

§ Helsinki Institute for Information Technology HIIT / Aalto University, Teknikvägen 14, 02150 Espoo, Finland
* International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, California, 94704
ɣ University of California, Berkeley, 2200 University Drive, Berkeley, California 94720
ⱡ Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley, California, 94720

Many thanks to Nat Stoddard for his extensive efforts capturing the LBL2 dataset. Our thanks too to Scott
Campbell for his assistance with VLAN‐related trace manipulation. This work was funded in part by NSF grants
CNS‐0831535 and NeTS‐1161799. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the sponsors.

Towards Methodical Calibration: A Case Study
of Enterprise Switch Measurements

Boris Nechaev§, Vern Paxson*ɣ ⱡ, Mark Allman*, Mike Bennett ⱡ,

and Andrei Gurtov§

TR‐13‐005

September 2013

Abstract

In this work we discuss the general problem of how to undertake the thorough calibration of
empirical data, by which we mean identifying (and ideally remedying) shortcomings and biases
present in the data due to the process by which we collected it. We illustrate a methodology
for proceeding with such calibration in the context of network trace measurements; in
particular, traces captured from switches within an enterprise. We argue that such calibration
fundamentally requires proceeding in a progressive fashion, building up an understanding of
the data's quality first regarding basic properties and then onward to more complex properties.
In addition, the procedure often has an iterative nature, where the investigation of these more
complex properties can lead to revisiting earlier calibration steps in order to further refine
them. While the methodology often proves labor‐intensive, it arguably plays a vital role in
establishing the ultimate soundness of any subsequent analysis based on the data.

1

I. INTRODUCTION

Any empirical investigation necessarily begins with
collecting measurements. The calibration of this data—
by which we mean identifying (and ideally remedying)
shortcomings and biases present in the measurements
due to the process by which we collected them—forms
an integral part of data-driven scientific study, since data
quality has crucial implications for the soundness of
any empirical analysis results. This observation applies
equally well to network traffic analysis as to high-
energy physics, yet we find little guidance in the network
research literature regarding how to actually pursue this
undertaking.

In this work we attempt to frame a general method-
ology for calibrating measurement data. Our approach
stems from our extensive experience and long-term inter-
est in conducting network measurement studies [15], and
we illustrate the process using a case-study drawn from
that domain. However, we believe the overall framework
likely has applicability to other data-driven disciplines.

In high-level terms, we advocate for:

1) If possible, build calibration-oriented monitoring
into the measurement process itself.

2) Proceed with calibration in aprogressive fashion,
starting with establishing the most basic properties
of the data, and then moving on to the next set
of properties that we can investigate given our
understanding of those basic properties; and so on.

3) At each stage, comprehensively assess properties
of the data in terms of ourdomain knowledge of
which behaviors we believe should or should not
manifest. Inconsistencies in this regard often point
up to measurement-related issues, though we must
take care to avoid deeming a true phenomenon as
a measurement artifact.

4) Be prepared toiterate, revisiting the assessment
process of previous stages in light of new under-
standings that emerge from later stages.

In abstract terms, the above procedure aims to enable us
to progressively build up confidence regarding our under-
standing of the data: its peculiarities, skews, omissions,
and actual precision/accuracy. When we find problems,
in some cases we can perhapsremedy them (or at least
partially) by applying post-facto corrections. In other
cases, we can only note the presence of an issue so
that we can take its influence into account when later
developing analyses that in part depend on it.

There is of course a world of difference between
simply outlining such an approach versus the consid-
erations that actually arise when applying it concretely.
To address that concern, we illustrate an application of

the above methodology to a specific problem: calibrat-
ing network packet trace measurements captured from
switches internal to an enterprise.

Our efforts regarding such measurements actually be-
gan a number of years ago, with capturing and calibrat-
ing enterprise network traces as described in [11]. In
that work we discussed a number of calibration steps,
but did not illuminate the methodology underlying the
process. Subsequent to that effort, we gathered a sec-
ond extensive set of measurements—monitoring nearly
1,000 hosts—at the same enterprise. For this effort, we
drew upon our experiences from calibrating the first
set of measurements to modify the capturing procedure.
Doing so enabled us to successfully avoid some of
the measurement pitfalls we previously discovered—
though our revised measuring process also introduced
some new issues. In particular, the calibration procedures
and results we present here differ significantly from
those used in the earlier work (necessarily so, since we
changed the measurement procedure precisely to avoid
some of the earlier issues). Our new measurements also
give us an opportunity to assess the efficacy of some
of the previous calibration efforts reported in [11] using
new “ground truth” not originally available.

In specific terms, for the traces we address the fol-
lowing calibration issues: measurement-induced loss and
reordering, timing fidelity, packet duplication, and infer-
ence of network topology. In examining these issues we
strive both to demonstrate the nature of our progressive
calibration methodology as applied to real data, and to
formulate recommendations for sound switch-based trace
collection in enterprise environments.

We structure the paper as follows. In§ II we describe
our capturing apparatus and give an overview of the
resulting data. In§ III we discuss the first step in
the process, building calibration-oriented monitoring into
the measurement itself. We then proceed to the post-
capture calibration procedure, beginning in§ IV with
measurement-induced packet reordering and proceeding
in § V to measurement-induced loss.§ VI frames our
efforts to understand network topology from the packet
traces, and§ VII explores timing fidelity issues.§ VIII
discusses calibrating packets for which we observe du-
plicate copies. Finally, we conclude in§ IX.

II. CAPTURING PROCESS ANDRESULTING DATA

Our first efforts at calibrating switch-level packet
traces, described in detail in [11], focused on a set of
measurements taken at the Lawrence Berkeley National
Laboratory (LBL) between October 2005 and March
2006. Using the lessons from that effort, we collected

2

Fig. 1. Measurement apparatus ofLBL2.

another dataset at LBL from November 2009 through
February 2010. The two sets of traces are similar in
spirit, but differ in the specifics of the capturing appara-
tus. In the rest of the paper we refer to the older dataset
asLBL1 and the newer asLBL2.

We captured theLBL1 measurements using passive
taps mirroring up to ten 10/100 Mbps Ethernet links (all
connected to a single switch). The taps fed into a switch
that then aggregated the mirrored traffic onto two 1 Gbps
Ethernet links, each carrying the (bidirectional) activity
of up to five of the links. We then recorded the full
contents of the Gbps links using atcpdump process
for each.

As we will describe shortly, this approach introduced
some difficulties in interpreting the resulting data, lead-
ing us to revise the setup when an opportunity arose to
capture new measurements. The capturing apparatus for
LBL2 consisted of two monitoring switches (Catalyst
3750E) with 10 Gbps mirroring ports placed between
an LBL closet switch and the monitored end hosts,
as depicted in Figure 1. A high performance FreeBSD
host runningtcpdump processes recorded the packets
mirrored by the monitoring switch. As inLBL1, the
production Ethernet cable going from the closet switch
could connect myriad devices to the LBL network, e.g.,
desktop hosts, laptops, printers, or unmanaged switches
that in turn connected multiple devices to the network.
Each closet switch had an uplink port leading to a router,
or to another switch in a chain of switches eventually
connecting to a router.

One of the issues we faced when analyzingLBL1
arose out of the fact that the measurement process
grouped together all packets from up to 5 ports into a

single trace, for which we had no additional information
regarding which port corresponded to which traffic. Such
ambiguity makes certain analyses difficult. For instance,
consider packet duplicates. In the absence of information
associating a given packet with a given port, we lack
any direct knowledge of whether a duplicate represents
a packet generated by an end host, or whether the switch
itself created the copy as part of switched Ethernet’s use
of flooding. To address this issue inLBL2, our capturing
apparatus used VLAN tagging [5] of individual ports,
with the switch adding a VLAN header with a distinct
tag unique to each monitored port, enablingpost facto
association of particular traffic with particular ports.

