Resilience of Deployed TCP to Blind Attacks

Matthew Luckie, Robert Beverly, Tiange Wu, Mark Allman, kc claffy

IMC 2015, October 28th 2015

What is a Blind Attack on TCP?

• A brute-force attempt by an **off-path attacker** to disrupt an in-progress TCP connection

What is a Blind Attack on TCP?

- A brute-force attempt by an **off-path attacker** to disrupt an in-progress TCP connection
- Attack methods (RFCs 4953 and 5961):
 - **RST attack**: cause an existing TCP connection to be reset
 - SYN attack: cause an existing TCP connection to be reset
 - **Data attack**: cause an existing TCP connection to accept the attacker's data, or enter an ACK war.
- Problematic with long-lived connections (e.g. BGP, SSH) and large windows (e.g. rsync)

History

- Paul Watson: CanSecWest 2004 "Slipping in the Window"
 - Showed feasibility of a blind reset attack. RFC 793 "a reset is valid if its sequence number is in the window."
 - Larger receive windows reduce an attacker's work.
 - Attacker must guess source and destination IP addresses, and source and destination ports of victim's connections.
 - Operating systems in 2004 chose ephemeral ports sequentially from a small range.

Can complete in <1 second on 100Mbps Ethernet.

Slipping in the Window: Data "an acknowledgement value is acceptable as long as it is not acknowledging data that has not yet been sent" - RFC 793

receive window

Defenses

- Choose ephemeral ports randomly! IETF BCP 156 (2011)
- Generalized TTL Security Mechanism (GTSM)
 BGP
- TCP MD5 and Authentication Options
- Discard packets with spoofed source IP addresses at origin
- RFC 5961, August 2010:
 - strictly validate (challenge) the sequence number in RST and SYN packets
 - reduce range of valid acknowledgement numbers in Data packets

RFC 5961 defenses: RST or SYN

- **RST**: If the sequence number in a RST is in the window, receiver MUST send a **challenge ACK**
- SYN: Regardless of sequence number, send a challenge ACK
- Challenge ACK purpose: to elicit a reset with exact sequence number and confirm loss of connection

rcv.nxt = rcv.wnd = 64K

challenge ACK

What did we do?

- We implemented and used an oracle-based approach to test RFC 5961 support
 - Popular web-servers as a proxy for deployed TCP behavior of general purpose operating systems and middleboxes
 - Laboratory test of BGP routers and SDN switches
 - We tested sequence numbers in (+10) and out (-70,000) of receive window (Reset + SYN attacks)
 - We tested acknowledgement numbers **behind (-70,000)** and **ahead (+70,000)** of send window (Data attack)
- Evaluated range and strategy of OS ephemeral port selection:
 - Bro logs of communications to ICSI hosts 2005-2015
 - March 2015 Tier-I backbone link packet trace

What did we find?

- September 2015, tested webservers:
 - 22% were vulnerable to blind reset and SYN packets
 - 30% were vulnerable to blind data packets
 - 38.4% were vulnerable to at least one attack vector
- Laboratory testing of 14 routers and switches
 - I 2 were vulnerable to at least one attack vector (mostly blind data attack) that could impact BGP / SDN
- March 2015, I hour packet trace: most ephemeral ports were selected in a small range, 50% of predictable in a 2K range.
- 2005-2015: observed some evidence of an increase in ephemeral port range deployment

Testing resilience to blind reset attacks

This example shows RFC 5961 compliance

Blind reset and SYN results summary

Testing ~41K webservers, randomly selected from Alexa 1M

Result	Blind	Reset	Blind SYN		
	in out		in	out	
Accepted	3.4%	0.4%			
Reset (ack)			17.1%	0.0%	
Reset (dup-ack)	18.8% 0.6%		5.3%	1.2%	
Vulnerable	22.2%	1.0%	22.4%	1.2%	
Challenge ACK	71.4%	1.1%	37.7%	57.0%	
Ignored	5.1%	91.8%	35.9%	38.3%	
Not Vulnerable	76.5%	93.0%	73.6%	95.3%	
Parallel connection			1.1%	1.1%	
Early FIN	0.3%	3.3%	1.5%	1.6%	
No Result	1.0%	2.7%	1.3%	0.9%	
Other	I.3% 6.0%		4.0%	3.6%	

Testing resilience to blind data attacks

Broke initial request into three pieces; sent third piece second with invalid acknowledgment

Blind Data results summary

Testing ~41K webservers, randomly selected from Alexa 1M

Result	Blind Data		
	behind	ahead	
Accepted	29.6%	5.4%	
Reset (ack)	0.6%	0.6%	
Reset (dup-ack)	0.1%	0.2%	
Vulnerable	30.3%	6.2%	
ACK	37.1%	8.1%	
Ignored	29.3%	81.3%	
Not Vulnerable	66.4%	89.4%	
Parallel connection			
Early FIN	3.2%	3.7%	
No Result	0.1%	0.7%	
Other	3.3%	4.4%	

5.4% accepted data with an ack value invalid in both RFC 793 and 5961

Evidence of Middlebox protection see paper for full details

- TCP connections with an observed MSS of 1380
 - were almost never vulnerable to blind reset and SYN packets, but were vulnerable to blind data packets
 - sent challenge ACKs that arrived with a different TTL than other TCP packets in the flow
 - suggestive of middle-box protection

Ephemeral Port Selection see paper for full details

- · Goal was to evaluate port selection and range strategies
- Messy problem, no ideal set of data to examine trends with:
 - Packet captures observe subset of traffic from outside hosts
 - Hash-based port-selection (HBPS) could be confused with systems that select ports sequentially.

