Measuring the Evolution of Transport Protocols in the

Internet

Alberto Medina
BBN Technologies
amedina@bbn.com

ABSTRACT

In this paper we explore the evolution of both the Internettsst
heavily used transport protocol, TCP, and the current nétemovi-
ronment with respect to how the network’s evolution ultietgim-
pacts end-to-end protocols. The traditional end-to-esdragptions
about the Internet are increasingly challenged by the diniction
of intermediary network elements (middleboxes) that iticerally
or unintentionally prevent or alter the behavior of encetw com-
munications. This paper provides measurement resultsisjadie
impact of the current network environment on a number ofitrad
tional and proposed protocol mechanisms (e.g., Path MTU Dis
covery, Explicit Congestion Notification, etc.). In additi we
investigate the prevalence and correctness of impleniensatis-
ing proposed TCP algorithmic and protocol changes (e.gpctee
acknowledgment-based loss recovery, congestion windowtr
based on byte counting, etc.). We present results of measmts
taken using an active measurement framework to study webrser
and a passive measurement survey of clients accessingation
from our web server. We analyze our results to gain furtheletn
standing of the differences between the behavior of theretan
theory versus the behavior we observed through measursmniant
addition, these measurements can be used to guide the idefifit
more realistic Internet modeling scenarios. Finally, wespnt sev-
eral lessons that will benefit others taking Internet meaments.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.3 Computer-Communication Networks]: Network Op-
erations

General Terms
Measurement, Design, Reliability, Standardization, fieation

Keywords

TCP, middleboxes, Internet, evolution

1. INTRODUCTION

In this paper, we investigate the evolution of TCP [45], the |
ternet's most heavily used transport protocol, on its owthiarthe

*This material is based in part upon work supported by theddati
Science Foundation under Grant Nos. 0205519 and 02309234. An
opinions, findings, and conclusions or recommendationsesspd

in this material are those of the author(s) and do not nerbssa
reflect the views of the National Science Foundation.

fACM Computer Communication Review, April 2005.

*f

Mark Allman, Sally Floyd
ICSI Center for Internet Research
{mallman,floyd}@icir.org

context of ongoing changes to the Internet’s basic ardhitec As
part of this work, we study the ways in which so-called “mieidI
boxes” (firewalls, NATs, proxies, etc.) — which change the In
ternet’'s basiend-to-end principlg47] — impact TCP. We seek
to elucidate unexpected interactions between layers aryd wa
which the Internet differs from its textbook description¢luding
the difficulties various real-world “gotchas” impose on #alu-
tion of TCP and end-to-end protocols in general. The measure
ments presented in this paper also serve as lessons fatsdfiat
wish to further evolve end-to-end protocols and the Inteanehi-
tecture.

While the Internet’s architecture, protocols and appiorat are
constantly evolving, there is oftecompeting evolutiorbetween
various network entities. This competing evolution canactper-
formance and robustness, and even halt communicationsrie so
cases. For instance, [41] shows that when setting up a TCP con
nection to a web server, attempting to negotiate the use plidix
Congestion Notification (ECN) [46] interfered with conriectes-
tablishment for over 8% of the web servers tested in 2000ddwn
to less than 1% of the web servers tested for this paper in)2604
such web servers, the client can only establish a TCP cdondn
re-attempting the connection without negotiating ECN esdhe
connection failures in the presence of ECN negotiation waused
by firewalls configured to interpret the attempt to negotiz®N as
the signature of a port-scanning tool [25]. On the one hamekd
firewalls can be seen as incorrectly associating new fumakity
with one of the first appearances of that new functionalitgrirun-
desirable application. On the other hand, the firewalls ¢sm lae
seen as doing their job of blocking unwanted traffic. Thisnepk
shows the fundamental problem of different evolution patiat
can cross to the detriment of smooth traffic flow on the Interne

Internet research is driven by simulations, experimemslyais,
and deployment studies designed to address particulalgpnsbn
the Internet. However, the design of effective and accunate
work models is challenging due to the intrinsic complexifytree
Internet and the dynamic nature of the elements composieit
searchers need better models of networks and protocol®tmdr
their investigations, such that they can provide practiesiefit on
the evolving network [28]. Therefore, a second componeruof
work assesses the current deployment status of variouogedp
TCP algorithmic and protocol modifications and updatesitbea-
ture with respect to the capabilities of a “modern” TCP stélthis
will help us learn about TCP as it is actually deployed in thies-
net, and aid researchers in accurately conducting futwieations
of the network and proposed changes.

In this paper, we bring both active and passive measurement
techniques to bear to study web traffic in the context of thevab
stated issues. We use extensive active measurements $3 Hsse

capabilities and algorithms used by web servers (the pyirdata
senders in web transactions). Data senders are ultimatetnitrol

of TCP’s congestion control and reliability algorithms. €Féfore,
our active measurements are focused on studying which senge
tion control algorithms, loss recovery schemes and optioasm-
plemented and how the interaction with today’s evolvingnmek
environment influences the correctness and performancevioeh

of actual web servers.

Independent and parallel work on TBIT extensions detaitdd4
33] includes tests for Limited Transmit, Early Retransmitg sup-
port for the Window Scaling option in TCP. TBIT, the measuesn
tool used in our work, follows an earlier history of activebing of
TCP. For instance, [22] treats TCP implementations as lagks,
observing how they react to external stimuli, and studyjmgctfic
TCP implementations in order to assess the adherence tpé¢he s
ification.

These active measurements use and extend the TCP Behavior In There is also a considerable body of work on passive tests of

ference Tool (TBIT) from [41], revising and rerunning thelea
tests on Selective Acknowledgment (SACK) and ECN capahilit
Reno vs. NewReno, initial congestion windows, and proper- wi
dow halving after a loss. The tests show that over the last four
years, almost all web servers tested still appropriatelyehtneir
congestion window after a packet loss (Table 8); most weleser
tested are still not ECN-capable (Table 3); the fractionesfted

TCP based on the analysis of packet traces. [43] outticnaly

a tool for analyzing a TCP implementation’s behavior by awp
ing sender and receiver packet traces of TCP connectionbeun
tween pairs of hosts, while [44] outlines observed packaadyics
based ortcpanalys analysis. Finally, [49] and [12] each consider
packet traces of TCP connections to a single web server,[48fh
studying TCP dynamics (e.g., the response to loss, themesip

web servers that are SACK-capable increased from 41% in 2001 between ACK compression and subsequent loss, the use depara

to 68% in 2004 (Table 7); and the fraction of successfulbted
web servers that use NewReno instead of Reno loss recovéry wi

connections) and [12] assessing the properties of wehtslien
In addition, there is some research in the literature on tieete

a non-SACK receiver has increased from 42% in 2001 to 76% in of middleboxes on transport protocol performance (e.@])[IWe

2004 (Table 6).

do not discuss the body of research on general architecuad

We have also added a range of new active measurement testaiations of middleboxes, or on the effect of middleboxes orSDN

exploring Path MTU Discovery, the effects of IP and TCP aptio
on the TCP connection, the content of received SACK blodies, t
congestion window increase during slow-start, the respom®ne
or two duplicate acknowledgements, congestion windoweiases
in the face of a receive window limitation, effective RTO wes,

BGP, and the like. Rather, the study presented in this pajgeseés
on interactions between middleboxes and transport pristoco
Finally, there is a large body of literature on active andspas
approaches for estimating end-to-end network path prgsarsing
TCP (e.g., [43, 14, 6]). In this paper we do not discuss TCseba

and more. Tables 11 and 12 at the end of the paper give a summarytests for estimating path properties such as loss ratesalaieaor

of the results of these tests.

We also conducted passive measurements of the capalilitibs
limits imposed by web clients (the primary data receiveré)-
though data receivers do not directly control the data flonaon
TCP connection, clients can optionally provide informatto the
data sender to effectively increase performance (e.gctet ac-
knowledgments). In addition, limits imposed by receiverg(, the
advertised window size) can have a dramatic impact on caiomec
performance [12].

The remainder of this paper is organized as follows. Se@ion
describes related work on measurement studies of tranppmrt
tocols. Section 3 describes the tools and methodology wenuse
our study. Section 4 explores interactions between miadcied
and transport protocols. Section 5 presents the resultarahea-

surements of the deployment of various TCP mechanisms in web

servers. Section 6 reports the results of our measuremieos the
deployment of TCP mechanisms in web clients. Section 7 déss.
lessons learned in the study that challenged our assurspgioc
ultimately shaped our measurements and tools. Sections@mie
our conclusions, and discusses open questions and futuke wo

2. RELATED WORK

bottleneck bandwidth and durations of congestion episodéso
prevalent in the literature, yet out of scope for the curedfiurt,

is the body of work based on passive measurements of traffic on
particular link to determine the breakdown of the trafficéms of
round-trip times, application layer protocols, transfees, etc.

3. MEASUREMENTS: TOOLS AND DATA

As discussed above, we employ both active and passive mea-
surements in our study into the characteristics of web tdiand
servers. Web servers act as data senders and web clients.ae-da
ceivers in web transactions. Therefore, we use active measunts
to probe web servers for congestion control and loss regmagra-
bilities, while using passive measurements to assess tlime@nd
resource limits enforced by web clients. Our motivatiorprapch
and methodology is presented in the following two subsastio

3.1 Active Tests

We use TBIT [41] to conduct active measurements that probe
web servers for their characteristics. A few of the activdTT@sts
we present, such as the test that determines the size ofitia in
window, could just as easily be performed by passive pachkeet
analysis. However, many of the TBIT tests are not amenable to

This paper uses and extends TBIT, which performs active mea- straightforward post-facto analysis of packet traces. éxample,

surements to characterize TCP on remote hosts [41]. For ¢fae m
surements presented in this paper, TBIT’s functionalitys ea-
tended in two ways. New tests were implemented to assess-diff
ent types of web server behavior, and the general desigre abth
was extended to enable the implementation of tests that jedith
behavior by, for example, allowing the use of IP options amal t
generation of ICMP messages. This paper is an extensiordpf [3

Ytwas necessary to revise the old tests to add robustnessridering, be-

cause minor reordering seems to have increased since wanabese tests
in 2000. As discussed in Section 7, it was also necessaryettarger pack-

ets, as many web servers wouldn't use the small MSS of 106 Isgiecified

in 2000. The current tests also test a much larger set of webrse

consider a test to determine if a TCP data sender is resppodin
rectly to SACK information. To evaluate the data sender,rtage
pattern of loss events is required (e.g., multiple packass per
window of data). An active tool like TBIT can easily inducecha
specific loss pattern and evaluate the behavior of the dates
comparison to the expected behavior. Meanwhile, passialysia
would require a tool that possessed a very general unddistpof
a range of loss patterns and the expected responses — whith wo
be quite tricky to get right. Inducing a specific loss pattdoes
run the risk of tripping pathological behavior that is nadizative
of the overall behavior of the TCP implementation under wxtifde
believe the risk for biasing our overall results in this wayimall

given our large sample of web servers (discussed below). [__Server name | Location | Cache size]