Another issue complicating theLBL1 analysis con-
cerned the directionality of a given packet, for which
again we lacked any information in the final aggregated
trace. ForLBL2, we remedied this problem by aggre-
gating the two directions of the monitored (and now
VLAN-tagged) links onto separate 10 Gbps Ethernet
links, recording them viatcpdump into two separate
trace files. Thus, the particular trace file in which a
packet appeared implicitly coded its directionality.

The above changes also provide us with an opportunity
to assess the accuracy of the calibration techniques we
used forLBL1 (per§ VI and § VIII). Unfortunately, this
new strategy also introduced a new measurement-based
artifact: packet reordering. Since the different directions
of a given traffic flow appeared on different interfaces of
the monitoring system, in some instances a later packet
arriving on one interface received a timestamp from
the kernel before that of an earlier packet arriving on
the other interface. Since the timestamps provided the
only means for associating sequencing with the packets
captured in different traces, such timestamping behavior
led to the later packet appearing to have arrived prior to
the earlier one.§ IV discusses the calibration process
that led to discovering and partially remedying this
measurement-based artifact.

The LBL network operators periodically moved our
monitoring apparatus to a new set of ports on a switch
(or a new switch upon exhausting those on the current
switch). To maximize representativeness and eliminate
possible bias, we selected the monitored switches arbi-
trarily, with one exception: the operators checked the
switch statistics for each chosen port to ensure the port
was actually in use.

We had found during our priorLBL1 analysis that
some ports connected to not to a single host but multiple
hosts, which required extensive sleuthing and analysis
effort to definitively establish. To more clearly under-
stand this situation for theLBL2 dataset—and to validate
the techniques we had previously used to detect such

3

Stat LBL1 LBL2
Total time span 1,114 hrs 1,406 hrs
Total volume 400 GB 957 GB
Total number of packets 869M 1625M
Number of days 51 61
Number of traces 100 102
Typical trace duration 23h 23h
Switch ports ∼500 ∼1000
Subnets 4 10
IP addresses 332 1471
“Good” internal TCP conns 363K 942K

TABLE I
DATASET CHARACTERISTICS.

unmanaged switches and bridges inLBL1—we also
recorded the full switch settings from 175 LBL switches
across a 12-day period. Studying the switch logs helped
solidify our understanding of the LBL network structure
and dynamics. We found particularly useful in this regard
the switch CAM tables that store the mappings of MAC
addresses connected to particular ports. These tables
revealed that 70% of the ports had at most one connected
host at a time throughout all 12 days, and for over 94% of
these ports, the same host persisted across all 12 days.
This finding meant that we can treat ports asusually
connecting only one host to the switch; but also that
the case of connecting multiple hosts occurs frequently
enough that we must always bear it in mind.

During the measurement period, LBL used 10,
100 and 1000 Mbps switch ports. Since we selected
ports arbitrarily, all three appear in our traces. We used
a general strategy of attaching the monitoring apparatus
to 10 switch ports and capturing traffic across the set
for 24 hours before choosing another set of switch
ports and repeating the process. Part way through the
data collection, the operators augmented the monitoring
apparatus such that we could capture two sets of 10 ports
simultaneously, thus doubling the number of ports mon-
itored per day.

In total we captured full payload packet traces encom-
passing 1,406 hours of network activity across 61 days
and spanning more than 1,000 switch ports. The traces
contain 1.6 billion packets and 957 GB of payload.
Table I summarizes the main characteristics of both the
LBL1 and LBL2 trace collections. We use the same
definition of “good” TCP connections staying within
LBL as in [10]: all properly established connections
terminated either by FIN or RST.

III. I NCORPORATINGCALIBRATION INTO THE

MEASURING PROCESS

Ideally we begin planning for calibration even before
commencing to gather data. Naturally, we can only

undertake such planning if we are already aware of po-
tential pitfalls of the capturing apparatus, and thus it can
prove highly valuable to undertake a pilot measurement
study, including pursuing subsequent calibration of the
recorded data, in order to learn in detail about the nature
of the process. However, we know from experience that
one can find it difficult to summon the time, energy
and resources to thoroughly calibrate preliminary data—
particularly if the window-of-opportunity for capturing
the main data appears narrow. That said, even a modest
degree of calibration effort in this regard can still prove
quite illuminating.

A related notion is to perform the initial stages of
calibration during the capturing process. Here again,
even a modest degree of analysis can pay dividends in
identifying problems early enough to enable correcting
them. We can think of this stage as focused on a basic
question: what actually got captured and what did not
(even though it should have been). For our case study, in
this regard we developed a validation procedure to check
each trace file as soon as capturing for it completed.
Without such a check, we risked finding ourselves in the
unfortunate position of having spent significant operator
effort (a resource at a premium) capturing data that itself
suffered from significant flaws.

Our validation script reported: (i) the timestamp of the
first and last packets in the trace (and hence the duration
of the trace), (ii) the maximum packet size (to indi-
rectly ensure the presence of VLAN headers), (iii) the
monotonicity of timestamp increases across the trace (to
identify coarse clock adjustments), (iv) the presence of
duplicate packets (expected to appear due to monitoring
multiple switch ports, coupled with the switch’s flooding
mechanism), (v) the total number of packets in the
trace and number of packets per VLAN (checking that
the latter summed to the former), (vi) the number of
invalid IP, TCP and UDP checksums (to identify layer-
1 problems in the capturing setup), (vii) measurement
loss, i.e., failures to record some packets (more about this
shortly), and (viii) the IP and MAC addresses observed
in the trace.

Note that these features (other than measurement loss)
all had the property of being relativelycheap to code
up (and compute). An ongoing challenge for calibration
efforts concerns just how deeply to go. We advocate a
general rule of thumb of: (i) any inexpensive test, even
for a very unlikely possibility, is worth developing, and
(ii) for more expensive tests, one has to reflect on the
cost/benefit tradeoffs to decide whether to implement the
test.

The validation script report allowed us to quickly
detect problematic trace files, and hence we could either

4

re-take the measurement, or at least discard the trace as
suffering from some large measurement-based anomaly.
In particular, the report enabled us to identify several
instances where the operators failed to switch to a new
set of ports, and also to the discovery of a mechanism
that could add VLAN headers to the packets twice
instead of once (since some maximum packet sizes
ranged abnormally high).

Regarding the other report elements, we found that
timestamps always increased monotonically, and that
duplicate packets appeared only in the downstream direc-
tion (i.e., from the switch to the end host), as expected.

We did however find 26 (IP), 9,170 (TCP) and 120
(UDP) instances of incorrect checksums. We note that
these values fit reasonably well with the expectations to
which domain knowledge led us: IP checksum errors
should be rare, since such packets should not travel
more than one IP hop (the receiving node discarding
the packet due to its invalid checksum); TCP traffic
will usually have a high volume that includes disparate
wide-area paths, so occasional errors out of millions of
packets should not particularly surprise us; UDP traffic
will tend to have lower volume and mainly remain in
the enterprise, and thus ought to only rarely manifest
errors. Such cross-checks with our expectations play a
crucial role in the the calibration process: they serve to
flag which apparent behaviors merit further investigation.
Given the cost (in terms of analyst time) to look into any
given behavior, we need to leverage our expectations to
perform triage.

For measurement loss, we used a network trace anal-
ysis script written in the Bro networking monitoring
language [14]. This script works in an end-to-end fashion
by assessing how often TCP streams include acknowl-
edgments for data not present in the trace. In the absence
of measurement loss, such situations should not arise (as-
suming the trace includes the start of the corresponding
connection), since no well-functioning TCP should ever
acknowledge data it has not received.

The script did sometimes report significant measure-
ment loss, up to 5% of TCP packets, which caused us
some concern. However, for a number of traces it did not
report any loss, and given our experiences withLBL1 of
somewhat comparable measurement loss, we attributed
those traces with significant loss rates as likely reflecting
high-speed bursts of traffic for which the monitoring
apparatus failed to keep up. Interestingly, this was only
half of the story, and in fact the script itself was being
mislead by the mis-sequencing of packets in the traces.
As discussed in the next section, we only identified this
phenomenon during our subsequent calibration process,
a good illustration of how later stages of calibration can

cast earlier stages in a new light.

