USING STRONGLY TYPED
NETWORKING TO ARCHITECT FOR
TUSSLE

Chitra Muthukrishnan (UW-Madison)
Vern Paxson (ICSI/UC Berkeley)

Mark Allman (ICSI)
Aditya Akella (UW-Madison)

Internet architecture
must accommodate
them (Clark et al,
Sigcomm'o2)

Cogent-Telia Peering Dispute Widely Felt] o]
Design for variation in

March 18th, 2008 : Rich Miller

has left mar

The ongoing peering dispute between nd
Metallica Rips Napster outcome

Allow tussles to play
out within the design

Providers v. Users

Goosle mommm FEREZHILTON- Network elements:
Google books discriminate/control traffic

MEGADES _ Attack resistance, monitoring,
AUPs, competition

£, surfthec SUBERNOVA

Users desire free access

WikipeDiA thetrain C 3 Some try to evade by cloaking

Ggogle | " or encrypting traffic

Arm race... Evasion schemes Layers of messy
protocols/controls

... Ending in: Heavy handed policies (*block all
encrypted traffic”); Opaque, difficult-to-debug network

Return to a completely
neutral network?

Maybe not...

- Any definition unlikely to be universally binding

- Private networks will not be neutral
- Traffic distinction also useful to improve performance

Tussle will not go away.

Non-technical net neutrality approaches not viable.

How to accommodate this tussle space?

Thought exercise: design guidelines and
core functions to allow tussle to play out

Ignore practical issues, e.g., overhead and
efficiency

Architecting for Tussle

Design guidelines

Core functions

Extensions and conclusion

Guideline 1.

Transparency

Network elements (NEs): know the
exact semantics of traffic they carry

Users: know network policies (e.qg.,
restrictions, transformations)

Guideline 2.
Choice

Users: choose which msg. parts can be
inspected, what must remain private;
able to switch paths

Providers: express level of visibility desired

Core functions

Strong typing

Include semantic information within communication

Dialog

Negotiate and agree upon communication rules

Selective encryption
Choose paths, enforce access controls

Verification
Communication proceeds as agreed

Strong Typing

Prog. languages: Every group of bits has semantic context,
enforceable at run-time

Networking: All messages carry type information

Governs how receiver will interpret msg. components

Extensive: Atomic values (IP address, status codes) to aggregate
objects (MIME, HTTP structs)

Exhaustive: Every single part of communication is typed

Typing provides transparency

Extends Blumenthal & Clark’s labeling approach
Semantic-focus; enforceable

One possibility: use XML.
Tag content in a hierarchical fashion

<http>
<reply>
<status> 200 OK </status>
<content>
<exe>
<data> [exe data] </data>
</exe>
</content>
<[reply>
</http>

Dialog

Typing paves way for dialog to negotiate
communication properties

NE
- Exe Checker
- (All) Private types \

- No Readable types Desired level

- No Modifiable types of visibility/
Reject control?

Need exe

Accept

- Fewer private types
- Exe readable
- Modifiable types

Pre-connection or in-band

Sender may choose an alternate path.
Fail if no such path = reason in full view

Network has upper hand, but visibility limits collateral damage

11

Selective Encryption

Helps enforce access controls

<http, EncryptedData> _
Sender exchanged K1 with

<KeyName> K1 </[KeyName> ------mccmmmmmmmme > _
F<CipherData, reply> exe checker NE (not discussed)
<EncryptedData>

<KeyName> Krcvr </[KeyName>

i
1
1
t---> Encrypted using K1
1
<CipherData> i

<Messagelntegrity> ... </Message|ntegrity>:

P

1

I . .

1

: I

1
%
ol

=
g
Qi
~+l
l
~ 1
-
N
q
<
©
~+
‘é
(O]
~+i
(o]]
Vi
I
I
1
I
I
I
I
I
I
I
I
I
I
I

Encrypted using Ka
Cksum prevents illegal mods

<content, exe>

[exe data]

<Messagelntegrity> ... </Messagelntegrity>
</exe, content>

-->
Integrity key: If NE has
permission, it can change exe.
Checksum updated with K1

o

EncryptedData, http>

Ty, W -

<

Core Functions in Action

NEa1
Exe blocker

1. Route
discovery
(e.g. Pathlets

6. Message
reception

Receiver

Cookie sniffer Cookie sniffer

Verification

Rely on trusted receivers to enforce types: type assertions

Inherent validation in other cases using attesters

Apps submit objects;
receive attestations

Apps submit objects;

receive attesjzitl%‘;’s;z

i Trusted
third-party
attestor

=l‘.--""""_>

NEs may require
TTP attestations
as part of policy

Not effective against steganography
This may be the best outcome we can hope for

Extensions

Routing changes: no context at new NEs
Type safe handoffs using periodic certificates

Transport properties: transfer rate, #connections
] {of

Not exactly “type” information, but can be fitin

Cooperative scenarios: NEs can serve better if
they know precise traffic semantics

Transcoders for mobile phones, application-specific
caches/compression engines

A thought exercise on architecting for
providers v. users tussle

Transparency and user choice key guidelines

Strong typing is the primary building block
Dialog, selective encryption, verification

Many practical hurdles (crypto inefficiency,
key management, typing overhead, ...)

Practical Issues

Routing changes: re-establishing transfer?
Type safe handoffs?

Overhead of typing: processing/network
(mobile devices?)

Crypto: Key management, encryption/
decryption overhead

Key Establishment

Sender shares requisite keys with NEs and receiver

Keys can be applied to all flows to receiver, assuming
route stationarity

<Key exchange>

<Key name> PubKne </Key name>

<Cipher data>

[K1 encrypted with PubKne]

</Cipher data>

<Carried key name> Ka </Carried key name>

<Integrity checksum> .. <Integrity checksum>
</Key exchange>

Impending Mess: Mis-decisions,
Entanglement, Brittleness

Networks: crude, hidden mechanisms to identify/
control traffic

Users: can’t resolve why some activities fail (“why
Is my connection slow?")

Arms race: evasion schemes

layers of messy protocols

Heavy-handed policies: “"Block all encrypted
traffic”

Network becomes more opaque, difficult to debug

19

Backup: related work

* Treating middleboxes as first class entities

* Traversal, transparency and negotiation in
isolation and for specific purposes
Our work combines these themes
We look at it from the perspective of a tussle

= Labeling

Typing is an instance of labeling
Semantically clear
Improves enforceability

