Start in this section to show
both that it can be a benefit to performance and then that it
can be a detriment. The simulation results presented in this
section are meant to be illustrative but not comprehensive.
We are currently working on a well-rounded study of Jump
Start that involves a variety of networks and traffic models.
However, within the space constraints of this paper our goal
is to simply illustrate some of the pros and cons to start a
discussion on TCP startup. Our intention is not to over-claim
these results as being the final word on the topic.

A. Simulation Setup

We constructed a simulation using ns-2 that uses a dumbbell
topology with an RTT of 64 msec and a bottleneck capacity of
5 Mbps. The routers at the bottleneck employ drop-tail queuing
with a queue size of 60 packets (a common default, confirmed
by [8]). The simulations consist of either all Slow Start or all
Jump Start traffic. The Slow Start connections use an initial
window of 3 packets, per [9]. The Jump Start connections
send their entire transfer (number of packets configured by
the experiments) in their first RTT. An advertised window
of 10,000 packets is employed and never comes into play
in our simulations. The sackl TCP variant is used for these
simulations. We use 1500 byte packets, so each packet can
hold up to 1460 bytes of data.

B. Benefits

Our first simulations involve a single flow to illustrate that
Jump Start indeed can offer performance improvements. Fig-
ure 1 shows the percent improvement (in terms of connection
duration) for Jump Start as a function of the transfer size.
When the transfer size is 1 packet both schemes perform
identically. When the transfer size is 2 packets Slow Start
performs better than Jump Start simply because Jump Start
paces out the two packets while Slow Start simply transmits
them as soon as possible. For transfer sizes over 2 packets
we see 10-40+% performance improvement from using Jump
Start*. No drops occurred in any of these simulations.

C. Drawbacks

We next turn our attention to a congested situation where
Jump Start reduces the performance of the traffic on the
network. We base another set of simulations on the framework
outlined above with several changes. We connect 100 nodes
to each side of the 5 Mbps bottleneck with 50 Mbps links.
Each node acts both as a source and as a sink, and one
TCP connection is set up between a source and sink pair
from alternating sides of the bottleneck link. Each of the 200
connections sends 200 packets. TCP connections are started

3This suggests a straightforward change to Jump Start by not using pacing
when the initial burst of traffic is allowed by TCP’s standard initial window
size of 4380 bytes [9]. Given the space constraints of this paper we do not
further consider this small refinement.

4Increasing the transfer size to the next power-of-2 causes Slow Start to
outperform Jump Start. We purposely leave discussions of the drawbacks of
Jump Start to the next subsection.
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Fig. 1. Percent improvement for Jump Start when compared to Slow Start

across a variety of transfer sizes.

on each node at varying periodic intervals (as shown in the
plots below). The interval between connections controls the
amount of contention for the bottleneck capacity.

Figure 2 shows the median connection duration and drop
rates as a function of the interval between connection startup.
The plot shows that once the interval between connections is
at least 1 second, Jump Start and Slow Start perform similarly
(with the scale of the plot obscuring Jump Start’s ~7%
performance boost in these no-contention cases). The results
show that standard Slow Start enjoys better performance in
cases where there are multiple connections contending for
resources. The plot of drop rates shows the reason. Even in
the case where there is no contention from other connections,
Jump Start’s loss rate is over four times that of Slow Start. We
observe that both Slow Start and Jump Start can burst enough
to cause overflow even in the absence of contention between
connections and that Jump Start aggravates this condition.
When there is contention between connections Jump Start’s
loss rate is roughly twice that experienced by Slow Start,
again explaining the performance disparity. These simulations
confirm our intuition that Jump Start can degrade individual
connection’s performance and also increase the overall con-
gestion level on the network.

D. Summary

The simulations presented in this section are not meant to
represent a complete and well-rounded set of experiments.
Rather, these simulations serve to illustrate that Jump Start
can both increase and decrease performance, as intuition would
suggest. Our future work includes a more well-rounded evalu-
ation of Jump Start with different network setups (bandwidths,
RTTs, number of congested gateways, etc.), as well as more
realistic traffic patterns.

1V. COPING

In this section, we discuss a humber of ways in which the
network already does or might cope with TCPs that use Jump
Start. None of the items discussed in this section fully mitigate
the potential impact of Jump Start, but taken together they
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Fig. 2. Slow Start vs. Jump Start when the amount of contention for the

bottleneck capacity varies.

may offer a glimmer of hope that more aggressive startup is
feasible.