IV. M EASUREMENT REORDERING

During the first stage of calibration we have already
made a preliminary assessment ofmeasurement loss.
We looked for cases where our measurement apparatus
failed to faithfully capture what actually occurred on
the network. Our general technique for finding such loss
involves looking for “gaps” in the TCP sequence space
where we do not observe the actual data, but do in fact
observe that data being acknowledged as having arrived
at the destination. We used this approach in [11] and
calculated an upper bound of measurement loss to be
2% in theLBL1 dataset.

We planned to make the assessment of measurement
loss forLBL2 our second calibration stage. In the pro-
cess of performing the above measurement gap analysis
we stumbled upon a dramatic increase in the number
of detected gaps. Upon deeper analysis we found that
the cause of the excessive number of gaps in theLBL2
traces is not measurement loss, but rather measurement
reordering.

Measurement induced reordering manifests as follows.
While we may observe an ACK for some data not yet
observed, we find that often the seemingly missing data
is in fact present in the trace shortlyafter the ACK. Our
collection methodology collects uni-directional traces
and then post-facto merges the two directions together
based on the recorded timestamps in the traces. There-
fore, if one capturing process on the tracing machine
gets hung up for a short amount of time an ACK can
get timestamped before the corresponding data. This is
clearly a measurement problem that can cause havoc
when trying to analyze traces to understand TCP dy-
namics. We therefore set out to fix the traces to the
extent possible such that we can undertake TCP and
application-layer analysis without further consideration
of this measurement-induced artifact.

The discovery of measurement reordering while as-
sessing measurement loss is a good example of the iter-
ative nature of calibration. We haven’t caught a glimpse
of measurement reordering during the first calibration
stage. Thus, now we were forced to take a step back and
instead of calculating measurement loss rate, calibrate a
more basic flaw. Coping with measurement reordering
substituted measurement loss as the second stage of our
calibration effort.

But we note that it is impossible to fully “fix” the
traces since we can never recover the true timestamp
that should have been associated with a reordered packet.
Therefore, while in the end we largely produce acorrect

5

ordering of the packets, we arrive at only an approx-
imation of the timestamps of the reordered packets.
Therefore, we must be cautious of the timestamps of
these packets in subsequent analysis.

We use the following process to find and fix measure-
ment induced reordering. While we find no duplicate
timestamps within a single trace file, when merging bi-
directional trace pairs we find that a single timestamp oc-
cur for one packet in each trace. This leads to issues later
in our process of imposing a correct ordering and we
therefore adjusted the timestamps such that each packet
in the merged trace has a unique timestamp. Specifically,
when we observe two packets with a timestamp ofX,
we adjust the second packet’s timestamp by repeatedly
subtracting 1 microsecond—the timestamp granularity in
our traces—until the timestamp is unique. At this stage
we only care about arriving at a unique set of timestamps
and do not worry about the relative order of the segments
as we will deal with that with our subsequent processing.

We next divide the packet traces into TCP connections
using the IP addresses, port numbers and tracking of
the recorded SYNs, FINs and RSTs. We process each
connection as the timestamps in the trace suggest the
connection transpired, identifying data-carrying packets
that their receiver seemingly already acknowledged in
the past. Such occurrences reflect measurement artifacts
with high likelihood. Simple packet reordering—as ob-
served in previous studies [13], [2]—would not explain
this phenomenon, as packet reordering by the network
cannot coax an end system to acknowledge a packet it
has not received.

Once we identify a measurement-based reordering we
swap the positions and the timestamps of the data and
acknowledgment segments in the trace. Our experience
shows that while the new ordering is better, it is not
always correct. We therefore apply the previous two
steps iteratively, up to four times. Even after four passes
our ordering analysis did not report the traces as fully
clean. We find several instances where the end system’s
TCP behavior is simply strange. This happens in few
enough instances that we decided it was better to live
with a little imperfection in the resulting traces than
to add complexity to the ordering process and possibly
introduce subtle issues into the traces.

In LBL2 we find that our measurement apparatus mis-
ordered 6.9 million packets (roughly 0.5%). Haven’t
we undertaken the mitigating efforts described in this
section, all these packets would have been reported
as measurement loss gaps. After identifying and fixing
these ordering issues as described above, we still found
44 packets that our analysis cannot fix without large
additional complexity. In§ VII we explore the question

of timing fidelity and, among other things, show the
distribution of timestamp differences introduced when
flipping packets (see Figure 13).

Note: Our heuristic for identifying measurement-based
reordering is not perfect. For instance, a measurement
loss of a packetX coupled with a spurious retransmis-
sion of packetX could also cause our monitor to observe
an ACK for (the first) packetX before we observe (the
second) packetX. However, given the probability of
measurement loss (see§ V) and also low instances of
spurious retransmissions (e.g., [13], [2] shows TCP’s
standard RTO-based retransmissions are spurious much
less than 1% of the time) we believe the chances of these
two events aligning to produce the reordering we observe
is quite low. While we cannot fully discount this case,
we conclude that the most prevalent form of reordering
we find is an artifact of our measurement methodology.

As a final note, TCP’s sequence numbers give us a
natural way to mitigate the impact of measurement-based
reordering in our packet traces. Non-TCP traffic is no
doubt also mis-ordered inLBL2, but the lack of a general
sequencing mechanism means that we cannot fix these
issues in a generic fashion. Therefore, when using the
data for non-TCP analysis, we need to take into account
the possible mis-ordering of packets.

And a general observation here is that sequencing is-
sues may easily appear if two directions of the traffic are
recorded by separate processes. If a researcher designs
the measurement apparatus this way, she may want to
include detection of measurement reordering already in
the first stage of calibration.

V. MEASUREMENT LOSS

With measurement reordering resolved, we can then
return to the question of estimating measurement loss
based on observations of TCP sequence gaps. For this
purpose we useBro [14], which has the capability to
reassemble TCP flows. This enables us to detect cases
when flows contain ACK packets acknowledging unseen
data sequences. Such events unambiguously indicate
measurement loss, since only a grievously erroneous
TCP would ever acknowledge data that has not arrived.
We call such eventssequence gaps. As we already noted,
measurement loss calibration stage rests upon the success
of the measurement reordering stage.

We found that the flipping reduced the number of
sequence gaps in 72 out of 102 traces, removing 184K
gaps amounting to 417MB of payload. Unsurprisingly,
we find the difference between the number of sequence
gaps before and after the flipping most evident for traces
that contain many out-of-order packets. The number
of gaps that remain after the flipping, and therefore

6

TCP gap events loss rate upper bound, %

Lo
ss

 r
at

e
up

pe
r

bo
un

d,
 %

1e−04 0.001 0.01 0.1 1

1e
−

04
0.

01
1

LBL1
LBL2

Fig. 2. Estimated measurement loss rates in theLBL1 andLBL2
traces. The X-axis gives the rates based on the number of observed
gaps in the data acknowledged by TCP receivers. The Y-axis shows
the rates estimated from the number of missing bytes reflected by
such acknowledgments. The line has the slope 1.

represent the true TCP measurement loss, total 272K
instances with 1,134MB of payload. Thus, the reordering
calibration step removed about 40% of the apparent
measurement loss instances, and 27% of the apparent
byte-volume of measurement loss.

After calibration, the share of missing bytes reflects
0.12% of the total payload in our traces. Figure 2
compares measurement loss rates observed inLBL1 and
LBL2 traces. For the majority of traces, we find smaller
measurement loss rates forLBL2 than for LBL1, and
for both datasets the loss rarely exceeds 1%.