Another class of tests that involve actively attemptingrala- pb.us.ircache.net Pittsburgh, PA 12867
tive schemes in connection initiation cannot be performggds- uc.us.ircache.net Urbana-Champain, IL 18711
sive trace analysis alone. For instance, consider a testiftale- bo.us.ircache.net Boulder, CO 42120
boxes that block TCP SYN segments when the SYNs carry adver- | sv.us.ircache.ne Silicon Valley, CA 28800
tisements for ECN. Packet traces can indicate whether ctions sd.us.ircache.net San Diego, CA 19429
attempting to use ECN succeed or fail. However, determittiag pa.us.ircache.net Palo Alto, CA 5511
the failure of a connection attempting to negotiate ECN is dua sj.us.ircache.net MAE-West, San Jose, CA 14447
middlebox blocking ECN-capable SYNs requires the actigeiin rtp.us.ircache.nef Research Triangle, NC 33009
tion of SYNs with and without ECN advertisements. ny.us.ircache.ne New York, NY 22846
TBIT provides a set of tests, each of which is designed to exam
ine a specific aspect of the behavior of the remote web servers Table 1: IRCache servers and locations
of the path to and from the web server. Most of these tests ieam
the characteristics of the TCP implementations on the walese most of the remainder of this paper outlines active TBITs¢st
However, the tests are not restricted to TCP (e.g., the Path M determine various characteristics of TCP implementatiomsnet-
Discovery [40] tests). TBIT establishes a TCP connecticth ttie works and where the evolutionary paths collide.

remote host at the user level. TBIT composes TCP segments (or .

segments from another protocol), and uses raw IP socketntb s 3.2 Passive Tests

them to the remote host. TBIT also sets up a host firewall tegote When characterizing web clients, passive packet trace sisas
incoming packets from reaching the kernel of the local maeha more appropriate than active probing for two main reasomst,F
BSD packet filter is used to deliver incoming packets to théTTB initiating a connection to a web client to probe its capébiiis dif-
process. TBIT's user-level connection is used to contmkénding ficult because often web clients are user machines that dounot

of carefully constructed packets (control, data, ackndgmeent, publicly available servers. In addition, data receiversifwlients)
etc.) as desired from the local host. Note that all the TBsIg@are do not implement subtle algorithms whose impact is not hgadti-

susceptible to network conditions to some degree. Fornostaf servable in packet headers (as is the case with data sen@athgr,
an ACK sent by TBIT is lost in transit to the web server the lesiu data receivers expose their state, limits and capabiliti¢se data

the test could be inconclusive or even wrongly reported. ‘eh sender in packet headers and options (e.g., SACK informadid-
taken test-specific measures to make each of our tests ast mdbu vertised window limits, etc.). Therefore, by tracing paskeear a

possible. In addition, our large set of web servers (desdrite- web server, client TCP implementations can be well charizeie
low) helps to minimize any biases that bogus tests introdioite with respect to client impact on web traffic. Section 6 owttirour
our results. observations of web clients.

The original TBIT paper [41] repeated each test five times for

each server, accepting a result as valid only if at leasetbfahe 4., MIDDLEBOX INTERACTIONS

five attempts returned results, and all of the results weze#me. The increased prevalence of middleboxes calls into queshie
We did not follow that methodology in this paper; instead, ree general applicability of the end-to-end principle. Midolixes in-
each test once for each server. This allowed us to procesgex la tqquce dependencies and hidden points of failure, and fact a
set of tests. the performance of transport protocols and applicatiortfiénin-

The list of target web servers used in our study was gathered (gmet in unexpected ways. Middleboxes that divert an IFkggac
from IRcaches, the NLANR Web Caching project [2]. We used fyon jts intended destination, or modify its contents, asaayally
web cache logs gathered from nine different locations atdbe considered fundamentally different from those that cdlyeermi-
United States. Table 1 shows the cache logs used from Fgbruar pate 4 transport connection and carry out their manipuiatia the
2004, along with the log sizes, expressed as the number qéieni 55 jication layer. Such diversions or modifications vieldte basic
IP server addresses from each cache. Since the cachesa@loc grchitectural assumption that packets flow from source stk
within the continental US, most of the cached URLSs corredgon tion essentially unchanged (except for TTL and Qo0S-relfisds).
domain names within the US. However, the cache logs als@ont Tne effects of such changes on transport and applicaticogts
a sizable set of web servers located in the other contin@ftthe are unpredictable in the general case. In this section wemxthe
84,394 unique IP addressefound in the cache logs: 82.6% are ways that middleboxes might interfere in unexpected wayts wi
from North America, 10.2% are from Europe, 4.9% are from Asia transport protocol performance.

1.1% are from Oceania, 1.0% are from South America and 0.2%

are from Africa. A subset of the tests were also done on afisto 4.1 \Web Server SACK Generation
809 IP addresses corresponding to a list of 500 popular vieb si In Section 5 we evaluate the behavior of web servers in resgpon

[1]. . - : . .

Allthe TBIT tests outlined in this paper were conducted ket o incoming SACK information from a we_b client. The use of
February and Mav 2004. The TBIT client was alwavs run from a SACK information by a web server is the primary performance e
machineyon the Igcal nétwork at the International gom uter S hancement SACK provides to web traffic. In this section, hawe
ence Institute in Berkelev. CA USA. There is no local firg\mi- we focus on whether web servers generate accurate SACk infor
tween the machine runni)g TéIT an.d the Internet mation. In the normal course of web transactions this nstier

- 9 . . - tle because little data flows from the web client to the welveser

Given that data senders (web servers in our study) implement hil hiahl licabl b perf i th

most of TCP’s “smarts” (congestion control, loss recoveity,.) However, while not highly applicable to web performances tast

! i serves to illustrate potential problems in passing SACKrimia-
2\We note that the list of servers could be biased by a singlémahaving tion over some netvyorks. This test calls for the client totsp
multiple unique IP addresses —which would tend to skew thelte How- HTTP GET request into several segments. Some of these segmen

ever, due to the size of the server list, we believe that suifacis, while are not actually sent, to appear to the server as having losén |
surely present, do not highly skew the overall results. These data losses seen by the server should trigger SACKsbloc

% of [Year: | 2000] | 2004] |
Type of Server Number | Total [ECN Status [Hosts| % | Hosts| % |
Total Number of Servers| 84394 | 100% Number of Servers 24030 | 100% | 84394] 100%
. Not SACK-Capable 24361 28.8% I. Classified Servers | 21879| 91% | 80498 95.4%
IIl. SACK Blocks OK 54650 | 64.7% I.A. Not ECN-capable | 21602| 90% | 78733| 93%
Il Shifted SACK Blocks 346 | 0.5% I.B. ECN-Capable 2771 1.1% | 1765 2.1%
V. Errors _ 5037 | 6.0% .B.1. no ECN-Echo 255 | 1.1%| 1302| 1.5%
IV.A. No Connection 4493 | 5.3% 1.B.2. ECN-Echo 22| 0.1% | 463| 0.5%
IV.B. Early Reset 376 | 0.4% .C. Bad SYN/ACK 0 183 | 0.2%
IV.C. Other 160 | 0.2% II. Errors 2151 9% | 3896| 4.6%
.) II.LA. No Connection 2151 9% | 3194| 3.8%
Table 2: Generating SACK Information at Web Servers I.A.1. only with ECN | 2151 9% 814 1%
11.A.2. without ECN 0 2380 | 2.8%
(with known sequence numbers) to be appended to the ACKs sent | 1I.B. HTTP Error - 336 | 0.4%
by the server. I1.C. No Data Received - 54 0%
Table 2 shows the results of the server SACK generation test. | |l.D. Others - 312 | 0.4%

The row “Not SACK-Capable” shows the number of servers that
did not agree to the SACK Permitted option during connection
setup. The row listed “SACK OK” shows the number of web sesver
that generated SACK blocks correctly. As Table 2 shows, rabst
the servers show proper SACK behavior.

A relatively small number of servers, however, return ing@o
SACK blocks. The row listed as “Shifted SACK Blocks” indieat
cases where the SACK blocks received contained sequence num
bers that did not correspond to the sequence space usedigoson
tion. Instead, the sequence space in the SACK blocksshidied
This shifting could have been caused by a buggy TCP implesment
tion, or by incorrect behavior from middleboxes on the patmf
the server to the client. We note that none of the web sites fhe

Table 3: ECN Test Results

illustrated are germane to all TCP connections, and arétjesx-
planations for some of the results in Section 5.2 when weleser
negotiate SACK but do not use “Proper SACK” recovery.

4.2 ECN-capable Connections

Explicit Congestion Notification (ECN) [46] is a mechanigmat
allows routers to mark packets to indicate congestiongattof
dropping them. After the initial deployment of ECN-capaibleP
implementations, there were reports of middleboxes (itiq4ar,

list of 500 popular web sites had shifted SACK blocks. firewalls and load-balancers) that blocked TCP SYN packets a
Plausible scenarios whereby middleboxes may cause imtorre tempting to negotiate ECN-capability, either by droppihg TCP
SACK blocks to be returned to the web client include NATs and SYN packet, or by responding with a TCP Reset [25]. [41] in-
fingerprint scrubbers: cludes test results showing the fraction of web servers wheae
e NATs: Shifting of TCP sequence numbers can be done by ECN-capable and the fraction of paths to web servers thatded
a NAT box that modifies the URL in a request, and as a conse- middleboxes blocking TCP SYN segments attempting to natgoti
qguence has to shift the TCP sequence numbers in the subsequerECN-capability. The TBIT test for ECN is described in [41].
data packets. In addition, the cumulative acknowledgment-n Table 3 shows the results of the ECN test for 84,394 web server
ber and SACK blocks should be altered accordingly in the ACKs Only a small fraction of servers are ECN-Capable — this peeage
transmitted to the clients. However, due to ignorance org the has increased frorh.1% of the web servers tested in 200Qt@%
SACK blocks may not be properly translated, which could aixpl in 2004. After a web server has successfully negotiated EEN w
the results of our tests. send a data segment marked “Congestion Experienced (CH)” an
e Fingerpring Scrubbers: The shifting of TCP sequence num- record whether the mark is reflected back to the TBIT clieat vi
bers also occurs with fingerprint scrubbers [50] designedddify the ECN-Echo in the ACK packet. The results are given on lines
sequence numbers in order to make it hard for attackers thgbre 1.B.1 and |.B.2 of the table. In roughly three-quarters cfesawhen
TCP sequence numbers during an attack. One way that TCP/IPECN is negotiated, a congestion indication is not returreethé
fingerprint scrubbers modify sequence numbers is by chgasin client. This could be caused by a bug in the web server's TCP
random number for each connectio%y,. Then, the sequence num- implementation or by a middlebox that is clearing the cotiges
ber in each TCP segment for the connection traveling fronuthe mark as the data packet traverses the network; furthertigegion
trusted network is incremented by ;. Likewise, each segment is needed to explore this behavior. Finally, we also obsarsmall
traveling in the opposite direction has its acknowledgmamnn- number of web servers send a malformed SYN/ACK packet, with
ber decremented h¥;. However, if the sequence numbers in the both the ECN-Echo and Congestion Window Reduced (CWR) bits
SACK blocks are not modified as well, then the SACK blocksdoul set in the SYN/ACK packet (line I.C of the table).
be useless to the data sender. For3194 of the web servers, no TCP connection was established.
In some cases these bogus SACK blocks will simply be thrown For our TBIT test, if the initial SYN packet is dropped, TBI&-r
away as useless by the data sender. In cases when the SAMs bloc sends the same SYN packet — TBIT does not follow the advice in
are merely offset a little from the natural segment bouregarbut RFC 3168 of sending a new SYN packet that does not attempt to
otherwise are within the connection’s sequence spaceg theer- negotiate ECN. Similarly, if TBIT receives a TCP Reset inp@sse
rect SACK blocks can cause performance problems by inducing to a SYN packet, TBIT drops the connection, instead of sendin
TCP to retransmit data that does not need to be retransnaittéd subsequent SYN packet that does not attempt to negotiate ECN
by forcing reliance on the (often lengthy) retransmissiorebut to capability.
repair actual loss. In order to assess how many of these connection failures are
While the topic of web server SACK generation is not impaortan caused by the attempt of ECN negotiation, we run two back-to-
in terms of the performance of web transactions, the intenas back TBIT tests to each server. The first test does not atteampt