A. Traffic is Heavy-Tailed

The first observation we make about coping with Jump Start
is the well-founded notion that traffic is heavy tailed. That is,
most of the connections cannot place a large burden on the
network because they transfer only a small amount of data.
As a data point we analyzed traffic from ICSI’s border for
one day (July 27, 2006). We observed over 3.1 million TCP
connections over the course of the 24 hour period. Of these,
roughly 1.2 million were valid connections (as opposed to
scans, probes and backscatter for which no connection was
actually established). We used the RTT from the three-way
handshake and the total amount of data sent in each direction
to form a Jump Start rate for each direction of the 1.2 million
connections®. This is the rate required to transmit the entire
transfer in one RTT. From the 1.2 million connections we

5This is the worst-case in that it assumes that when data transmission starts
all the data that will be transferred is available to be sent.



obtained almost 2.3 million rates (meaning that roughly 100K
connections did not send data in one of the directions).
Of these, only 169K transfers required an initial congestion
window of more than the 4380 bytes provided by [9]. In other
words, roughly 7.4% of the connections at ICSI’s border are
currently controlled by the initial congestion window. This
shows that the fraction of connections that would benefit from
faster startup is small, but also that if Jump Start were used
the fraction of connections imposing a higher load would also
be small.

Figure 3 plots the rates of the 169K connections that could
make use of Jump Start as a function of the amount of
data transmitted on the given connection®. The bulk of the
connections either (¢) send at less than 10 Mbps or (i7) send
less than 1 MB of data. As a point of comparison, consider that
a normal connection using an initial window of 4,380 bytes
over a path with an RTT of 50 msec would transmit at roughly
80 KB/second in the absence of cwnd growth. A sizable
fraction of the points in the plot lie below 80 KB/second.
Especially when the RTT is large, the initial sending rate of
Jump Start can remain reasonable.
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Fig. 3. Observed initial Jump Start rates as a function of transfer size at
ICSI’s border.

We next turn our attention to simulations that are meant to
further explore Jump Start’s behavior under a more realistic
traffic model than used in § 111. We simulate typical HTTP 1.0
transactions over a simple dumbbell topology that consists of
one client and one server. We use the same settings outlined
in § 11 except that we use a 10 Mbps bottleneck. We use ns-
2’s web traffic generator with parameters set to approximate
reality as reported in [10]. Specifically, our configuration uses
50 web sessions consisting of 5 web pages per session on
average. The size of each web page follows the Pareto-I1 distri-
bution with an average of 4 web objects and a shape parameter
of 1.5. The inter-page time is exponentially distributed with
an average of 500 msec. The size of each web object follows
the Pareto-11 distribution with an average of 4 packets and a
shape parameter of 1.2. The inter-object time is exponentially

6The plot actually shows a sample of the data which is obtained by plotting
every fourth connection in the dataset. This is done to reduce the size of the
plot and visually does not change the character of the plot.

distributed with an average size of 50 msec. The time interval
between web sessions is set to 5 msec.

Figure 4 shows the distribution of connection duration and
per-connection drop rates for the Web traffic experiments.
Similar to the scoping employed above, these plots are win-
nowed to connections that carry more data than would fit in a
standard TCP initial cwnd. The results show that connections
with short durations are aided by Jump Start with the 25"
percentile duration showing that Slow Start takes more than
twice as long as Jump Start. Once the connection duration
reaches approximately 1 second Slow Start and Jump Start
show similar performance. At this point a connection has been
open for roughly 16 RTTs and so has hit steady state and the
impact of the startup phase is reduced. The drop rate results
show that 10% more Jump Start connections have no loss when
compared with traditional Slow Start connections. We attribute
this to more Jump Start connections “getting out of the way”
quicker, as the distribution of connection durations shows. In
other words, the data is transferred quickly, and while the data
consumes network resources, it does not spread the resource
usage out over a lengthy period of time. As a result, congestion
does not last as long with Jump Start, where, in some cases,
the queue can absorb Jump Start’s burst. In general, however,
Jump Start does show a higher loss rate than Slow Start, in
many cases increasing the loss rate by approximately two-fold.
This is expected since many studies have shown the loss rate
to be correlated with the size of the initial window (e.g., [11]).

While more aggressiveness leads to a higher loss rate, it
does not necessarily yield lower performance in these simula-
tions. The reason for this lies in Jump Start’s aggressiveness,
which puts the connection “ahead” of Slow Start. For instance,
consider Jump Start sending a stream of 100 segments in the
first RTT of a connection into a network with a loss rate of
50%. Even though it will take TCP a bit of time to retransmit
50 segments, successfully transmitting 50 segments would
require 4-5 RTTs in Slow Start and so Jump Start is well
ahead.

B. Active Queue Mamanegment

Another way the network could cope with end hosts using
more aggressive initial sending rates is to employ active queue
management (AQM). [12] advocates the use of AQM, with one
of the reasons being to better absorb bursts of traffic. Using
AQM, a network that operates with small average queue sizes
even when congested would be in a better position to absorb
Jump Start induced bursts of traffic and protect competing
connections, even if the burst was inappropriately large. AQM
schemes would be especially useful if they calculate a flow’s
drop probability based on the flow’s arrival rate (e.g., CHOKe

[13]).

C. Edge Bandwidth Limits

Even though Jump Start can be overly aggressive, the
network is set up in such a way that any congestion caused by
Jump Start is likely to occur towards the edge of the network.
For instance, the higher rates given in Figure 3 would not all
be possible given that ICSI’s link to the broader network is
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Fig. 4. Distributions of connection duration and drop rates for Slow Start vs. Jump Start using a web traffic load.