Multiple components in the capturing process can
produce measurement loss: capturing switches, taps, the
NIC on the apparatus, its kernel, and thetcpdump
process itself. Without extensive instrumentation, it is
hard to estimate the extent to which each of these
alternatives contribute to failures to capture the full set
of passing network traffic. The only such instrumentation
we had available was reports fromtcpdump indicating
the number of packets dropped as reported to it by
the kernel. Figure 3 compares the loss rates from these
recordings to the ones we deduced by looking at TCP
sequence gaps. While our traces hold protocols other
than just TCP, andtcpdump loss can not account for all
the measurement loss we observe, the rough correlation
between the two increases our confidence in the validity
and representativeness of the results.

VI. TOPOLOGY

The next aspect of calibration we consider in this pa-
per regards topology: determining the network layout of
the monitored site. The elements of topology relevant in

Loss rate reported by tcpdump, %Lo
ss

 r
at

e
in

di
ca

te
d

by
 T

C
P

 s
eq

ue
nc

e
ga

ps
, %

1e−04 0.001 0.01 0.1 1

1e
−

04
0.

01
1

Fig. 3. TheLBL2 measurement loss rates. Y-axis shows the loss
rates calculated by the amount of missing bytes. The plot only
contains cases when thetcpdump loss was non-zero. In the traces
wheretcpdump reported zero loss, the loss rate indicated by TCP
sequence gaps remained very small—in all but a pair of cases smaller
than 0.001%. The line has slope 1.

switch-based monitoring concern classifying hosts as one
of (1) monitored, (2) intra-subnet (same subnet/broadcast
domain as the monitor, but not monitored), (3) inter-
subnet (different subnet within the enterprise), or (4) ex-
ternal. The internal router defines subnet boundaries by
assigning all hosts connected through switches to one
port on the router to the same subnet range. External
hosts lie outside the enterprise, and all communication
between internal and external hosts goes through edge
routers.

There is one additional topological entity to consider:
“hidden” switches. We might commonly expect that a
port of the monitored switch connects to a single end-
host. However (as we discussed in [11]) in some cases
the port leads to another network switch or hub, perhaps
even unbeknownst to the network operators.

Many calibration and analysis efforts rely heavily on
meta-information about network topology. In Section VII
we used the knowledge of subnet boundaries, which
allowed us to distinguish the intra- vs. inter-subnet
traffic. This distinction is of importance in enterprise
and data center networks, since reaching another subnet
requires the packet to traverse a router, which inevitably
introduces router queueing and forwarding delays. In
data centers, knowledge of topology allows for efficient
task allocation by confining the majority of communica-
tion within the same rack [3], optimization of bisection
bandwidth [1] and design of new routing protocols [16],
[17].

We turned our attention to topology calibration when
several of our analysis tasks required the knowledge of

7

locality, i.e. whether two hosts belong to the same or
different subnets within LBL. For instance, locality is
important in timing fidelity calibration that we perform in
the next section. As it often happens, our at first mundane
topology calibration actions led to a surprising discovery
of hidden switches, which are present in bothLBL1 and
LBL2.

As a first step in calibrating information related to
topology, we identify subnet boundaries for all the 102
traces inLBL2. Using the IP addresses of the moni-
tored hosts for each trace, we computed the smallest
accommodating subnet range. As in [11], the network
operators confirmed the accuracy of our results, except
for 11 out of 102 traces where the subnet ranges we
generated turned out too narrow, primarily because we
did not happen to monitor a sufficient number of hosts
to cover the whole range.

As a next step in [11] we determined the monitored
hosts. This became simple forLBL2, since we monitored
each traffic direction separately, and we now needed
only to extract MAC addresses of sender hosts for the
upstream—from the end host to the switch—direction.
We couldn’t do this forLBL1, since we couldn’t readily
separate upstream and downstream traffic there. Because
we can confidently determine monitored hosts inLBL2,
that ground truth then allows us to assess the accuracy
of the graph-coloring algorithm we developed in [11]
for the LBL1 traces. That algorithm relies on building
a communication graph between all the observed hosts,
and, starting from the router MAC addresses, recursively
coloring hosts asred or green. Thered class includes
routers and represents the non-monitored hosts, while the
green class yields the monitored hosts. This approach
appeared to be accurate when applied to theLBL1 traces,
but we can now assess the accuracy by contrasting its
results with the ground truth.

Out of the 1,516 truly monitored MAC addresses in
LBL2, our approach accurately identifies 1,470 MACs
(97%). The algorithm failed to identify 46 MACs as
monitored, putting the number of false negatives to 3%.
We did not find any false positives, i.e., cases where the
script flagged a non-monitored MAC as monitored.

The observed false negatives arise for two reasons.
First, our algorithm relies on several thresholds to de-
termine bidirectional communication between two hosts.
Those flows that fail to satisfy the thresholds stay un-
colored. This can happen if a host has very little or
no bidirectional communication with other hosts. Even
though we could tweak the thresholds to allow coloring
of meager flows, unfortunately in some cases we can’t do
detection at all. For instance, we observed several truly
monitored hosts sending only broadcast packets without

ever receiving any packets. In this case no heuristic can
determine whether we in face monitor the host. Lowering
the thresholds yielded fewer false negatives, but at the
price of producing false positives and more coloring
inconsistencies.

Further, we found a second peculiar reason for the
false negatives. While the algorithm did not produce
any coloring inconsistencies for theLBL1 traces, in
LBL2 we have observed several of them. A coloring
inconsistency arises when the algorithm determines to
assign a color to a node to which we have already
previously assigned the opposite color. We investigated
all such cases and found that they all occur due to
the hostmoving from the monitored VLAN to a non-
monitored VLAN during the time we captured the given
trace. This movement means that the host should indeed
be eligible for being colored bothred andgreen. We
confirmed that this happens very rarely in our traces—
only 4 out of 1,516 monitored hosts exhibited such
behavior.

In [11] we faced a major conundrum—we deduced
more monitored hosts per trace than the maximum num-
ber of capturing taps installed by the network operators.
This puzzling observation could have several mundane
explanations, but by performing analysis to exclude other
potential alternatives, we finally came to the conclusion
that in fact some of the monitored switch ports connected
to additional switches that had multiple hosts plugged
into them. We considered another plausible explanation:
that at different times, different end hosts used the same
switch port. We refuted it by splitting each trace into
15-minute epochs and finding the maximum number of
concurrently active hosts observed within the epoch. We
observed that 89 out of 100LBL1 traces contained at
least one 15-minute period whenall of the deduced
monitored hosts appeared together. In the remaining 11
traces only 1 or 2 hosts did not show up together with
all the other hosts in the maximum activity epoch. This
finding conclusively excluded the above hypothesis.

In general we found applying the scripts developed
for the analysis ofLBL1 traces to theLBL2 traces
straightforward—we needed only increase the maximum
duplication level from 5 to 10. However, while trying to
reproduce the results of the 15-minute epoch analysis
described in the previous paragraph, we discovered that
the scripts had an implementation bug, which directly
affected calculation of the maximum number of concur-
rently active hosts observed within epoch. Fortunately,
fixing the bug changed the results only marginally: the
number of concurrently monitored hosts in LBL1 traces
became lower by 1 in 11 out of 100 traces. Thus, the
conclusions presented in the previous paragraph remain

8

Trace (2009/2010)

M

on
ito

re
d

H
os

ts

0
5

10
20

30

Fig. 4. LBL2 number of monitored hosts.

valid.
We repeated the analysis of the number of monitored

hosts per trace for theLBL2 traces. Figure 4 shows the
results. In the plot, black represents the true number of
monitored hosts as we know from the ground truth. Grey
shows the true maximum number of concurrent hosts
among all 15-minute epochs. White shows the number
of false negatives, i.e., hosts for which our algorithm
failed to identify them as monitored. Diamonds represent
the number of the maximum concurrent hosts deduced
by our script. The deduced number of the maximum
concurrent hosts differs from the true number because
of false negatives, which arise due to monitored hosts
not exhibiting sufficient communication activity for us to
discern it reliably or confusing our detection algorithm
by moving from the monitored to a non-monitored
VLAN. Finally, the line depicts the replication level. In
82% (67% forLBL1) of traces the number of monitored
hosts turned out to exceed the number of taps, very
strongly suggesting thatLBL2 traces also contain hidden
switches.