% of
ECN fields in data packets Number | total
ECN-capable servers 1765 | 100%
Received packets w/ ECT 00 (Not-ECT] 758 | 42%
Received packets w/ ECT 01 (ECT(1)) 0 0%
Received packets w/ ECT 10 (ECT(0)) 1167 | 66%
Received packets w/ ECT 11 (CE) 0 0%
Received packets w/ ECT 00 and ECT 10 174 | 10%

Table 4: Data-packet codepoints for ECN-Capable Servers

negotiate ECN. After a two-second idle period, another eocnn
tion is attempted using ECN. We observe that 814 connecfirs
of the web servers, dt5% of the connection failures) are appar-
ently refused because of trying to negotiate ECN, sincedhaec-
tion was established successfully when no ECN negotiatiag w
attempted. A test limited to 500 popular web servers givama s
ilar result. Table 3 indicates that the fraction of web sesweith
ECN-blocking middleboxes on their path has decreased aubst
tially since September 2000 — from 9% in 2000 to 1% in 2004.

We further explored the behavior of ECN-capable servers by
recording the ECT codepoints in the data packets receivadby.
Table 4 shows the number of servers from which the differedee
points were observed. TBIT received data packets with the @&C
codepoint from about 42% of the ECN-capable servers. The ECN
specification defines two ECT code points that may be used by a
sender to indicate its ECN capabilities in IP packets. Thecisp
fication further indicates that protocols that require omfe such
a codepointshoulduse ECT'(1) = 10. We observe that ECN-
capable servers do use ECT(1) and found no server made ue® of t
ECT(0) = 01 codepoint. We further observe that no router be-
tween our TBIT client and the ECN-capable servers reportu C
gestion Experienced (CE) in any segment. Finally, TBIT e
both data segments withC'T' = 00 and EC'T = 10 in the same
connection from about 10% of the ECN-capable servers. Téts b
havior may indicate that the ECT code point is being erased by
network element (e.g. router or middlebox) along the pativéen
the ECN-capable server and the client.

4.3 Path MTU Discovery

TCP throughput is generally proportional to the segmerg siz
employed [32]. In addition, [32] argues that packet fragtaen

% of

PMTUD Status Number | total
Total Number of Servers 81776 | 100%
I. Classified Servers 71737 | 88%
I.A. PMTUD not-enabled 24196 | 30%
I.B. Proper PMTUD 33384 | 41%
I.C. PMTUD Failed 14157 17%
Il. Errors 9956 | 12%
II.A. Early Reset 545 | 0.6%
11.B. No Connection 2101 | 2.5%
II.C. HTTP Errors 2843 | 3.4%
I1.D. Others 4467 | 5.5%

Table 5: PMTUD Test Results

. TBIT is configured with airtual link MTU, MTU,. In our
tests, we sedM T'U, to 256 bytes.

. TBIT opens a connection to the web server using a SYN
segment containing an MSS Option of 1460 bytes (which is
based on the actual MTU of the network to which the TBIT
client is attached).

. The TCP implementation at the server accepts the connec-
tion and sends MSS-sized segments, resulting in tranghitte
packets of MSS #0 bytes. If the data packets from the
server do not have the DF bit set, then TBIT classifies the
server as not attempting to use PMTUD. If TBIT receives a
packet with the DF bit set that is larger thafiT'U, it rejects
the packet, and generates an ICMP message to be sent back
to the server.

. If the server understands such ICMP packets, it will reduc
the MSS to the value specified in the MTU field of the ICMP
packet, minustO bytes for packet headers, and resume the
TCP connection. In this case, TBIT accepts the proper-sized
packets and the communication completes.

. Ifthe server is not capable of receiving and processingRC
packets it will retransmit the lost data using the same packe
size. Since TBIT rejects packets that are larger th&hU,
the communication will eventually time out and terminate
and TBIT classifies the server/path as failing to properly em
ploy PMTUD.

Checking for the robustness of this test involves verifyihgt

tion can cause poor performance. As a compromise, TCP can useTBIT is sending properly assembled ICMP messages back to the

Path MTU Discovery (PMTUD) [40, 38] to determine the largest
segment that can be transmitted across a given network ptith w
out being fragmented. Initially, the data sender transmiteg-
ment with the IP “Don’t Fragment” (DF) bit set and whose sige i
based on the MTU of the local network and the peer's MSS ad-
vertisement. Routers along the path that cannot forwardéige
ment without first fragmenting it (which is not allowed besauDF

is set) will return an ICMP message to the sender noting tiet t
segment cannot be forwarded because it is too large. Thesend
then reduces its segment size and retransmits. Problemm$ Wit
TUD are documented in [35], which notes that many routeis fai
to send ICMP messages and many firewalls and other middleboxe
are often configured to suppress all ICMP messages, reguitin
PMTUD failure. If the data sender continues to retransmijda
packets with the DF bit set, and fails to receive the ICMP agss
indicating that the large packets are being dropped aloagdih,

the packets are said to be disappearing into a PMTDl#ok hole

We implemented a PMTUD testin TBIT to assess the prevalefhce o
web servers using PMTUD, and the success or failure of PMTUD
for these web servers. The test is as follows:

server upon receiving packets that are larger than thelstgal
MTU size. We do such a check for this and other tests using a
public domain network protocol analyzer calletthereal[7] which
behaves in a tcpdump-like fashion but allows the user torgbse
easily the structure and composition of the captured packéding
ethereal we analyze the communications between TBIT afet-dif
ent servers and observe the exchange of ICMP packets from TBI
to the servers, check if they are properly assembled (e.gpepr
checksums), and observe the associated server resportseséo t
packets.

Table 5 shows that PMTUD is used successfully for slightbsle
than half of the servers on our list. For 31% of the serversum o
list, the server did not attempt Path MTU Discovery. For 18% o
the servers on our list, Path MTU Discovery failed, presusab
because of middleboxes that block ICMP packets on the patieto
web server. The results were even worse for the list of 50Qijpop
web servers, with Path MTU Discovery failing for 35% of theesi

Alternate methods for determining the path MTU are being con
sidered in the Path MTU Discovery Working Group in the IETF,
based on the sender starting with small packets and progghss

increasing the segment size. If the sender does not reaeik€K
packet for the larger packet, it changes back to smallergiack

In a similar sender-based strategy callddck-hole detection
if a packet with the DF bit set is retransmitted a number oegm
without being acknowledged, then the MSS will be set to 53@dy
[3]. We performed a variant of the PMTUD test in which TBIT
does not send the ICMP packets, to see if any server reduees th
size of the packets sent simply because it didn’t receive @K A
for the larger packet. We didn’t find any servers performitagk-
hole detection.

Since a non-trivial number of network elements discard well
known ICMP packets, the results of our tests do not offer Hope
protocol designers proposing to use new ICMP messagesrtalsig
various network path properties to end systems (e.g., fplicx
corruption notification [23], handoff or outage notificatjetc.).

4.4 |P Options

IP packets may contain options to encode additional inftiona

Hl No Connection b
[Option Ignored

[Success |
70%

‘
100 | 98%

801

60 —
45% 43%
36%

34%
I 21% ZO%H

Record Route TimeStamp

40 30%

i ﬁ

Option X

% of Connections

201

0.2%
— %

No IP Options

IP Option Test type (SYN)

Figure 1: Handling IP Options in TCP SYN packets.

Most IP options are usually expressed in the first packet, (g
TCP SYN packet) in the communication between end hosts. We
performed an additional test to assess the behavior wheptiého
Xis placed in data packets in the middle of an establishedeon
tion. For each established connection TBIT offers two dfess
tions: “success” or “broken connection”. The former indésathat

at the end of IP headers. A number of concerns have been raisedne server successfully delivered its data regardlessenfRhop-

regarding the use of IP options. One concern is that the uie of
options may significantly increase the overhead in routesause
in some cases packets with IP options are processed osidive
path of the forwarding engine. A second concern is that receiv-
ing IP packets with malformed IP options may trigger alignine
problems on many architectures and OS versions. Solutiottsst
problem range from patching the OS, to blocking access tkegaic
using unknown IP options or using IP options in general. Adthi
concern is that of possible denial of service attacks that bea
caused by packets with invalid IP options going to networkeos.
These concerns, together with the fact that the generatidpeo-
cessing of IP options is honmandatory at both the routersttaad
end hosts, have led routers, hosts, and middleboxes toysinmb
packets with unknown IP options, or even to drop packets stith-
dard and properly formed options. This is of concern to deig
of transport protocols because of proposals for new trahapech-
anisms that would involve using new IP options in transpostg
cols (e.g., [31, 23]).

TBIT’s IP options test considers TCP connections with three
types of IP options in the TCP SYN packet, tfieRecord Route
Option, the IP Timestamp Optianand a new option calledP Op-
tion X, which is an undefined option and represents any new IP
option that might be standardized in the future. We expantact
with two variants of Option X, both of size 4. The first variant
uses a copy bit of zero, class bits set to zero and 25 as thenopti
number. The second variant of IP Option X sets the classdis t
reserved value, and uses an option number of 31. The results f
experiments with both Option X variants are similar.

Checking for the robustness of this test involves verifyihgt
TBIT is sending properly assembled IP options in the message
sent to the servers. We also observe the server’s respoopddns
such as th®ecord Routeption to verify that the server is properly
understanding the options sent to it by TBIT.

