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ABSTRACT
The complexity of modern enterprise networks is ever-increasing,
and our understanding of these important networks is not keeping
pace. Our insight into intra-subnet traffic (staying within a single
LAN) is particularly limited, due to the widespread use of Ethernet
switches that preclude ready LAN-wide monitoring. We have re-
cently undertaken an approach to obtaining extensive intra-subnet
visibility based on tapping sets of Ethernet switch ports simultane-
ously. However, doing so leads to a number of measurement cal-
ibration issues that require careful consideration to address. First,
one must correctly account for redundant copies of packets that ap-
pear due to switch flooding, which if not accurately identified can
greatly skew subsequent analysis results. We show that a simple,
natural rule one might use for doing so in fact introduces system-
atic errors, but an altered version of the rule performs significantly
better. We then employ this revised rule to aid with calibration is-
sues concerning the fidelity of packet timestamps and the amount
of measurement loss that our collection apparatus incurred. Addi-
tionally, we develop techniques to “map” the monitored network
in terms of identifying key topological components, such as subnet
boundaries, which hosts were directly monitored, and the presence
of “hidden” switches and hubs. Finally, we present initial analyses
demonstrating that the magnitude and diversity of traffic at the sub-
net level is in fact striking, highlighting the importance of obtaining
and correctly calibrating switch-level enterprise traces.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols

General Terms
Measurement
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1. INTRODUCTION
The network traffic of enterprises can be measured, and thus

characterized, from a number of vantage-point perspectives. In
the past, a great deal of work has used measurements captured at
an enterprise’s access link, which allows characterization of net-
work activity involving the external Internet, but does not shed any
light on activity that stays confined within the enterprise. More
recently, studies have drawn upon measurements made at an enter-
prise’s core routers [5]. Doing so yields insight into the enterprise’s
broader network dynamics, i.e., how hosts in one subnet communi-
cate with those in another, but does not give any insight into intra-
subnet communication. Alternatively, studies have measured com-
munication on the end-hosts themselves [2]. While this approach
yields information about all of a host’s traffic—including commu-
nication that occurs outside the enterprise in the case of monitoring
on a laptop—the measurements (i) lack a broader context of what
is happening in the surrounding network (e.g., network load) and
(ii) can be difficult to setup and manage.

From the mid-1980s through the mid-1990s, researchers read-
ily measured intra-subnet traffic by leveraging the near-ubiquitous
deployment of 10base2 Ethernet and simple hubs. Due to the bus-
based nature of these networks a single measurement tap could cap-
ture the activity for all of the hosts on the subnet (e.g., [3]). How-
ever, with the rise of 10baseT switched Ethernet, this capability
was lost—there is no longer a single vantage point that can see all
of the traffic transiting a single Ethernet broadcast domain.

An intermediary approach between the recent techniques of mea-
suring at an enterprise’s inter-subnet routers or its individual end
systems is to capture traffic as seen at different Ethernet switches.
Monitoring hardware exists for facilitating such measurement. For
example, the system we used for recording traffic aggregates 5 full-
duplex 100 Mbps Ethernet streams onto a Gbps Ethernet link. (In
fact, it does this for two pairs of such streams, representing 10
switch ports in total. See § 2 for details.) Such a monitor provides
the capability of simultaneously analyzing multiple ports connected
to a given switch. If these ports link directly to end-systems, then
the monitor can capture the same traffic as observable directly on
the end system, but with significantly less effort to do so in ag-



gregate since we can measure multiple end systems concurrently.
On the other hand, by not running directly on the end system we
lose the opportunity to relate a node’s network activity with its
system/process activity [2]. If the ports instead connect to other
switches, then we can obtain a view of more aggregated intra-
subnet traffic.

While such switch monitoring provides a fairly economical
means for measuring intra-subnet enterprise traffic, analyzing data
obtained in this fashion raises a number of subtle issues regard-
ing measurement fidelity. In this paper we assess calibration issues
that arise when doing so, which we explore in the context of a fairly
extensive set of switch traces we gathered from different Ethernet
subnets inside the Lawrence Berkeley National Laboratory (LBL).
Our goal is to establish a foundation for understanding the quality
of, and artifacts present in, these traces, as a first step towards then
being able to build up a sound understanding of how intra-subnet
traffic behaves.