In [11], we confirmed the presence of hidden switches
by observing ARP requests between pairs ofgreen
hosts not followed by ARP replies, indicating that the
hosts could communicate point-to-point unseen, and
therefore, while monitored, had a path between them that
did not transit our monitoring point. Along these lines,
we find 34 out of the 102LBL2 traces exhibit at least
one such pair. At the same time, the coloring analysis
for LBL2 identifies that 66 out of the 102 traces (about
two thirds) included double-monitored hosts (these did
not reside behind a hidden switch). If we assume that
in a day long period two hosts connected to the same
switch to talk to each other with the probability of two
thirds, and the same ratio hold for both monitored and
hidden switches, then we can estimate the rough number

of traces containing hidden switches. By extrapolating
the 34 observed traces, we conclude that in total hidden
switches must be present in approximately 51 traces. We
find this result to be well in line with the results obtained
for LBL1, where a similar extrapolation yielded 42 out
100 traces with hidden switches.

Overall, we conclude that the algorithms developed
for topology calibration of theLBL1 traces appears
readily applicable to theLBL2 traces. Even without
altering their thresholds, they yielded satisfactory results,
as supported by comparison with the ground truth.

VII. T IMING FIDELITY

Having completed the topology calibration stage, we
can use its results to assess timing fidelity in our dataset.
In general, timing fidelity is one of the most commonly
discussed calibration aspects due to its importance and
prevalence of imperfections associated with it. Timing
measurements are strongly tied to the physical con-
straints of the measurement apparatus, such as clock pre-
cision, drift, skew, etc. We have already performed a few
basic timing fidelity checks during the first calibration
stage. Then we recognized the need for a deeper timing
fidelity calibration when in [10] we tried to calculate the
bandwidth-delay product of TCP connections.

Packet round-trip time is one of the most important
performance metrics. For simple transport protocols such
as UDP, it directly affects the user experience. Protocols
with sophisticated dynamics such as TCP may exhibit
complex behavior depending on the RTT, its variability
and stability, and TCP throughput varies in inverse
proportion to RTT [12]. More generally, as a basic
component of the bandwidth-delay product, RTT plays a
crucial role in optimality for many transport protocols. In
this section we set out to assess the fidelity and analyze
the round-trip times and the one-way delays seen in
the LBL1 andLBL2 traces. In [11] we already briefly
touched on the matter of timing fidelity by assessing the
differences between timestamps of a packet recorded by
two network interfaces, though we did not explore the
issue in due detail.

In what follows we focus only on TCP packets,
since the protocol’s specifics provide us with a robust
way to discern round-trips based on data sequence and
acknowledgment numbers. We performed the TCP flow
reassembly usingBro. An important aspect of RTT
measurements that directly affects quality and fidelity
of results concerns the vantage point position. Ideally,
to assess RTT we should measure directly at the host
that sends data packets and receives acknowledgment
for them. Any other location along the path between a

9

RTT, usec

D
en

si
ty

0 125 250 375 500 625 750 875 1000

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Fig. 5. LBL1 sub-millisecond intra-subnet handshake RTTs.

sender and a receiver will underestimate RTT values. We
can, however, approximate true RTT values by choosing
a vantage point sufficiently close to the sender, which
for our measurements arises for TCP data packet that
originated from a monitored host. Especially forLBL2,
we know exactly which hosts we have monitored; since
we deployed the measurement apparatus between hosts
and their attached switches, this gives us the ability to
estimate RTTs with a vantage point close to the sender.

When examining TCP flows, we can take advantage
of a particular possibility for accurately measuring RTT
values. In [6] the authors propose to use TCP’s three-way
handshake for RTT estimation. Since TCP connection
establishment involves three packets—SYN, SYN+ACK,
ACK—the time difference between the SYN and its
ACK gives the full RTT for the sender/receiver pair. This
approach has the very appealing property of working
regardless of our vantage point; by leveragingcausality
(that seeing the third packet’s arrival will mirror exactly
a round-trip having elapsed since seeing the original
SYN’s arrival), this method yields true RTT values. That
said, we need to keep in mind possible packet loss; if,
for example, the SYN+ACK packet gets lost, the server
will later retransmit it, and the time difference between
the SYN and the later ACK will include this (large, and
therefore likely noticeable) timeout.

In investigating and characterizing the timing aspects
of enterprise network activity, we find it useful to
categorize the traffic by locality. Coarsely, we split
flows into internal and external, with the former staying
within the enterprise boundaries and the latter involving
communication outside of the LBL network. Further, to
obtain a finer classification, we split the internal traffic
into intra- and inter-subnet. Intra-subnet traffic comprises
flows confined inside a subnetwork, and inter-subnet

communications involve hosts from two subnetworks.
Our choice of switches as a vantage point gives us
a comprehensive view into intra-subnet behavior. For
our purposes the main difference between intra- and
inter-subnet traffic is in the latter traversing a router.
In untangling various observed timing phenomena we
found it handy to be able to exclude the major flow
latency component introduced by such complex devices
as routers.

Upon beginning our analysis by inspecting theLBL1
handshake RTTs, we immediately encountered a major
puzzle: low RTT values clustered densely around several
specific values. Figure 5 plots the intra-subnet handshake
RTTs below one millisecond. Clearly, the values exhibit
sharp quantization around the multiples of 125 microsec-
onds. We observed the same phenomenon in otherLBL1
RTT measurements, too—inter-subnet handshake RTTs
and RTTs measured between TCP data packets and
their ACKs (we refer to these further as data RTTs).
In LBL1, 96% of all the intra-subnet and 87% of all the
inter-subnet handshake RTTs lie in the sub-millisecond
range, which elevates the importance of understanding
the observed RTT quantization phenomenon. And more
generally, we want to illustrate here the sort of method-
ical thinking that goes into calibration, along with the
crucial question of whether somehow this was a real
networking phenomenon, or just a measurement artifact.

As 125 microseconds corresponds to 8 KHz, we
might naturally hypothesize that some device or software
related to our measurement contains an oscillator or a
sampling process operating at this frequency. Each of
the following components might use an 8 KHz clock:
end-hosts, production network equipment (switches or
routers) or our capturing apparatus. We might view it
as unlikely that such a relatively course timer would
occur within the networking component of an OS kernel,
or NICs or production switches, since doing so would
introduce significant unnecessary delay. However, if we
find that the quantization reflects a genuine networking
effect, then we will have uncovered an area for signifi-
cant performance improvement.

In a 100 Mb/s Ethernet network, sending a full-
sized packet of 1,500 bytes takes 120 usec, very close
to the multiples of quantization times we observe. In
an attempt to locate the source of RTT clustering,
we extracted all full-size packets from a singleLBL1
trace and calculated the inter-arrival times between those
packets. We found two spikes in the plot: a bigger one
around 120 usec and a smaller one at a few usec. The
presence of the latter suggests that theLBL1 traces
contain impossible timings, presumably corrupted by
our capturing apparatus. Looking at the RTTs of the

10

Fig. 6. A/B/C/D/E components of a TCP handshake.

full-sized data packets in inter-subnet connections also
reveals impossibly small values. The process causing
RTT corruption may simply be the queueing in one of
the capturing buffers. If upon the data packet arrival
the buffer is full, the corresponding ACK packet may
have enough time to arrive right behind the data packet
and appear to come immediately after it. Another source
of error concerns the capturing apparatus location with
respect to the sender and receiver. In theLBL1 capturing
setup, the mirroring switch operates using store-and-
forward, not cut-through, meaning that it waits to receive
all of the bytes in a packet and only then forwards it.
Thus, a full-sized data packet takes at least 240 usec
to arrive at the tracing machine (120 usec due to each
of transmission by the sender and by the mirroring
switch). In the case of intra-subnet communication and
the production switch operating cut-through, the above
scenario can readily lead to ACK packets arriving at the
monitoring switch while the corresponding data packet
still remains in the monitoring switch’s queue, causing
the two packets to follow one another back-to-back.