Figure 1 shows the TCP connection behavior with different IP
options in the associated SYN packets. For each attemptedtce
tion there are three possible outcomes: no connectionlsstad),
connection established with the IP option ignored, or |Roopac-

tion insertion. The latter classification indicates that thsertion

of the IP option forced the connection to be idle for at le@sséc-
onds (which we then define as “broken”). We performed two sets
of tests, with and without insertion of option X. Across batts

of tests roughly 3% of the connection attempts failed. Thatste
without IP options show nearly 6% of the connections are -‘bro
ken” for some reason. Meanwhile, when inserting IP optiomds i

the middle of the transfer, 44% of the connections are broken
dicating a significant issue when attempting to utilize |Fags in
mid-connection.

4.5 TCP Options

Next we turn our attention to potential problems when TCP op-
tions are employed. TCP options are more routinely used than
IP options. For instance, TCP uses the timestamp optiontf80]
(among other things) take round-trip time measurement rfnef
quently than once per round-trip time, for the Protectioraifigt
Wrapped Sequences [30] algorithm and for detecting spsitime-
outs [36].

However, middleboxes along a path can interfere with the use
of TCP options, in an attempt to thwart attackers trying tgdin
print hosts. Network mapping tools such as NMAP (Network Map
per) use information from TCP options to gather informaabout
hosts; this is callefingerprinting Countermeasures to fingerprint-
ing, sometimes callefingerprint scrubberg50], attempt to block
fingerprinting by inspecting and minimally manipulating thhaffic
stream. One of the strategies used by fingerprint scrubb¢ose-
order TCP options in the TCP header; any unknown options may
be included after all other options. The TBIT test for TCPiaps
checks to see if sites reject connections negotiating Speciun-
known TCP options, or drop packets encountered in the miofdle
the stream that contain those options.

The TCP options test first assesses the behavior of the wedr ser
when the TCP Timestamp option is included in the SYN packet. T
test for performance with unknown TCP options, we alsoatsti
connections using an unallocated option numB&P OptionY’,
in the SYN packet.

cepted. As Figure 1 shows, in many cases no connection was es- Checking for the robustness of this test involves verifyihgt

tablished when the Record Route Option or the Timestamp®pti
was included in the SYN packet. When IP Option X is included in
the SYN segment, the connection was not established to &%r 7
of the web servers tested. The results were slightly worsenwh
limited to the list of 500 popular web sites. This does notdaell

for the deployment of new IP options in the Internet.

TBIT is sending properly assembled TCP options in the messag
sent to the servers.

Our tests indicate a connection failure rate of about 0.2%lin
scenarios. Option Y is ignored in the remainder of the cotioes.
The timestamp option is ignored by roughly 15% of the ser{taus
the connection is otherwise fine). The reason the serverwégn

the timestamp option is not visible to TBIT, but could be eitla
middlebox stripping or mangling the option or the web senvatr
supporting timestamps. Next we assess the use of TCP options
the middle of a TCP connection, by establishing a conneaetitim

out TCP options and then using the Timestamp option or Opfion
on a data packet in the middle of the connection. The cororecti
failure rate for both options is roughly 3% — indicating teahding
unknown TCP options midstream is not problematic for modt we
servers.

5. DEPLOYMENT OF TRANSPORT MECH-
ANISMS

This section describes TBIT tests to assess the deployrn@nss
of various TCP mechanisms in web servers. Such tests arel usef
from a number of angles. First, it is useful for protocol desi
ers to understand the deployment cycle for proposed chariges
addition, as discussed previously, it is useful to test tttaa be-
havior of proposed mechanisms in the Internet, keeping aroey
for unexpected behaviors and interactions. Another godhisf
section is to guide researchers in constructing modelshi@de-
sign and evaluation of transport protocols. For exampl§,dP
deployments are dominated by NewReno and SACK TCP, then it
is counter-productive for researchers to evaluate coiugesontrol
performance with simulations, experiments, or analysisetieon
Reno TCP.

5.1 Reno/NewReno Test
The Reno/NewReno test, adapted from the original TBIT [41],

determines whether a web server uses Tahoe, Reno, or NewRen

loss recovery for a TCP connection that is not SACK-capalile.
is well-known that Reno’s congestion control mechanisnrfope
poorly when multiple packets are dropped from a window o&dat
[24]. Tracking the deployment of NewReno can guide reseasch
in their choices of models for simulations, experimentsaialy-
sis of congestion control in the Internet; researchersubatReno
instead of NewReno or SACK TCP in their simulations or experi
ments could end up with significantly-skewed results thaeHg-
tle relevance for the current or future Internet. Anothersan for
these tests is to look for unanticipated behaviors; for eptanthe
Reno/NewReno tests in [41] discovered a variant of TCP witho
Fast Retransmit that resulted from a vendor’s buggy impieee
tion.

The Reno/NewReno test determines the sender’s congestien ¢
trol mechanism by artificially creating packet drops thatiethe
congestion control algorithm of the server. In order to émahe

Date: May 2001 Feb. 2004
% of % of
TCP Stack Num. | total || Num. | total
Total Number of Servers 4550 84394
I. Classified Servers 3728 | 72% || 27914 | 33%
I.A. NewReno 1571 | 35% || 21266| 25%
1.B. Reno 667 | 15% || 3925| 5%
I.C. Reno, Aggressive-FR| 279 6% 190 | 0.2%
I.D. Tahoe 201 | 4% 983 | 1.2%
I.E. Tahoe, No FR 1010| 22% || 1181 1.4%
I.F. Aggr. Tahoe-NoFR 0 0% 7 0%
I.G. Uncategorized 362 | 0.4%
II. Classified but ignored 11529 14%
(due to unwanted drops)
IIl. Errors 822 | 18% || 44950| 53%
IIlLA. No Connection 2183 | 2.6%
111.B. Not Enough Packets 22767 | 27%
111.C. No Data Received 3352 4%
II.D. HTTP Error 13903 | 16%
IIl.E. Request Failed 839 1%
lIl.F. MSS Error 266 | 0.3%
IIl.G. Other 2035 | 2.4%

Table 6: Reno/NewReno Deployment in Web Servers.

web servers using that variant. We note that the results Way
2001 and February 2004 are not directly comparable; thegifise
ferent lists of web servers, and the February 2004 list isicbn

rably larger than the May 2001 list. However, Table 6 ingplie
hat the deployment of NewReno TCP has increased signifjcant
in the last few years; NewReno is now deployed in 76% of the web
servers on our list for which we could classify the loss recgv
strategy. In addition, the deployment of TCP without Fagt&tes-
mit has decreased significantly; this poorly-behavingarrivas
discovered in [41], where it was reported to be due to a véndor
failed attempt to optimize TCP performance for web pagesatea
small enough to fit in the socket buffer of the sender.

5.2 Web Server SACK Usage

The SACK Behavior test reports the fraction of servers that a
SACK-capable, and categorizes the variant of SACK congesti
control behavior for a TCP connection with a SACK-capabient!
TCP’s Selective Acknowledgment (SACK) option [37] enalites
transmission of extended acknowledgment information tprant
TCP’s standard cumulative acknowledgment. SACK blocks are

server to have enough packets to send, TBIT negotiates d smal sent by the data receiver to inform the data transmitter of- no

MSS (256 bytes in our tests). However, using a small MSS in-
creases the chances of observing reordering packets (séerSe
7), and this reordering can change the behavior elicitech ftioe
server. Therefore, the current test has evolved from thginaii
TBIT test to make it more robust to packet reordering, andseen
quently to be able to classify behavior the original TBIT e
able to understand. The framework of the Reno/NewReno gest i
as described in [41], with the receiver dropping ft3h and16th
data packets.

Table 6 shows the results of the Reno/NewReno test. The Tahoe
Tahoe without Fast Retransmit (FR), Reno, and NewRenoniaria
are shown in [41]. Reno with Aggressive Fast Retransmitedal
RenoPlus in [41], is also shown in [41]; Reno with Aggresstast
Retransmit has some response to a partial acknowledgmengdu
Fast Recovery, but does not take the NewReno step of retitansm
ting a packet in response to such a partial acknowledgment. F

contiguous blocks of data that have been received and qu&ted
SACK information can be used by the sender to retransmit only
the data needed by the receiver. SACK TCP gives better perfor
mance than either Reno or NewReno TCP when multiple packets
are dropped from a window of data [24].

The SACK Behavior test builds on the original TBIT test, with
added robustness against packet reordering. TBIT firstrétes
if the server is SACK-capable by attempting the negotiatibthe
SACK Permitted option during the connection establishrpbate.
For a SACK-capable server, the test determines if the serses
the information in the SACK blocks sent by the receiver. TBIT
achieves this by dropping incoming data packeis 17 and 19,
and sending appropriate SACK blocks indicating the blodkeo
ceived data. Once the SACK blocks are sent, TBIT observes the
retransmission behavior of the server.

Table 7 shows the results for the SACK test. The servers re-

each TCP variant, the table shows the number and percentage oported as “Not SACK-Capable” are those that did not agrebeo t

Date: May 2001 Feb. 2004

% of % of

SACK Type Num. | total || Num. total
Total Number of Servers|| 4550 | 100% || 84394 | 100%
I. Not SACK-Capable 2696 | 59% || 24607 | 29%
Il. SACK-Capable 1854 | 41% || 57216| 68%
II.A. Uses SACK Info: 550 | 12% || 23124| 27%
IILA.1. Proper SACK - 15172 18%
IILA.2. Semi-Sack - 7952 9%
I.B. Doesn’'t use SACK 759 | 17% 2722 3%

Info:

11.B.1. NewReno - 1920 2%
11.B.2. TahoeNoFR - 802 1%
I.C. Inconsistent Result§ 545 | 12% 173 | 0.2%
11.D. Not enough Packets 20740 | 24.5%
Il.LE. No Data Received 549 | 0.5%
II.LF. HTTP Errors 9853 12%
II.G. Request Failed 2 0%
II.LH. MSS Error 55 0%
Ill. Errors 2569 3%
I1I.A. No Connection 1770 2%
111.B. Other 799 1%

Table 7: SACK Deployment in Web Servers

SACK Permitted option negotiated by TBIT. The servers tists
“Proper SACK” are those that responded properly by re-sendi
only the data not acknowledged in the received SACK blocke T
servers listed as “Semi-SACK” make some use of the inforonati
in the SACK block&. In contrast, the servers listed as “NewReno”
and “Tahoe-NO-FR” make no use of the information in the SACK
blocks, even though they claim to be SACK-capable. The four
types of SACK behaviors are shown in Figure 4 in [41].

While the 2001 and 2004 results are not directly comparable,
the results in Table 7 indicate that the fraction of web-eenthat
report themselves as SACK-capable has increased since 2001
that most (90%) of the successfully-classified SACK-capaieb
servers now make use of the information in SACK blocks.

As suggested by the results in Section 4.1, some of the sdgult
Table 7 that are not “Proper SACK” could be influenced by mid-
dieboxes that translate the TCP sequence space, but doopetiyr
translate SACK block.

An additional D-SACK test measures the deployment of D-SACK

(duplicate-SACK), an extension to the TCP SACK option for ac
knowledging duplicate packets [26]. When deployed at TGP re
ceivers, D-SACK can help TCP servers detect packet refitat
by the network, false retransmits due to reordering, retratrtime-
outs due to ACK loss, and early retransmit timeouts [20]. @sts
show that roughly half of the SACK-capable web servers imple
ment D-SACK. The more relevant question is whether D-SACK is
also deployed in web clients; we comment on this aspectduith
Section 6.