Ephemeral Port Selection ICSI Bro Logs

Increase in 95th percentile range 2006 - 2008

(not selection strategy, due to sparseness)

Infrastructure testing results see paper for full details

- Tested 14 BGP routers and OpenFlow switches
 - firmwares from 2004 to 2015
 - newer firmware generally does better in both ignoring packets that could have come from a blind attacker, as well as port selection strategies
- 12 were vulnerable to at least one attack
 - data injection attack is currently poorly addressed
- Implication: use GTSM and TCP MD5 where possible

Summary

- Paul Watson 2004 advice: strictly validate RST packets, choose ephemeral ports randomly
- September 2015: 38.3% of tested connections did not use best practices to reject TCP packets that could have come from off-path attacker
- Poor deployment of ephemeral port selection strategies in general population
 - Default behavior of Windows and MacOS is to choose TCP ephemeral ports sequentially
- TBIT tests for resilience to blind attacks available in scamper http://www.caida.org/tools/measurement/scamper/

Overlap of vulnerable web servers

Blind Reset: 22.2%

Blind SYN: 22.4%

Blind Data: 30.3%

We inferred 38.4% of tested systems to be vulnerable to at least one of the three attacks in September 2015

Oracle vs. Attacker

(a) Attacker Approach. We do not do this.

<Non-blind, Oracle TCP RST>

(b) Our Oracle Approach. We establish our own TCP connection and test response to packets that **could** have come from an attacker

Ephemeral Port Selection Tier-1 ISP Backbone Link

Ephemeral Port Ranges

Port Range	Size	Operating System			
1024-5000	3976	Windows XP and earlier			
		FreeBSD <= 4.11 (Jan 2005)			
		Linux <= 2.2			
49152-65535	16384	FreeBSD >= 5.0 (Jan 2003)			
		Windows Vista (Jan 2007)			
		Apple MacOS X			
		Apple IOS			
32768-61000	28232	Linux >= 2.4			
10000-65535	55535	FreeBSD >= 8.0 (Nov 2011)			

MSS values observed

Server MSS	Vulnerable Portion					
	Blind Reset	Blind SYN	Blind Data			
1460 (87.2%)	23.9%	24.7%	28.1%			
1380 (5.4%)	2.0%	0.5%	58.8%			
8961 (2.3%)	2.3%	2.3%	4.7%			
1440 (0.8%)	5.9%	4.7%	57.5%			
1436 (0.7%)	22.2%	5.8%	32.5%			

Blind attacks by inferred OS (p0f)

Operating System	Blind reset		Blind SYN		Blind data		Total
	in	out	in	out	behind	ahead	
FreeBSD 8.x	19.2%	0.5%	93.8%	56.5%	83.9%	None	0.5%
FreeBSD 9.x	8.8%	1.0%	88.1%	22.2%	54.7%	None	1.5%
Linux 2.4-2.6	87.4%	3.0%	83.6%	0.4%	54.3%	40.5%	0.6%
Linux 2.6.x	90.1%	0.9%	84.1%	None	63.2%	35.8%	.8%
Linux 3.x	15.3%	0.6%	14.0%	0.1%	.6%	0.6%	43.4%
Windows 7/8	5.1%	2.1%	0.3%	0.3%	88.7%	0.9%	9.3%
Windows XP	7.9%	6.1%	3.0%	3.0%	6.3%	3.5%	2.0%
Unknown	9.6%	0.8%	12.7%	12.7%	23.9%	3.2%	30.2%

Blind attacks by router/switch

Device	OS	Blind Reset		Blind SYN		Blind Data	
	date	in	out	in	out	behind	ahead
C 2610	2002-01	×	\checkmark	×	\checkmark	×	\checkmark
C 2610	2002-01	×	\checkmark	×	\checkmark	×	\checkmark
C 2650	2005-08	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
C 7206	2008-07	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
C 2811	2010-10	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
C 2911	2012-03	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
J M7i	2007-01	×	\checkmark	×	\checkmark	×	\checkmark
J EX9208	2014-06	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
J MX960	2015-05	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
J J2350	2015-05	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark
HP 2920	2015-01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HP e3500	2015-06	×	\checkmark	×	\checkmark	✓	\checkmark
BMLX-4	2014-10	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
Pica8	2015-05	×	\checkmark	×	V	×	×