To finally untangle the RTT quantization phenomenon,
we again turned to the handshake RTTs that, in the light
of the above findings, have several important properties:
(i) small packet sizes, which diminishes the differences
between store-and-forward vs. cut-through switch archi-
tectures, as well as the contribution of packet transmis-
sion time; (ii) lower likelihood of encountering com-
peting load due to the host’s own prior activity, which
could impair RTT fidelity; and (iii) the opportunity that
three-way handshakes provide to assess RTTs both at
the sender side (SYN/SYN+ACK) and the receiver side
(SYN+ACK/ACK).

We proceed by separating each handshake RTT into
five components, which we refer to as A/B/C/D/E.A and
B reflect SYN/SYN+ACK time differences as seen from
a vantage point near the connection originator and re-
sponder, respectively.C andD reflect SYN+ACK/ACK

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTT, usec

C
D

F A
B
C
D
E

Fig. 7. LBL1 sub-millisecond intra-subnet handshake RTT compo-
nents.

time differences, again from a vantage point near the
connection originator and responder. Finally,E corre-
sponds to the full SYN/. . ./ACK time difference (i.e.,
between the final packet of the handshake and the initial
SYN) as seen from a vantage point near the connection
originator. To exclude any router delays, we limited
this analysis to intra-subnet connections. The list of
monitored hosts we devised forLBL1 in [11] allowed us
to determine measurement vantage points: if the source
IP address in a SYN belongs to a monitored host, then we
know we have a vantage point for that connection close
to the originator. Conversely, a destination IP address
in the SYN belonging to a monitored host indicates we
have a vantage point near the responder.

A andD components contain the path RTT between a
vantage point and a host as well as the host’s processing
delay; B and C reflect only the end-host’s processing
delay; andE provides the true handshake RTT, factoring
out the vantage point position. Figure 7 shows cumula-
tive distribution functions for the five components, in-
cluding several striking phenomenon. Firstly, we observe
quantization for theB and C curves, meaning that it
arises either from processing at the end hosts, or we are
indeed dealing with a measurement artifact. Secondly,
we find a considerable share of theA andD RTTs ex-
hibiting values as small as several microseconds, mean-
ing that responders indeed can generate SYN+ACKs
(and, for originators, ACKs) essentially instantaneously.
However we do not observe anyE RTTs in that time
range, suggesting that for those connections eitherA or
C must necessarily cluster at a multiple of 125 usec.

We view the most robust explanation for the quanti-
zation phenomenon as it reflects a measurement artifact,
as follows. Per our earlier description, in a handshake
theA andC components comprise two non-intersecting

11

A−C, usec

D
en

si
ty

−400 −200 0 200 400

0.
00

0
0.

01
0

0.
02

0

Fig. 8. A minusC for eachLBL1 handshake.

parts of the path.C will not include any quantization
due to the production switch, since it only reflects end-
host processing latency (and any potential measurement
artifacts). Given the diversity of end host hardware ven-
dors and operating systems in LBL, we have difficulty
envisioning how they couldsynchronously produce the
quantization pattern we observe. According to Figure 8
quantization occurs with equal probability in bothA and
C, and since the only part of the infrastructure these two
components share is our measurement apparatus, we un-
fortunately must conclude that the observed quantization
anomaly arises from ourLBL1 apparatus, rather than any
actual networking phenomenon.

Earlier we have hypothesized that the observed quan-
tization may be due to an 8 KHz timer. Now we aim
to explore this possibility by plotting the offset of each
observed RTT from the closest multiple of 125 usec. If
we find all such offsets to turn out small, we can treat
the RTTs as having 125 usec precision imposed by the
capturing apparatus, even regardless of knowing the true
source of the quantization. Figure 9 shows the cumula-
tive distributions ofE = RTT/125−round(RTT/125)
for four types of traffic: TCP handshakes for connections
staying inside LBL or crossing the enterprise’s boundary
(WAN), and TCP data packet RTTs for the same two
localities. For handshakes we used the total RTT, and for
data packets we calculated the time difference between
a data packet and the corresponding ACK regardless of
vantage point’s position, which means that those data
packet RTTs that we calculated close the responder
contain mainly the end-host processing delay. We nev-
ertheless decided to include these timings to see if their
precision differs from the full path RTT observed at a
vantage point close to the connection originator. The plot
demonstrates that almost all RTTs of packets confined

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E = RTT/125−round(RTT/125)

C
D

F

−
6.

25
us

ec

+
6.

25
us

ec

LBL h−shake
WAN h−shake
LBL data
WAN data

Fig. 9. LBL1 RTT precision.

to the enterprise lie close to multiples of 125 usec. To
a smaller degree we also find this for the WAN data
packets. On the contrary, WAN handshake RTTs exhibit
very high offsets.

Having 8 KHz precision in the capturing apparatus
would mean that all observed timings would be close to
multiples of 125 usec. But in Figure 9 we can clearly see
that this is not the case. Therefore we cannot treat the
LBL1 timings as having the 125 usec precision. Since
the biggest deviation from a multiple of 125 usec occurs
in WAN data traffic, which tends to have bigger RTTs,
the plot hints that an 8 KHz timer may manifest only
for small RTTs. Indeed, we found an anti-correlation
between the RTT value and its offset for all traffic types.
This does not however explain why WAN data packets
cluster close to the multiples of 125 usec even though
WAN handshakes do not—one would expect the two
classes to have equally high RTTs. We find it possible
that an 8 KHz timer fires only under high load. TCP
dynamics often leads to trains of multiple packets, while
handshake packets are free to arrive during periods of
silence. In addition, the two factors influencing the work
of the timer may not be independent, since small RTTs
may cause higher instantaneous load.

Fortunately, theLBL2 handshake RTTs do not exhibit
signs of quantization (see Figure 10). The plot also shows
fairly good agreement between the distributions of intra-
and inter-subnet delays for the two sets of traces.

Besides handshake RTTs, we also explored the RTTs
of TCP data packets, i.e., the time difference between
data packets and their ACKs. We took care to consider
only data packets coming for monitored hosts, thus
ensuring proximity of the vantage point to the sender.
Figure 11 shows the distributions of the data packet
RTTs. We find theLBL2 RTTs consistently smaller than

12

RTT, milliseconds

C
D

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.01 0.1 1 10 100

Intra−subnet, LBL2
Inter−subnet, LBL2
Intra−subnet, LBL1
Inter−subnet, LBL1

Fig. 10. LBL1 and LBL2 handshake RTTs. Note, for clarity we
truncate the plot by omitting extreme values to the right.

RTT, milliseconds

C
D

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.001 0.01 0.1 1 10 100 1000

Intra−subnet, LBL2
Inter−subnet, LBL2
Intra−subnet, LBL1
Inter−subnet, LBL1

Fig. 11. LBL1 andLBL2 data RTTs. Again for clarity we truncate
the plot by omitting extreme values to the right.

for LBL1, which makes sense since the newer traces
include 1 Gbps links not present in the older traces.

While exploring theLBL2 handshake and data RTTs,
we found a number of TCP connections with both the
sender and the receiver monitored. 11,588 such double-
monitored connections appear across 72% ofLBL2
traces. The existence of these connections opens an
intriguing possibility: we can fully separate the network
delay from the end-host processing delay. Consider a
host establishing a TCP connection, for which the initial
SYN packet appears at the vantage point close to the
sender at timetorigsyn . At time tdestsyn the SYN packet will
pass the vantage point close to the monitored destina-
tion host, thus makingT net

syn = tdestsyn − torigsyn the time
the SYN packet spent in the network. The SYN+ACK
packet observed at the destination vantage point allows
us to calculate the time it took the destination host
to generate the packet:T host

syn+ack = tdestsyn+ack − tdestsyn .