5.3 Initial Congestion Window

The Initial Congestion Window (ICW) test from [41] deterram
the initial congestion windows used by web servers. Trawltily,

3There is a chance that the Semi-SACK servers actually perferoper
SACK, but have fallen prey to ACK loss. However, since SACkssent a
number of times, the ACK loss would have to be quite bad befareerver
missed a block entirely. Therefore, while possible, we dobaieve that
ACK loss biases our aggregate conclusions in a large way.

“We note that the results in Section 4.1 are from a differentfirom those
in Table 7, and have slightly different numbers for the plavee of not-
SACK-capable servers.

TCP started data transmission with a single segment usavg sl
start to increase the congestion window [17]. However, fl@ws
an initial window of two segments, and [11] allows an initigh-
dow of three or four segments, depending on the segmentlsize.
particular, an initial window of two or more segments canucl
the number of round-trip times needed for the transfer of allsm
object, and can shorten the recovery time when a packet jgpdtb
from the initial window of data (by stimulating duplicate K&
that potentially can trigger fast retransmit rather thariting on
the retransmission timeout).

The test starts with TBIT establishing a TCP connection to a
given web server using256 byte MSS. The small MSS increases
the chances that the server will have enough packets toisgérs
ICW. TBIT then requests the corresponding web page, and/esce
all packets initially sent by the server, without ACKing amifythe
incoming segments. The lack of ACKs forces the server tanstr
mit the first segment in the ICW. TBIT then counts the number of
segments received, reports the ICW value computed andrtatesi
the test.

Despite the small MSS, there still may be some servers withou
enough data to fill their ICW. TBIT detects such cases by watch
for the FIN bit set in one of the data segments. Such testneoas
clusive; the corresponding servers have an ICW equal torgeila
than the number of packets received. We report only thoseser
that had enough data to send their entire ICW without settieg
FIN bit.

—
42%

100kF ¢ (42%) B
24k 30K =— (54%)

] 1%

10K —

100

Number of Servers

111111 1 1

\nnnnnnam

12 13 15 16 25 31 53 59 64 65 129

I

0
0 1 2 3 4 5 6 7 9 11
ICW Value

Figure 2: Initial Window Test, for an MSS of 256 bytes.

Figure 2 shows the distribution of ICWs used by the measured
web servers. The figure shows that most web servers use g init
window of one or two segments, and a smaller number of servers
use an initial window of three or four segments. In additibwere
are a few servers using ICW values of more than four segments —
including some servers using ICWs larger than 10 segmeheser
results are similar to those from 2001 [41], which show 2%hef t
web servers had an initial window of three or four segmemsd, a
3% had initial windows larger than four segments. Thus, TiGP i
tial windows of three or four segments are seeing very slgviaye
ment in web servers.

We note that the ICWs shown in Figure 2 could change with dif-
ferent values for the MSS. For example, www.spaceimagang.c
uses an ICW of 64 segments when the MSS is restricted to 256
bytes, but an ICW obnly 14 segments with an MSS of 1460 bytes.

Figure 3 shows the fraction of connections with dropped er re
ordered packets, as a function of the ICW used by the server. T
web servers with larger initial windows of three or four peisk
do not have a higher percentage of connections with pachketdr
Even the occasional TCP connections with ICWs greater tban f

30

Il Drops

25 .
[Reordering

r 23.6%

223% 23.2%

20 18.8%

15
12.4%
11.1%

10 7.3%

2

7.1%

% of connections

6.3%

3

5.8%
3.9%

Iw Iw
5

4

1.6%
|
6

Initial Congestion Window Value

Figure 3: Percent of connections with dropped/reordered pek-
etsvs. ICW

Date: May 2001 April 2004

% of % of
Window Halving Num. | total || Num. | total
Total Number of Servers 4550 | 100% || 84394 | 100%
I. Classified Servers 3461 | 76% || 30690 | 36%
I.A. Window Halved 3330 | 73% || 29063 | 34%
1.B. Window Not Halved 131 | 2.8% | 1627 2%
Il. Errors 1089 | 24% | 53704 | 64%
1l.LA. No Connection 5097 6%
11.B. Not Enough Packets 22362 | 26%
11.C. No Data Received 4966 6%
11.D. HTTP Error 13478 | 16%
II.E. Request Failed 976 | 1.7%
11.G. Unwanted Reordering 4622 | 5.5%
II.H. Unwanted drops 732 | 0.9%
I.I. Other 1117 | 1.3%

Table 8: Window Halving Test Results

segments are not more likely to see packet drops. In addit@n
ordering rates are similar for ICWs of 1-3 segments and then t
percentage of connections experiencing reordering drffps o

5.4 Congestion Window Halving

A conformant TCP implementation is expected to halve its con
gestion window after a packet loss [16]. This congestiontrobn
behavior is critical for avoiding congestion collapse ia tietwork
[27]. The Congestion Window Halving test in May 2001, frone th
original TBIT, verified that servers effectively halve thebnges-
tion window upon a loss event; in this section we run the tgaira
on a much larger set of web servers, and show that the early re-
sult still holds. Because much of the traffic in the Interrmtsists
of TCP traffic from web servers to clients, this result impltaat
much of the traffic in the Internet is using conformant endkibal
congestion control. This is consistent with the view thatlike
clients, busy web servers have a stake in the use of endetoen
gestion control in the Internet [27].

The Congestion Window Halving test works by initiating aisa
fer from the web server, waiting until the server has builtom
congestion window of eight segments, and then dropping kepac
After the loss, the server should reduce the congestion awind
to four segments. We classify the result as “Window Halvedd” i
the congestion window is reduced to at most five packets Hfeer
loss, and we classify the result as “Window Not Halved” ottise.
TBIT is only able to determine a result for those servers llaate
enough data to send to build up a congestion window of eigft se
ments. A detailed description of the test is available if.[4BIT
maintains a receive window of eight segments, to limit theges-
tion window used by the sender.

Table 8 shows the results for the Congestion Window Halving
test. Table 8 shows that, as in 2001, most of the servers igadthib
correct window halving behavior. For the servers that dichadve
the congestion window, a look at the packet traces suggests t
these are servers limited by the receive window, whose tioge
windows at the time of loss would otherwise have been gréfader
eight segments. One possibility is that these servers minittie
congestion window independently from the receive windomd a
do not properly halve the effective window when the congesti
window is greater than the receive window. We note that RR§125
specifies that after a loss, the sender should determinartbard
of outstanding data in the network, and set the congestiodaw
to half that value in response to a loss.

5.5 Byte Counting

As described in RFC 2581 [16], TCP increases the congestion
window (cwnd by one MSS for each ACK that arrives during slow
start (so-called “packet counting”, or “PC"). Delayed ACKte-
scribed in [17, 16], allow a TCP receiver to ACK up to two seg-
ments in a single ACK. This reduction in the number of ACKs
transmitted effectively leads to a reduction in the ratehwihich
the congestion window opens, when compared to a receiver tha
ACKs each incoming segment. In order to compensate for &lis r
tarded growth, [8, 9] propose increasiogndbased on the number
of bytes acknowledged by each incoming ACK, instead of lgasin
the increase on the number of ACKs received. [9] argues thadt s
anAppropriate Byte Counting (AB@)gorithm should only be used
in the initial slow start period, not during slow start-bddess re-
covery. In addition to improving slow-start behavior, ABlges
a security hole by which receivers may induce senders te#aser
the sending rate inappropriately by sending ACK packetsetheh
ACK a fraction of the sequence space in a data packet [48].

The Byte Counting test is sensitive to the specific slow ftart
havior exhibited by the server. We have observed a large auofb
possible slow start congestion window growth patterns mess
which do not correspond to standard behavior. For this rease
were forced to implement an elaborate test for an algorithsira-
ple as Byte Counting. The test works as follows, for an ihdt@n-
gestion window of one segment:

1. Receive and acknowledge the first data packet. After this
ACK is received by the server, the congestion window should
be incremented to two packets (using either PC or ABC).

. ACK the second and third data packets with separate ACK
packets. After these two ACKs are received, the server shoul
increment its congestion window by two packets (using ei-
ther PC or ABC).

. ACK the next four packets with a single cumulative ACK
(e.g., with an acknowledgment of the seventh data packet).

. Continue receiving packets without ACKing any of them un-
til the server times out and retransmits a packet.

. Count the number of new packety, that arrived at least
three quarters of a round-trip time after sending the las{ AC

. Count the number of earlier ACK®, (out of the three ear-
lier ACKs) which were sent within an RTT of the first of the
N packets above. These are ACKs that were sent shortly
before the last ACK. For servers with the standard expected
behavior,R should be 0.

. Compute the increasé,, in the server congestion window

triggered by the last ACK as follows:
L=N-4-2xR 1)

e |If L =1, then PC was used.

% of
Slow-Start Behavior Number total
Total Number of Servers: 44579 | 100%
I. Classified Servers 23170 52%
I.A. Packet Counting 15331 | 51.9%
I.B. Appropriate Byte Counting 65| 0.1%
Il. Unknown Behvaior 288 | 0.6%
11I. Errors 21121 47.4%
III.A. No Connection 528 | 1.2%
I11.B. Not enough packets 13112 29.4%
I1I.C. No data received 386 | 0.9%
11.D. HTTP Error 215| 0.5%
lIl.LE. Request Failed 181 | 0.4%
Ill.F. Packet Size Changed 5762 | 13%
IIl.G. Unwanted Reordering 827 2%
I1I.H. Other 7 0%

Table 9: Byte Counting Test Results

e If L > 1, then the server increased its congestion win-
dow by L segments in response to this ACK. We clas-
sify this as the server performing Byte Counting with a
limit of at leastL.

The observation behind the design of this test is tNais the
number of packets that the server sent after receiving thi AC
packets in the preceding RTT. The3é packets are assumed to
include two packets for each ACK received that ACKed only one
packet. TheséV packets are also assumed to include four packets
due to the advance in the cumulative acknowledgment fielchwhe
the last ACK was received. Any extra packets sent should ke du
to the increase in the congestion window due to the receifitef
last ACK. We note that the complexity of this test is an exampl
in which the difference between theory and practice in protbe-
havior significantly complicates the scenarios that nedaetoon-
sidered. Table 9 shows the results of the Byte Countingsbsty-
ing that Byte Counting had minimal deployment when theststes
were performed.

We note that our Byte Counting test is not sufficient to distin
guish between Packet Counting, and ABC with= 1. The Ap-
propriate Byte Counting test in [34] returns two split ackiio
edgements for a single packet, and can distinguish betwaekeP
Counting and ABC with. = 1. [34] reports that 80 of the 200
servers tested used ABC wifh= 1, and none of the servers used
ABC with L = 2.