A central premise of our work is that measurements such as those
we conducted will see significant further employment by others in
the future, raising for others the same issues that we explore in
this paper. We also note that while some of the calibration tech-
niques we present may in retrospect appear straight-forward, our
team—which includes members with extensive experience in mea-
surement and calibration—found the techniques required signifi-
cant investigation to develop. Thus, we believe there is consider-
able contribution in framing the calibration approaches to aid in
future studies based on subnet switch measurements.

Four basic properties of the measurements we wish to calibrate
concern timing, loss, gain, and layout. The first two are already
familiar from previous studies of calibrating packet trace measure-
ments, such as [6]: timing refers to the accuracy of the timestamps
associated with the recorded packets, and loss refers to measure-
ment loss, i.e., packets erroneously missing from a trace because
the monitor failed to capture or record them.

By “gain,” we mean instances of the monitor recording packets
that did not exist—or, at least, did not exist as a distinct network
event. These can in principle occur, for example, due to bugs in the
monitor software ([6] discusses a kernel packet filter that in some
circumstances recorded two copies of each packet). However, in
the context of Ethernet switch measurement we must deal with the
much more common phenomenon of a switch replicating a packet
when forwarding it, and thus if we measure multiple switch ports
concurrently, each port may include an instance of the packet, lead-
ing to multiple copies in the aggregated trace.

We refer to the additional copies of a packet recorded multi-
ple times as phantoms. In one sense, they do not reflect a dis-
tinct network event, because the source originally transmitted only
one instance, not several. In another sense, however, they do re-
flect network events, as their appearance is expected and reflects
the switch’s correct functioning.

In general, Ethernet switches can replicate packets for one of
three valid reasons. First, any packet destined for the Ethernet
broadcast address is forwarded to all ports that represent edges of
the Ethernet broadcast spanning tree. For simple topologies (which
includes the LBL enterprise),1 this will nominally mean “all” ports
of the switch other than the one from which the broadcast packet
arrives; for more complex topologies, the switch might replicate to
only a subset of the ports. Here, we put quotes around “all” be-
cause we find that the switches we measured sense whether a port

1Note, LBL operators informed us that the switches are not meant
to be running the Spanning Tree Protocol, although we found evi-
dence that in some cases they do.

currently has an active system at the other end of the link, and do
not flood packets to the port if it does not.

Second, a switch might replicate packets sent to Ethernet multi-
cast addresses, depending on its knowledge of the location of lis-
teners for the given address (e.g., IP-level multicast can be corre-
spondingly mapped to Ethernet-level multicast, and some switches
sniff IGMP traffic to prune forwarding for ports without listeners.)

Third, if a switch receives a unicast Ethernet packet, it might
flood it to all switch ports if it does not find an entry for the des-
tination MAC address in its forwarding table. In a simple Ether-
net topology we would expect this last phenomenon to occur only
rarely (roughly, no more than once per flow, and perhaps signifi-
cantly less), since any two-way communication should induce the
switch to quickly enter an entry into its forwarding table. It is pos-
sible, however, that unicast flooding might occur more often due
to asymmetric forwarding within the Ethernet subnet, or because
the number of active flows exceeds the size of the forwarding table,
causing the repeated eviction of flow entries.

Thus, in Ethernet switch traces we expect a significant propor-
tion of the recorded packets to in fact reflect a form of “phantom.”
These replicas represent both a curse and a blessing. The curse is
that for many forms of basic analysis, such as overall traffic mix,
we need to accurately identify their presence lest they unduly skew
our view of the prevalence of particular types of traffic. The bless-
ing, however, is that—as we develop in this paper—they provide a
means by which to calibrate the switch measurements.