100 Mbps. Commonly held wisdom is that backbone networks
are massively over-provisioned such that being overwhelmed
by the edges would be difficult and would require many hosts
from many points in the network to be sending at high-rates
simultaneously. Jump Start is a one RTT per connection event
the backbones would likely absorb. By way of evidence, [14]
uses the sending pattern of the Witty worm (observed at
two network telescopes) to show the effective bandwidths of
infected hosts. The paper shows that 75% of the infected hosts
have an effective bandwidth of at most 1 Mbps. So, it may be
that Jump Start’s impact will largely be felt locally—where it
may be more reasonably dealt with—as opposed to globally.

In addition, a receiver can control the amount of data a
sender can transmit in the initial window of data via the
advertised window. Therefore, if the receiver has some notion
of the maximum bandwidth on its edge of the network, the
advertised window setting could be set to some reasonable
initial value. As a data point, Figure 5 shows the distribution
of the rate reduction that would be imposed by taking into
account the advertised window in the 169K connections that
could benefit from using Jump Start in the ICSI data described
above. We note that almost 75% of the connections would not
be hampered by the advertised window. Of the rate reductions
that we observe, however, some are quite large—with over
13% of the reductions being over 1 megabyte/second.

D. Policy

Just because Jump Start frees an end system from the
standard initial cwnd and Slow Start procedure, it does not
mean end hosts must transmit data as fast as possible. In
particular, busy servers and networks may want to cap the
data rate they wish to initially allocate to any one particular
flow, as a policy decision. For instance, for the ICSI case noted
above a policy could be implemented that no connection could
initially send at more than 500 Kbps (or 0.5% of the bandwidth
from ICSI to its service provider).

In addition to basing policy decisions on sending rates,
policy could be implemented in terms of a target transmission
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Fig. 5. Distribution of the rate reduction if the advertised window is taken

into account.

time. For instance, an application may request that data be
transmitted within 500 msec. The TCP could then combine
this goal with the RTT measurement taken while setting up
the connection to choose an initial congestion window that
would meet the given target.

E. End System Hints

An additional way of coping with Jump Start would be to
have end systems using Jump Start (i.e., sending above the
RFC 3390 [9] mandated initial cwnd) to flag the packets in
the initial window as such. This would allow congested routers
along the path to preferentially drop packets from large initial
congestion windows. It seems counter-intuitive to advertise
a feature that may ultimately lead to more packet drops for
the given flow. However, maybe by highlighting this behavior
and giving the network additional insight, Jump Start would
be viable on a wide scale because competing flows could be
protected.



F. Congestion Control

We also stress that Jump Start does not eliminate end
host congestion control. While allowing for an arbitrary ini-
tial sending rate, the remainder of TCP’s additive-increase
multiplicative-decrease congestion control system remains in
place to govern steady-state transmission behavior. In addition,
we do not change the response to a retransmission timeout,
which still collapses the congestion window to 1 segment and
then uses the Slow Start algorithm. Even if a connection is
overly aggressive in its first RTT of data transmission, this
aggressiveness will not persist throughout the connection, but
will represent a transient load imposed on the path.

G. Scoped Environments

Finally, we note that Jump Start may be especially useful in
enterprise networks that have a low degree of congestion. [15]
studies one particular enterprise network and shows the avail-
able capacity is generally significantly underutilized. While
[15] is not a comprehensive study, we believe that enterprise-
level networks are often over-provisioned for the relevant
application demands. In such an environment an increase in the
initial aggressiveness of connections that transmit appreciable
amounts of data may well use spare capacity in the network
rather than unfairly competing for congested resources.

V. FUTURE WORK

The general topic of quickly using the available capacity of
a network path is getting more crucial as high delay-bandwidth
product networks and data intensive applications become more
prevalent. This paper presents an initial sketch of Jump Start,
which eliminates TCP’s startup phase. As shown, Jump Start
has its good and bad points. We offer some evidence that
indicates it may be viable. However, future work is required
to better understand the how Jump Start’s cost-benefit tradeoffs
will ultimately manifest themselves in real networks. Specific
future work includes: (i) more comprehensive experiments
(more realistic traffic patterns, a variety of network band-
widths, various RTTs, etc.), and (i7) investigation of fairness
issues with a mix of Jump Start and non-Jump Start traffic.
Such experiments will provide a much broader and deeper
view into the implications of using Jump Start. Running real-
world experiments will also be key in gaining an understanding
of Jump Start. We also note that future investigation should
consider the security impacts of Jump Start, with a particular
eye towards attackers using Jump Start to coax some server
into sending very high-rate bursts of traffic to facilitate pulsing
attacks. Finally, we stress that we are not claiming Jump Start
to be the solution, but rather a possible solution. We encourage
researchers to broadly explore alternate methods for aiding
startup over high-bandwidth and long-delay networks.
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