Our Byte Counting test uses the estimated RTT in inferringtvh
data packets were sent by the server after the server rddbigdi-
nal ACK packet, and this use of the estimated RTT is a possible
source of error. From looking at packet traces, we observed o
or two tests that were labeled by TBIT as Byte Counting, where
the actual RTTs in the connection were unclear, and the packe
trace was consistent with either Byte Counting or Packen@og.
However, from the traces that we looked at, we don’t think this
possible source of error is a significant factor in our oveesults.

5.6 Limited Transmit

TCP’s Limited Transmit algorithm, standardized in [10]pals
a TCP sender to transmit a previously unsent data segmenthigo
receipt of each of the first two duplicate ACKs, without infeg a
loss or entering a loss recovery phase. The goal of Limiteath§r
mit is to increase the chances of connections with small etirstto
receive the three duplicate ACKs required to trigger a festins-
mission, thus avoiding a costly retransmission timeoutmited
Transmit potentially improves the performance of TCP catinas

% of
Limited Transmit (LT) Behavior Number | total
Total Number of Servers 38652 | 100%
I. Classified Servers 29023| 75%
.A. LT Implemented 8924 | 23%
I.B. LT Not Implemented 20099 | 52%
Il. Errors 9629 25%
II.LA. No Connection 420 1.1%
11.B. Not enough packets 3564 | 9.2%
1I.C. No Data Received 257 | 0.7%
1I.D. HTTP Errors 224 | 0.6%
11.E. Request Failed 163 | 0.4%
II.F. Packet Size Changed 4900 | 12.7%
1I.G. Other 101 | 0.3%

Table 10: Deployment of Limited Transmit

with small windows.

The Limited Transmit test assesses deployment in web server
Like the Byte Counting test, this test is sensitive to the sizthe
initial window employed by the server. The strategy of the te all
cases is the same but the presence or absence of Limitechiitans
must be determined in the context of a specific ICW. For an ICW
of four packets, the test works as follows:

1. Acknowledge the first data segment in the initial window of
four segments. Upon receiving this ACK, the server should
open its window from four to five segments, and send two
more packets, the 5th and 6th segments.

. Drop the second segment.

. TBIT sends two duplicate ACKs triggered by the receptibn o
segment$ and6. TBIT does not send ACKs when segments
3 and 4 arrive, to provide for increased robustness against
unexpected server congestion window growth. Only one du-
plicate ACK would suffice to trigger the Limited Transmit
mechanism at the server but TBIT sends two to account for
the possibility of ACK losses.

. If the server does not implement Limited Transmit, then it
will do nothing when it receives the duplicate ACKs. If the
server does implement Limited Transmit, then it will send
another segment when it receives each duplicate ACK.

We note that if the duplicate ACKs sent by TBIT are dropped in
the network, then TBIT will see no response from the web serve
and will interpret this as a case where Limited Transmit isde
ployed. Greater accuracy could be gained by running thesésst
eral times for each web server, as done with the TBIT testdh [

Table 10 shows the results from our tests. The table shows tha
Limited Transmit is deployed in at least a fifth of the web sesvn
our dataset. The Limited Transmit test is sensitive to the af the
initial window and therefore care needs to be exercised wihect
to the size of packets being received from the server. Nateith
there is a change in the packet size for packets in the middreo
connection, TBIT flags the result “Packet Size Changed”,doeb
not classify that server. As shown in the table, this hapgemi¢h
some frequency and renders that test inconclusive. Funtirer,

a certain minimum number of packets need to be transferned fo
TBIT to be able to classify a server, therefore servers witlals
web pages are classified as not having enough packets.

5.7 Congestion Window Appropriateness

When the TCP sender does not have data to send from the ap-
plication, or is unable to send more data because of liroitatbf
the TCP receive window, its congestion window should reflleet

data that the sender has actually been able to send. A cangest
window that doesn't reflect current information about thegestof

the network is considered invalid [29]. TBIT's Congestionnw/
dow Appropriateness test examines the congestion wind@a us
by web servers following a period of restrictions imposedthy
receive window.

In this test, TBIT uses a TCP receive window of one segment to

limit the web server’s sending rate to one packet per RTeive
RTTs, TBIT increases the receive window significantly, araitsv

only a range of bytes from the web page. After this enforced
application-limited period, TBIT would follow by requesy the
full web page.

5.8 Minimum RTO

TCP uses a retransmit timer to guarantee the delivery of data
in the absence of feedback from the receiver. The duration of
this timer is referred to as thRetransmit TimeOWRTO). A de-
tailed description of the algorithm for computing the RTO» ¢

to see how many packets the web server sends in response. Confound in [17, 42]. [42] recommends a minimum RTO of one sec-

sider a web server using standard slow-start from an initiia¢iow

of K segments, increasing its congestion window without regard
to whether that window has actually been used. Such a webrserv
will have built up a congestion window ok + 5 segments af-
ter five round-trip times of sending one packet per rounglitme,

ond, though it is well-known that many TCP implementatioss a
smaller value for the minimum RTO. A small minimum RTO gives
better TCP performance in high-congestion environmenisieva
larger minimum RTO is more robust to reordering and varialele
lays [15].

because each ACK increases the congestion window by one seg- The TBIT test to explore minimum RTO values initiates a con-

ment. The web server could suddenly sétid- 5 packets back-to-
back when the receive window limitation is removed. In casty

a web server using the Congestion Window Validation prooedu
from [29] will have a congestion window of either two segnteat
the ICW, whichever is largér.

16K LI —

14K+ 4

12K+ q

10K

10K - b

X
<

Number of Servers

2 9 35 1 7
v 2
58

Lea s T Tn0n T 0

4 5 6 7 8 9 11 12 13 14 16 17 18 19 20 21 24 31 40 41
Number of Packets in Last Window

~ [} 224

2 3

Figure 4: The congestion window after a receive-window-
limited period

Figure 4 shows the number of segments that each server sends i
response to the increased receive window at the end of thgeSen
tion Window Appropriateness test. The majority of servespond
with a window of two to four packets, showing moderate bebavi
consistent with Congestion Window Validation. A smallexdtion
of the servers respond with a large window of eight or niné&ets;
suggesting that the server increases its congestion wimdtheut
regard for the actual number of segments sent.

nection with a given server, and receives and acknowledaeleeps
as usual until packe20 has been received. By this time, the TCP
sender has taken a number of measurements of the roundwep t
and has estimated the average and mean deviation of the-topnd
time for computing the RTO. Upon packed’s reception, TBIT
stops ACKing packets and measures the time until the retrizns
sion for the last packet; this is used as an estimate of the (&EQ
by the server.

4 T a— B T

Figure 5: RTO vs. Initial RTT

Figure 5 shows the RTO values used by servers for retramsgnitt
the given packet. The-axis shows the initial round-trip time, and

In some cases the number of segments transmitted shows thathe y-axis shows the measured RTO for the server. The RTO used

the server is violating the standard rules for opening theges-

tion window during slow-start, even aside from the issuehaf t
appropriateness of a congestion window that has never ts=sh u
Because a conformant web server can have an initial window of

by a server will often be larger than the minimum RTO enforogd
that server. However, of the 37,000 servers shown in Figu46%
responded with an RTO of less than a secbnd.

at most four segments, a conformant web server can have a con§, PASSIVE CLIENT MEASUREMENTS

gestion window of at most nine segments after five singlégiac
acknowledgments have been received.

It would also be possible to use TBIT to explore the conges-
tion window used by web servers after an application-lichipe-
riod. TBIT can create an application-limited period by usie-
peated HTTP requests, once per round-trip time, each rénges

SRFC 2861 [29] was written when the ICW was still only one packe
RFC 2861 doesn't explicitly say that the ICW should be takera dower
bound for the reduced congestion window. However, RFC 3398 that
the sender MAY use the initial window as a lower bound for tastart
window after an idle period, and it makes sense that the semoigld use
the initial window as a lower bound in this case as well.

The previous sections discuss results from active measuntsm
from a TBIT client machine to a target set of web server desti-
nations. Such analysis sheds light on the correctness afaf-pe
mance characteristics of a significant population of inftakl web
servers, and also provides insights into the charactesisfithe in-
termediate nodes on the paths that carry packets betwediBtfie
client and the servers. However, this is only one part of tbeys
We are also interested in observing the Internet from thepeetive

5The minimum RTO test requires a transfer of at least 20 paciwa there-
fore we could not assess the minimum RTO to over half the walesein
our list.

of web clients. To achieve this perspective we collect faitket
traces of traffic to and from the web server of our researcbriab
tory. In this section we present the result from the analgsthose
traces.

We collected packet traces of full TCP packets to and from por
80 on our lab’s web servewvw.icsi.berkeley.eddor roughly two
weeks (from February 24, 2004 to March 10, 2004). Such aefatas
provides a wealth of information about a disparate set ofcdliebts.
However, given the heterogeneity of the Internet we do raitrel
this dataset isepresentative Rather we present it as a data point.
Capturing entire packets allowed us to verify the TCP chacks
and discard packets that did not pass. In the dataset wevebser
206,236 connections from 28,364 clients (where a “cliesttie-
fined as an IP address). Of these, 613 (or, 0.3%) connectiers w
not analyzed due to the packet trace missing the initial S¥ s
by the client and therefore throwing off our analysisVe do not
believe that deleting these connections biased our results

The first set of items we measure are the capabilities thatclie
TCPs advertise during connection startup. Of all the clieB05
(or 0.7%) show inconsistent capabilities across connestfcom
the same IP address. An example inconsistency would be ane co
nection from a particular IP address advertising supporSA&CK,
while a subsequent connection does not. Our inconsistemagkc
includes the SACK permitted option, the timestamp optidre t
window scale option (and the advertised value), the MSSoopti
(and the MSS value) and whether the connection advertiggosu

space used by the connection, but did not fall along data segm
boundaries. Meanwhile, the remaining 845 bogus SACK blocks

were for sequence space never used by the connection. Nmie: a

sible explanation for some of the strange SACK blocks is ¢that
packet tracing infrastructure missed a data segment amefthe

when a SACK arrives we have no record of the given packet bound

aries. However, given that)(the discrepancy between the overall
rate of observing these SACKs when compared to the percentag
of clients involved andif) many of the bogus SACK blocks were
completely outside the sequence space used by the cormegto
believe that packet capturing glitches are not the predanticause

of these bogus SACK blocks.

Next we outline the prevalence of Duplicate SACK (D-SACK)
[26] blocks in our dataset. D-SACK blocks are used by data re-
ceivers to report data that has arrived more than once antéean
used for various tasks, such as attempting to set a propéir dup
cate ACK threshold and reversing needless changes to TGRS ¢
gestion control state caused by spurious retransmissiiljs [n
our dataset we observed 809 hosts (or, 3% of all hosts) sgndin
D-SACK blocks. Note that more than 3% of the hosts may support
D-SACK, but were not faced with a situation whereby transinis
of a D-SACK was warranted.