10 20 50 100 200 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTT, usec

C
D

F

Tsyn
net

Tsyn+ack
net

Tsyn+ack
host

Tack
host

Tsingle−mon
host

Fig. 12. LBL2 handshake network and host delay. We truncate the
plot by omitting extreme values to the right.

Similarly, we considerT net
syn+ack = torigsyn+ack − tdestsyn+ack

to be the time the SYN+ACK spends in the network and
T host
ack = torigack − torigsyn+ack the time it took the originator

to generate an ACK in response to the SYN+ACK. We
match the respective connections as seen at the originator
and responder by the five-tuple.

The results in Figure 12 show good consistency be-
tweenT net

syn andT net
syn+ack as well as betweenT host

syn+ack

andT host
ack . Surprisingly, the plot indicates that a packet

spendsless time in the network than it takes an end-host
to generate a response packet, meaning that processing
and not network delay dominates theLBL2 handshake
RTTs. To corroborate our observation of the high host
processing delay, we also plotted the handshake host
delay (T host

single−mon) of the connections for which we
monitored only one of the two communicating machines.

Even though RTTs in theLBL2 traces do not show
signs of quantization, and thus appear more reliable
than those in theLBL1 traces, we still cannot fully
trust them. From Section IV we know that capturing
the two traffic directions separately led to perturbations
in packet timestamps. We “flipped” 6.9 million TCP
packets in order to restore the correct causal order. This
implies that undoubtedly packets that appeared in the
correct causal order, but with compressed or stretched
RTT values, also exist. Unfortunately, we know of no
apparent way to detect such packets and repair their
timings. We can, however, conclude that the errors are
generally small: we found that most flipping reflects sub-
millisecond timescales, per Figure 13, which shows that
98.9% of intervals lied below one millisecond.

To summarize our experience in calibrating timing
fidelity, the switch-based measurement is ill-suited for
fine-grained RTT and delay measurements. As we found,

13

RTT, usec

C
D

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 10 100 1000 10000

Fig. 13. LBL2 absolute flipping time difference.

neither inLBL1 nor in LBL2 can we trust RTTs smaller
than one millisecond. Post-hoc techniques for fine-
grained (order of microsecond) latency measurements
described in literature either focus on calculating aggre-
gated latency [7], [9] or use interpolation to improve
accuracy [8]. We believe that a better way to approach
the problem is to use specialized hardware [4].

VIII. P HANTOM SUPPRESSION

After going through all the calibration stages described
in the previous sections, we continued to the analysis
phase of our study. As our first task we chose to calculate
protocol prevalence figures inside subnets. The results
baffled us: we observed an abnormally high number
of ARP request packets. The explanation turned out to
be that simultaneously recording packets from multiple
ports on the same switch causes broadcasted packets to
appear multiple times in the traces. In [11] we called
such replicated packetsphantoms. Since their presence
may unduly skew the traffic mix proportions, we de-
veloped a methodology for identifying redundant copies
of a packet so we can then remove (“suppress”) the
extraneous ones.

Phantoms are a good example of a phenomenon that
only pops out when one starts to use the data and is
not well predicted during the first stage of calibration by
solely focusing on what was recorded. This once again
demonstrates how unpredictable the calibration process
may be, and highlights the need for iterations during
calibration.

In the absence of any truly robust way of identi-
fying phantoms in theLBL1 traces, we developed an
empirical rule based on interarrival time between the
identical packets. By examining the interarrival intervals,
we aimed to establish a threshold for removing the

duplicates. We needed to determine a value small enough
to avoid the risk of removing the packets that represented
true networking events rather than the copies made by
the switch, but large enough to ensure we would not miss
any phantoms. To identify an apt threshold, in [11] we
found it highly helpful to considersole-sourced packets,
i.e., packets that we could with confidence state that the
sending host sent exactly one instance of the packet in a
given trace. (Note, that packet could still have duplicates
produced by the switch. See below for discussion.)
Analyzing the interarrival times between the copies of
such packets let us then find a plausible suppression
threshold and estimate the number of false positives—
the packets erroneously labeled as duplicates that in fact
constituted true networking events.

Thanks to our use of a different recording methodol-
ogy, theLBL2 traces contained information that allowed
us to refine this methodology and assess the accuracy
of the findings made in [11]. While the older traces
offered no way to determine which switch port recorded
a given packet, the use of VLAN tags in the newer traces
provided such a mapping. This mapping enabled us to
assess the accuracy of the previous evaluation in [11]
based on identifying sole-sourced packets. In that work,
we defined an Ethernet broadcast packet as sole-sourced
if (i) the trace exhibited 5 or fewer copies of the packet,
and (ii) the intervals between adjacent copies spanned
less than 100 msec. We restricted the number of copies to
5 to reflect the maximum number of ports simultaneously
monitored in the older traces, and chose 100 msec as a
plausible interval threshold because, first, we find it hard
to envision a switch process introducing larger delays
between replicated packets, and second, the distribution
of packet interarrival times showed that they tended to
be either much smaller or much larger than 100 msec.

As we note in [11], the above two criteria do not
provide ironclad identification of sole-sourced packets—
in some cases we may indeed mis-classify closely spaced
identical transmissions from the same host as sole-
sourced. For theLBL2 dataset, we can make the rule
more robust by adding a third criterion:(iii) all of
the copies originate from distinct switch ports. Using
the VLAN tags we can calculate the number of cases
where applying only the first two conditions failed to
identify a truly sole-sourced packet. After changing the
number of copies from 5 to 10 to match the number of
monitored ports in the newer traces, we ran the check
and found no cases where we needed the third rule
to distinguish between a true and a false sole-sourced
packet. Thus, we confirm that the rules(i) and (ii)
suffice for identification of sole-sourced packets.

Next, we examine the intervals between the extracted

14

sole-sourced packets. We compare the results with the
ones forLBL1 by giving the latter in brackets after the
LBL2 figures. We found 104.3M (20.4M) intervals be-
tween sole-sourced packets. The distributions of intervals
for the older and newer traces turned out to be fairly
consistent: in 74% (60%) of traces the interval never
exceeded 1 msec, the 99th percentile across all traces
never exceeded 0.2 msec (2 msec). 99.998% (99.998%)
of the intervals lie below 5 msec; all of the intervals
lie below 16.6 msec (58 msec). These figures allow us
to come to the same conclusion as in [11]—the 5 msec
threshold correctly identifies nearly all duplicates.

We used a nearly simplest possible scheme for elim-
inating duplicates in theLBL1 traces. We considered
every packet with a hash value already seen within
5 msec in the past as a phantom. This approach may
seem too simplistic, and indeed it allows for unnecessary
suppression. For instance, in the case when a host sends
two identical packets shortly one after another, there
may be 10 hashes each within 5 msec from the next
one, and consequently our scheme will delete 9 packets,
leaving only the first one. We decided not to include a
simple check for the number of packets being suppressed
(must be 5 forLBL1 or 10 for LBL2) for two reasons.
First, without VLAN tags we have no way of knowing
exactly how many of the duplicates were in fact real
packets. Even though the maximum number of possible
duplicates was 5 for theLBL1 traces, on many occasions
we observed fewer duplicates, for example because one
or more switch ports were inactive. Secondly, we did
not in fact need such a rule. After we found that the
5 msec interval covers most sole-sourced duplicates, we
set out to assess the number offalse positives—the
cases where the above threshold marks true events as
duplicates. To spot false positives we switched from the
sole-sourced packets to all broadcast packets and counted
how many times the number of duplicates within the
5 msec suppression threshold exceeds 5 for the older and
10 for the newer traces. Since we know that our capturing
apparatuses allowed no more than this many copies of
a packet, such events necessarily indicate that we would
suppress several true (though identical) packets. In the
LBL1 traces, the simplistic algorithm based only on
the interval between packets yielded 150 false positives
out of 7.8M unique broadcast packet payloads. The
minuscule false positive rate rendered more sophisticated
suppression techniques unnecessary.