We also investigated whether there were cases when the aumul
tive acknowledgment in incoming ACKs did not fall on a segimen
boundary. Of the roughly 4.7 million ACKs received by our web
server, 18,387 ACKs contained cumulative ACK numbers ticht d

for ECN. Options may be inconsistent due to a NAT between the not agree with the segments sent. These ACKs were origifigted

client and our server that effectively hides multiple ctiebehind a
single IP address. Alternatively, system upgrades andguanafiion
changes may also account for inconsistency over the cofiaa o
dataset.

We next study TCP’s cumulative acknowledgment and the selec
tive acknowledgment (SACK) option [37]. In our dataset, 906
clients (or 87.8%) advertised “SACK permitted” in the inltSYN.
Across the entire dataset 236,192 SACK blocks were returoet
the clients to our web server. We observe loss (retransonissi
from the server) without receiving any SACK blocks with ohlyo
clients that advertised SACK capability. This could be doeat
bug in client implementations, middlebox interference ionge
network dynamics (e.g., ACK loss). Therefore, we concluus t
clients advertising “SACK permitted” nearly always follay with
SACK blocks, as necessary.

As outlined in Section 4.1, the TBIT SACK tests yield some
transfers where the sequence numbers in the SACK blockstfrem
clients are “shifted” from the sequence numbers in the laskets.
Inaccurate SACK blocks can lead to the sender spurioudigimet
mitting data that successfully arrived at the receiver,aaiting on
a timeout to resend data that was advertised as arriving bighw
was never cumulatively acknowledged. To look for such a phe-
nomenon in web clients or middleboxes close to clients we ana
lyzed the SACK blocks received from the clients and deteeahin
whether they fall along the segment boundaries of the wekessr
transmitted data segments. We found 1,242 SACK blocks $86).
that do not fall along data segment boundaries. These SAQikbI
were generated by 49 clients (or 0.2%). The discrepancydmstw
the rate of receiving strange SACK blocks and the percentdge
hosts responsible for these SACK blocks suggests a clidates
middlebox bug. These results roughly agree with the resuliec-
tion 4.1. Of the bogus SACK blocks received, 397 were offget.+-
the sequence numbers in the SACK block were within the seguen

"The dataset is really composed from separate 24-hour parekess, and
so connections which continue across two of these trace$osramid-
connection.

36 clients. The rate of receiving these strange ACKs is 0.A4% i
the entire dataset, meanwhile the number of clients redperfer
these ACKs represents 0.1% of the dataset, indicating thgdyb
clients or middleboxes may be the cause of these ACKs.

In our dataset, the timestamp option is advertised by 6,li€6ts
(or 21.5%). Clients that do not accurately echo timestanipesa
to the server or middleboxes that alter the timestamp of aipas
packet may cause performance degradation to the conndmnjion
increasing or reducing the retransmission timeout (RT@)nege
of the server. If the RTO is too small the data sender will tote
prematurely, needlessly resending data and reducing thgese
tion window. If the RTO is too large performance will suffeued
to needless waiting before retransmitting a segment. Inlataset,
20 clients returned at least one timestamp that the server sent
(some of the timestamps returned by these clients were)valids
result suggests that the network and the endpoints aréuiiythar-
rying timestamps in the vast majority of cases.

1
0.9
0.8
0.7
0.6
05
0.4
03
0.2 S

0.1 /Jr
0

1000 10000 100000
Advertised Window (bytes)

=

CDF

1le+06

Figure 6: Distribution of advertised windows use by web
clients.

We next examine the advertised windows used by web clients.

[12] shows how the client’'s advertised window often dicsatiee
ultimate performance of the connection. Figure 6 shows iste-d
bution of the maximum window advertisement observed foheac
client in our dataset. Roughly, the distribution shows nsode

8 KB, 16 KB and 64 KB. These results show an increase in ad-
vertised window sizes over those reported in [12] (in 200@)pur
dataset the median advertised window observed is just @/&B3
and the mean is almost 44 KB, whereas [12] reports the median a
vertised window as 8 KB and a mean of 18 KB. Additionally, D54
clients (or 26.6% of our dataset) advertised support for 'S @fh-
dow scaling option [30], which calls for the advertised windto

be scaled by a given factor to allow for larger windows than ca
naturally be advertised in the given 16 bits in the TCP heatlest
over 97% of the clients that indicate support for window zal
advertise a window scale factor of zero — indicating thatdient

is not scaling its advertised window (but understands windoal-
ing if the server wishes to scale its window). Just over 1%hef t
clients in our dataset use a scale factor of 1, indicatingttreaad-
vertised window in the client’s segments should be doubkdfdrie
using. We observed larger window scale factors (as high &s 9)
small numbers in our dataset.

We next look at the MSS advertised by web clients in the ihitia
three-way handshake. Two-thirds of the clients used an MSS o
1460 bytes (Ethernet-sized packets). Over 94% of the eliesed
an MSS of between 1300 bytes and 1460 bytes. The deviation fro
Ethernet-sized packets may be caused by tunnels. Roughlyf4%
the clients in our dataset advertised an MSS of roughly 53ésby
We observed advertisements as small as 128 bytes and asafarge
9138 bytes. This analysis roughly agrees with [12].

Finally, we note that we observed 48 clients (or 0.2% of the
clients in our dataset) advertising the capability to usgliei Con-
gestion Notification (ECN) [46]. That is, only 48 clients §&YNs
with both the ECN-Echo and Congestion Window Reduced bits in
the TCP header set to one.

7. MEASUREMENT LESSONS

MSS is important for TBIT-like measurements. Figure 7 shtves
distribution of minimum MSS sizes we measured across thefset
web servers used in our study. As shown, nearly all servétgevi
cept an MSS as small as 128 bytes, with many servers supgortin
MSS sizes of 32 and 64 bytes. Another aspect of the segment siz
that surprised us is that segment sizes sometimes charigg the
course of a connection (e.g., as reported in the tests of ABS&c-

tion 5) . Therefore, we encourage researchers to design thesit
are robust to changing packet sizes (or, at the least wanmstreof

a test when such an event is observed).

5.5%

4.1%

2.7%

% of reordered packets
w
T

64 128 256

MSS Value

512

Figure 8: Reordering vs MSS

Choosing a small MSS to maximize the number of segments the
web server transmits is a worthy goal. However, we also fiad th
as the MSS is reduced the instances of packet reorderingaser
Figure 8 shows the percentage of reordered segments astefunc
of the MSS size.

One explanation of this phenomenon is that using a smalle8 MS
yields transfers that consist of more segments and theréfave
more opportunities for reordering. Alternatively, smaltfets may
be treated differently in the switch fabric — which has beleoven
to be a cause of reordering in networks [18]. Whatever the&au
researchers should keep this result in mind when designiperie
ments that utilize small segments. Additionally, the resuggests

In conducting the measurements presented in this paper we ob that performance comparisons done using small segmentsiotay

served a number of properties of the network and the endragste
that challenged our assumptions and ultimately shapedoals.t
In this section, we distill several lessons learned thagmstiton-
ducting similar measurements should keep in mind.

00!
oo ‘ T 15K
10K 8K —
1K —
151
100 46 63
14
1 1 H 0
0
6 512

32 64 128 25 1024 1460

Number of servers

[S)
T

MSS Value
Figure 7: Minimum MSS Test

The TBIT tests presented in this paper attempt to use a small

MSS so that the web server splits the data transfer into mege s
ments than it naturally would. In turn, this provides TBITthvi
additional ways to manipulate the data stream. For instahee
server transmits one segment of 1280 bytes then TBIT camaisdye
conduct certain tests, such as assessing the Initial WinéHmw-
ever, if the server is coaxed into sending 10 segments of $&%b
more tests become possible (due to the increased varietgnas
ios TBIT can present to the server). The set of TBIT testsqutesl

be directly extrapolated to real-world scenarios whergdaseg-
ments are the rule (as shown in Section 6) since reorderipgdta
performance [18, 19].

As outlined in Section 5, we find web servers’ slow start behav
iors to be somewhat erratic at times. For instance, Sect®firgls
some web servers using “weak slow start” where the web server
does not increase the congestion window as quickly as atldwe
the standards In addition, we also found cases where the conges-
tion window is opened more aggressively than allowed. Tldifse
ferences in behavior make designing TBIT-like tests diffisince
the tests cannot be staked around a single expected behavior

Also, we found that some of our TBIT measurements could not
be asself containedas were all the tests from the original TBIT
work [41]. Some of the tests we constructed depended on pecu-
liarities of each web server. For instance, the Limited $ram
test outlined in Section 5.6 requires apriori knowledgehef web
server’s initial window. This sort of test complicates maasment
because multiple passes are required to assess some op#imlca
ities of the web servers.

Finally, we note that in our passive analysis of web cliergreh
acteristicsverifying the TCP checksum is kigy some of our ob-
servations. In our dataset, we received at least one segmiignt
a bad TCP checksum from 120 clients (or 0.4% of the clients in

in [41] employed a_ 100 byte MSS. When we initia_ted_ _the present 8gcp non-aggressive behavior is explicitly allowed under $tandard
study we found this MSS to be too small for a significant num- congestion control specification [16], but we found it sigipg that a web
ber of web servers. Therefore, determining the smalleswalble server would be more conservative than necessary.

[TCP Mechanism [Section | Deployment Status |
Loss Recovery 6,5.2 SACK is prevalent (in two-thirds of servers and nine-terghselients).
5.1 NewReno is the predominant non-SACK loss recovery strategy
D-SACK 6,5.2 D-SACK is gaining prevalence (supported by 40% of servedsaieast 3% of clients)
Congestion Responsg 5.4 Most servers halve their congestion window correctly adtérss.
Byte Counting 55 Most web servers use packet counting to increase the comgegndow.
Initial Cong. Window | 5.3 Most web servers use an ICW of 1 or 2 segments.
ECN 4.2 ECN is not prevalent.
Advertised Window | 6 The most widely used advertised window among clients is 64\HtB many clients
using 8 KB and 16 KB, as well.
MSS 6 Most of the clients in our survey use an MSS of around 1460shyte
Table 11: Information for modeling TCP behavior in the Inter net.
| Behavior [Section | Possible Interactions with Routers or Middleboxes
SACK 5.2,6 In small numbers of cases, web clients and servers recei@$%ocks with incorrect
sequence numbers.
ECN 4.2 Advertising ECN prevents connection setup for a small (amdrdshing) set of hosts.
PMTUD 4.3 Less than half of the web servers successfully complete @ath Discovery.
PMTUD is attempted but fails for one-sixth of the web servers
IP Options | 4.4 For roughly one-third of the web servers, no connectiontatdished when the client includes
an IP Record Route or Timestamp option in the TCP SYN packet.
For most servers, no connection is established when tha alieludes an unknown IP Option.
TCP Options| 4.5 The use of TCP options does not interfere with connectiombdishment. Few problems
were detected with unknown TCP options, and options indudelata packets in mid-stream.

Table 12: Information on interactions between transport protocols and routers or middleboxes.

the dataset). This prevalence of bogus checksums is langer t
the prevalence of some of the identified characteristichk®fteb
client (or network). For instance, we identified only 49 ot®that
advertise support for ECN and report receiving bogus SAGQIKKs
from 36 clients. If we had not verified the TCP checksum these t
characteristics could have easily been skewed by manglediza
and we’d have been none-the-wiser. In our experiments, wé us
tcpdump[4] to capture full packets and theopurify [5] to verify
the checksums and then store only the packet headers irate tr
files we further analyzed.

8. CONCLUSIONS AND FUTURE WORK

The measurement study reported in this paper has exploeed th

the results presented in this paper. There are a wealth afrimp
tant TCP behaviors that have not been examined, and new TCP
mechanisms are continually being proposed, standardizedie:
ployed. Assessing their deployment, characteristics amaiiors
in the context of the evolving Internet architecture arefulsav-
enues of future work.

Another class of extensions to this work is exploring thegvédr
of TCP in additional applications (e.g., peer-to-peerays, email,
web caching, etc.). Also, we performed all our tests havhey t
measurement client machine in our research laboratoryth&ur
network and host dynamics may be elicited by performing FBIT
like tests in different environments such as having the T&i@nt
behind different types of middleboxes (e.g. firewalls, NABK:.)

deployment of TCP mechanisms in web servers and clients, andat different security levels.

has considered the interactions between TCP performantthan
behavior of middleboxes along the network path (e.g., SAGHKrt
mation generation, ECN, Path MTU Discovery, packets witlodP
TCP options). Our concerns have been to track the deploy(oent
lack of deployment) of transport-related mechanisms ingpart
protocols; to look out for the ways that the performance ofinae
nisms in the Internet differs from theory; to consider hovadhé-
boxes interfere with transport protocol operation; anddosider
how researchers should update their models of transpaxiquis
in the Internet to take into account current practice and eeme
alistic network environment (Table 11). The main contritatof
this work is to illustrate the ways that the performance aftpcol
mechanisms in the Internet differ from theory. The insigiash-
ered from our measurements involving the interactions eetw
TCP and middleboxes along the network path are summarized in
Table 12.

There exist significant avenues for future work in the light o

9Before truncating a captured packet to store on the headetatér pro-
cessingtcpurify stores a code in the TCP checksum field indicating whether
the checksum in the original packet was right, wrong or wietttpurify did

not have enough of the packet to make a determination.

An additional interesting area for future investigationusing
TBIT-like tools for performanceevaluation. For instance, a perfor-
mance comparison of servers using various initial congestiin-
dow values or servers with and without SACK-based loss regov
may prove useful. Developing techniques for conducting kimid
of performance comparison in a solid and meaningful way ¢d
tecting when such a comparison is not meaningful) is a rieb &or
future investigation. Furthermore, performing tests fromltiple
vantage points to assess middlebox prevalence and belaviar
wider scale would be useful.

As new transport protocols such as SCTP and DCCP begin to
be deployed, another area for future work will be to constroals
to monitor the behavior, deployment and characteristicthese
protocols in the Internet.

While we examined some ways that middleboxes interfere with
TCP communications, a key open question is that of asseasiyg)
that middleboxes affect th@erformanceof transport protocols or of
applications. One middlebox that clearly affects TCP penénce
is that of Performance Enhancing Proxies (PEPS) [21] thealbr
single TCP connections into two connections potentiallgngding
end-to-end behavior. While [13] presents some resultsisngin-

eral area, additional active tests would be useful to inyast this
area further.

Finally, a completely different kind of test that may benéfim
the active probing approach outlined in this paper would be o

to detect the presence or absence of Active Queue Management

mechanisms at the congested link along a path. To some gittisnt
can be done with passive tests, by looking at the patternwfd-o
trip times before and after a packet drop. However, actistst@ay
be more powerful, by allowing the researcher to send shog afi
back-to-back packets, as well as potentially problematithat the
tool might need to induce transient congestion in the nédivtor
assess the queueing strategy.

Acknowledgments

Orion Hodson assisted with our TBIT measurements. Tharscs al
to Gorry Fairhurst, Sourabh Ladha, and the anonymous review
for their helpful feedback.

9. REFERENCES

[1] Alexa web search - top 500 web sites. URL
http://www.alexa.com/site/ds/togites.

[2] NLANR Web Caching project. http://www.ircache.net/.

[3] PMTU Black Hole Detection Algorithm Change for WindowsTN
3.51. Microsoft Knowledge Base Artible - 136970.

[4] tcpdump. URL http://www.tcpdump.org.

[5] tcpurify. URL http://irg.cs.ohiou.edd’eblanton/tcpurify/.

[6] Tools for Bandwidth Estimation. Web page, URL
‘http://www.icir.org/models/tools.html’.

[7] Ethereal: Network Protocol Analyzer, 2004.

[8] M. Allman. On the Generation and Use of TCP Acknowledgetae
Computer Communication Revie@8(5), October 1998.

[9] M. Allman. TCP Byte Counting RefinemenSomputer Communica-
tion Review29(3), July 1999.

[10] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing T&CPoss
Recovery Using Limited Transmit, January 2001. RFC 3042.

[11] M. Allman, S. Floyd, and C. Partridge. Increasing TCRial Win-
dow, 2002. RFC 3390.

[12] Mark Allman. A Web Server’s View of the Transport Lay@omputer
Communications RevigB0(5):10-20, October 2000.

[13] Mark Allman. On the Performance of Middleboxes. ACM SIG-
COMM/USENIX Internet Measurement Confergnoages 307-312,
October 2003.

[14] Mark Allman and Vern Paxson. On Estimating End-to-EnetWbrk
Path Properties. IACM SIGCOMM pages 229-240, 1999.

[15] Mark Allman and Vern Paxson. On Estimating End-to-Enetwbrk
Path Properties. IACM SIGCOMM September 1999.

[16] Mark Allman, Vern Paxson, and W. Richard Stevens. TCRdestion
Control, April 1999. RFC 2581.

[17] R.Barden. Requirements for Internet Hosts — Commtioicd.ayers,
October 1989. RFC 1122.

[18] Jon C.R. Bennet, Craig Patridge, and Nicholas Schetfacket Re-
ordering is not Pathological Network BehavitEEE/ACM Transac-
tions on Networking7(6), August 1999.

[19] Ethan Blanton and Mark Allman. On Making TCP More Ro-
bust to Packet ReorderingCM Computer Communication Review
32(1):20-30, January 2002.

[20] Ethan Blanton and Mark Allman. Using TCP DSACKs and SR
plicate TSNs to Detect Spurious Retransmissions, 2004. 3#08.

[21] John Border, Markku Kojo, Jim Griner, Gabriel Montenggand
Zach Shelby. Performance Enhancing Proxies Intended timaikt
Link-Related Degradations, June 2001. RFC 3135.

[22] Douglas E. Comer and John C. Lin. Probing TCP Implenténta.
In USENIX Summer 1994 Conferend®94.

[23] Wesley Eddy, Shawn Ostermann, and Mark Allman. New meples
for Making Transport Protocols Robust to Corruption-Basexs.
ACM Computer Communication Revie®4(5), October 2004.

[24] Kevin Fall and Sally Floyd. Simulation-based Companis of Tahoe,
Reno, and SACK TCPComputer Communications Revie6(3),

July 1996.

[25] S. Floyd. Inappropriate TCP Resets Considered Harrgfd02. RFC
3360.

[26] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Exé®n to

the Selective Acknowledgement (SACK) Option for TCP, JU0Q.

RFC 2883.

[27] Sally Floyd and Kevin Fall. Promoting the Use of EndHoed Conges-
tion Control in the InternelEEE/ACM Transactions on Networking
7(6), August 1999.

[28] Sally Floyd and Eddie Kohler. Internet Research Neeeid8 Mod-
els. InProceedings of the First Workshop on Hot Topics in Networks
(HotNets-I) October 2002.

[29] Mark Handley, Jitendra Padhye, and Sally Floyd. TCP dastion
Window Validation, June 2000. RFC 2861.

[30] V. Jacobson, R. Barden, and D. Borman. TCP Extensionsligh
Performance, May 1992. RFC 1323.

[31] Amit Jain, Sally Floyd, Mark Allman, and Pasi Sarolal@iuick-Start
for TCP and IP, February 2005. Internet-Draft draft-amite§f-start-
04.txt (work in progress).

[32] Christopher Kent and Jeffrey Mogul. Fragmentation €idered
Harmful. INnACM SIGCOMM October 1987.

[33] Sourabh Ladha. The TCP Behavior Inference Tool (TBIXieBsions,
2004. URL http://www.cis.udel.edu/ ladha/tbit-ext.html

[34] Sourabh Ladha, Paul D. Amer, Armando L. Caro, and Jdnzardlyen-
gar. On the Prevalence and Evaluation of Recent TCP Enhamtem
Globecom 2004November 2004.

[35] Kevin Lahey. TCP Problems with Path MTU Discovery, Sepber
2000. RFC 2923.

[36] R. Ludwig and M. Meyer. The Eifel Detection Algorithmrf@CP,
2003. RFC 3522.

[37] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn fiRanow.
TCP Selective Acknowledgement Options, October 1996. RFIB2

[38] Jack McCann, Steve Deering, and Jeffrey C. Mogul. PalftUNDis-
covery for IP Version 6, August 1996. RFC 1981.

[39] Alberto Medina, Mark Allman, and Sally Floyd. Measugitnterac-
tions Between Transport Protocols and MiddleboxesAGM SIG-
COMM/USENIX Internet Measurement Confergr@etober 2004.

[40] Jeffrey C. Mogul and Steve Deering. Path MTU Discovétgyember
1990. RFC 1191.

[41] Jitendra Padhye and Sally Floyd. Identifying the TCFh&eor of
Web Servers. IRCM SIGCOMM August 2001.

[42] V. Paxson and M. Allman. Computing TCP’s Retransmisslamer,
November 2000. RFC 2988.

[43] Vern Paxson. Automated Packet Trace Analysis of TCHémpnta-
tions. INACM SIGCOMM September 1997.

[44] Vern Paxson. End-to-End Internet Packet DynamicsAGM SIG-
COMM, September 1997.

[45] Jon Postel. Transmission Control Protocol, Septeni$#81l. RFC
793.

[46] K.K. Ramakrishnan, Sally Floyd, and David Black. Theditibn of
Explicit Congestion Notification (ECN) to IP, September 20BFC
3168.

[47] J.H. Saltzer, D.P. Reed, and David Clark. End-to-Endutments
in System Design. IfProceedings of the Second International Con-
ference on Distributed Computing Systerpages 509-512, August
1981.

[48] S. Savage, N. Cardwell, D. Wetherall, and T. AndersdbPTonges-
tion Control with a Misbehaving ReceivehCM Computer Commu-
nication Review29(5), October 1999.

[49] Srinivasan Seshan, Hari Balakrishnan, Venkata N. Rexdohan,
Mark Stemm, and Randy Katz. TCP Behavior of a Busy Internet
Server: Analysis and Improvements. San Francisco, CA, M2888.

[50] Matthew Smart, G. Robert Malan, and Farnam Jahaniafedliag
TCP/IP Stack Fingerprinting. 18th USENIX Security Symposium
pages 229-240, 2000.