To find if we could use the same simple technique
for the LBL2 traces, we repeated the false-positives
check. 12.1M unique broadcast packet payloads turned
out to produce 158K false positives. The sharp contrast
between the factor of 1,000 increase in the number of

false positives with the factor of only a 1.55 increase
in the number of unique payloads indicates that this
technique would cause much unwanted over-suppression
of true packets. To avoid this problem, we need more
refined suppression techniques for the newer traces. We
assessed three alternatives, which we discuss here in
ascending order of the amount of information needed
for accurate suppression:
Algorithm 1. Time based only. The only suppression
rule: remove the packet if there was a packet with the
same hash within the past 5 msec. We used this simple
approach in [11].
Algorithm 2. Packet count based. In addition to the rule
of Algorithm 1, count how many packets with this hash
we have suppressed so far. If the number of packets
goes beyond the maximum possible number of switch
replications, we must have included a new true packet,
so we cease suppressing duplicates at that point and start
the count over. We can apply this approach to both the
LBL1 and theLBL2 traces.
Algorithm 3. VLAN number based. In addition to the
rule of Algorithm 1, we track the VLAN IDs of the
packets with the same hash suppressed so far. Since
all duplicates of a single packet have different VLAN
IDs, hitting the same VLAN ID twice unambiguously
indicates a new packet. This approach, however, has a
caveat. If a host sends two real, identical packets close
to each other in time, their duplicates may overlap. In
this scenario the algorithm will under-suppress.

We evaluated these three algorithms on theLBL2
traces and divided the results into two categories. The
first with less than 10 duplicates and no repeating VLAN
IDs among them. Such cases will yield the same results
for all the three algorithms. The second category includes
the over-suppression cases when the algorithms will
leave different number of packets. Considering only
the second category, the number of packets left after
suppression for Algorithm 1 was 525K; for Algorithm 2,
968K; and for the Algorithm 3, 1,762K. The mismatch
between the Algorithm 1 and the Algorithm 3 reflects
more than a factor of three, confirming the hypothesis
that the naı̈ve algorithm over-suppresses a great deal
in the LBL2 traces. (The dominant group in the over-
suppressed packets consists of identical IPv4 multicast
packets appearing close to each other.)

The difference between the results produced by the
three algorithms appears less drastic if we compare the
number of over-suppression cases to the total number of
cases requiring suppression. The second category has the
same number of packets as left after running Algorithm 1
(525K), since it constitutes the most aggressive approach.
In total, 57M cases required suppression, meaning that

15

in more than 99% of cases, Algorithm 1 suffices. Thus,
in conclusion, we find that the suppression technique
used in [11] has sufficient accuracy to suffice in the vast
majority of cases; using more sophisticated approaches
would not have gained much additional fidelity.

IX. CONCLUSION

We aim in this work to present a general approach
to the problem of how to thoroughly calibrate empirical
data in order to identify, and if possible remedy, short-
comings and biases present in the data due to the process
by which we collected it.

In general, calibration proceeds in aprogressive fash-
ion, beginning with the most basic properties of the
data and, with those understood, tackling each of the
next most basic in turn. This procedure often has an
iterative nature, where the investigation of more complex
properties can require revisiting earlier calibration steps
in order to further refine them. To the extent possible,
we also advocate for performing a degree of basic
monitoring during the measurement process itself, as a
way of detecting systematic problems in time to perhaps
correct them.

We illustrate our calibration methodology using a case
study of network trace measurements captured from
switches within an enterprise. We showed how address-
ing one of the most basic properties of the data—how
many packets did the apparatus fail to record?—actually
required delving into issues regarding packet ordering
and measurement timestamping. After untangling these
considerations and partially remedying some deficiencies
regarding packet ordering, we examined later calibration
stages regarding assessing the topology of the enterprise
systems present in the measurement, further examination
of the fidelity of the timing information, and identifica-
tion and removal of measurement duplicates.

Some of our calibration steps followed algorithms and
techniques we developed previously in [11], where we
described calibration of a similar set of traces, albeit
collected using a differently designed capturing appara-
tus. The differences in the capturing process between
the two sets of traces allowed us to assess the accuracy
of some of the calibration techniques developed in the
earlier work; in general, we conclude that the techniques
provide a good degree of accuracy and provide reliable
means for calibrating enterprise switch measurements.

While such calibration efforts often prove labor-
intensive, they arguably play a vital role in establishing
the ultimate soundness of any subsequent analysis based
on the data.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, com-
modity data center network architecture. InProceedings of
the ACM SIGCOMM 2008 conference on Data communication,
SIGCOMM’08, pages 63–74, 2008.

[2] J. Bennett, C. Partridge, and N. Shectman. Packet Reordering is
Not Pathological Network Behavior.IEEE/ACM Transactions
on Networking, Dec. 1999.

[3] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. InACM Internet
Measurement Conference, IMC’10, pages 267–280, Nov. 2010.

[4] D. A. Freedman, T. Marian, J. H. Lee, K. Birman, H. Weath-
erspoon, and C. Xu. Exact temporal characterization of 10
Gbps optical wide-area network. InACM Internet Measurement
Conference, IMC’10, pages 342–355, 2010.

[5] IEEE Standards Association. IEEE 802.1Q Virtual Bridged
Local Area Networks. http://standards.ieee.org/getieee802/
download/802.1Q-2005.pdf, 2005.

[6] H. Jiang and C. Dovrolis. Passive estimation of TCP round-
trip times. SIGCOMM Comput. Commun. Rev., 32:75–88, July
2002.

[7] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Vargh-
ese. Every microsecond counts: tracking fine-grain latencies
with a lossy difference aggregator. InProceedings of the
ACM SIGCOMM 2009 conference on Data communication,
SIGCOMM’09, pages 255–266, 2009.

[8] M. Lee, N. Duffield, and R. R. Kompella. Not all mi-
croseconds are equal: fine-grained per-flow measurements with
reference latency interpolation. InProceedings of the ACM
SIGCOMM 2010 conference on Data communication, SIG-
COMM’10, pages 27–38, 2010.

[9] M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese. Fine-
grained latency and loss measurements in the presence of
reordering. InACM SIGMETRICS international conference
on Measurement and modeling of computer systems, SIGMET-
RICS ’11, 2011.

[10] B. Nechaev, M. Allman, V. Paxson, and A. Gurtov. A prelimi-
nary analysis of TCP performance in an enterprise network. In
INM/WREN, April 2010.

[11] B. Nechaev, V. Paxson, M. Allman, and A. Gurtov. On
Calibrating Enterprise Switch Measurements. InACM Internet
Measurement Conference, IMC’09, pages 143–155, Nov. 2009.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: a simple model and its empirical validation. ACM
SIGCOMM ’98, pages 303–314, 1998.

[13] V. Paxson. End-to-End Internet Packet Dynamics. InACM
SIGCOMM, Sept. 1997.

[14] V. Paxson. Bro: A System for Detecting Network Intruders in
Real-Time.Comp. Networks, 31(23–24), 1999.

[15] V. Paxson. Strategies for sound Internet measurement.In
ACM Internet Measurement Conference, IMC’04, pages 263–
271, Oct. 2004.

[16] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness
with multipath TCP. InProceedings of the ACM SIGCOMM
2011 conference, SIGCOMM’11, pages 266–277, 2011.

[17] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
never than late: meeting deadlines in datacenter networks.In
Proceedings of the ACM SIGCOMM 2011 conference, SIG-
COMM’11, pages 50–61, 2011.

	TR-13-005 cover
	TR-13-005 no cover