The final trace property we calibrate concerns “layout,” by which
we mean identifying key topological components of the measure-
ments: (i) which traffic remains in the subnet versus involves com-
munication with external hosts; (ii) accurately determining the
IP subnet associated with the Ethernet broadcast domain; (iii) find-
ing which end systems in our traces we directly monitored (i.e., we
captured all of the packets the system generated because its imme-
diate network link was one of those we tapped); and the difficult
problem of (iv) detecting instances of “hidden” switches, meaning
cases where one of the ports monitored in the trace does not in fact
lead directly to an end system but instead to a switch (or hub) that
services multiple end systems.

We proceed as follows. In § 2 we discuss the switch traces used
for the study. We then turn in § 3 to robust identification of phan-
toms and a corresponding removal process. In § 4 we leverage the
fact that we collected two simultaneous traces to assess the agree-
ment in the timestamps across each pair of traces. Once we can
soundly spot phantoms and pair traces, we then in § 5 formulate
and analyze different procedures for assessing measurement loss.
In § 6 we develop approaches for calibrating elements of network
“layout,” and in § 7 then analyze the fully calibrated traces to as-
sess the significance of intra-subnet monitoring (i.e., the degree to
which traffic from a switch-based vantage point provides insight
beyond that available to monitoring of only inter-subnet traffic).
We conclude with a summary in § 8.

2. ANALYZED TRACES
Working in conjunction with LBL’s networking staff, we cap-

tured the enterprise traces used for this study between October 2005
and March 2006. The intent behind the general approach was
to record full packet payloads from a set of 10 switch ports for
roughly a day, after which the monitoring would move to another
set of 10 ports, either off of the same switch or (if exhausted) a new
switch. In particular, the setup entailed two sets of Finisar Shadow
10/100 taps, each capturing both directions of 5 FastEthernet (cop-
per) links, as illustrated in Figure 1.



Figure 1: Measurement apparatus (courtesy Tom Kho).

All 10 taps were plugged into a second aggregation switch, con-
suming a total of 20 ports, since each tap fed two ports due to the
full-duplex nature of the monitored links. We then aggregated 10 of
those ports on the aggregation switch into a Gbps SPAN port, and
the other 10 into a second Gbps SPAN port. These two Gbps ports
then connected to two NICs on a workstation running tcpdump
which recorded the aggregated traffic (including payloads) to disk.
One minor variation to this approach occurred for the data captured
in October 2005, where, due to cabling problems, the monitoring
employed only 8 taps (2 sets of 4) rather than 10.

As mentioned above, the plan of operation was for a networking
staff member to every day rotate the tapping arrangement to a dif-
ferent set of 8–10 ports, with this sometimes entailing moving the
entire monitor apparatus to a new switch at a new location. (The lo-
cations included several different buildings at the enterprise.) The
intent was for the monitored ports to always be directly connected
to end systems; however, the network operators cautioned us that
this could not necessarily be achieved because they do not always
know when a port plugged into the monitored switch comes from
a privately managed switch or hub rather than an end system. We
revisit this question in § 6.

We collected 51 pairs of traces, i.e., 102 total traces, each half
of a pair reflecting the Gbps SPAN feed from the aggregation
switch that covered both directions of 4–5 FastEthernet ports on
the monitored switch. Thus, each trace pair captured 8–10 FastEth-
ernet ports off of a single switch. These traces in aggregate com-
prise 2,228 hours of traffic (individual traces usually running about
23 hours), totaling 869M packets2 and about 400 GB of payload.

Note that certainly a juicy use of these traces would be to charac-
terize the traffic in traditional ways for this little explored network
type (e.g., traffic mix, peak-versus-average load, etc.). However, we
cannot soundly do so until we calibrate the traces using the tech-
niques we develop in this present work. As an exemplar of why the
calibration effort is required, we present a high-level characteriza-
tion in § 7 that illustrates how a switch-level view of the network
can illuminate dramatic new insights about enterprise networks.

3. IDENTIFYING PHANTOMS
The predominance of phantoms in switch traces becomes clear

upon casual inspection: we immediately see many identical packets
very closely separated in time. We cannot however simply strip out
packets that exactly repeat a previously seen packet, because we do
not want to presume that sources never transmit multiple times sep-
arate instances of identical packets. For instance, we see multiple

2This is the number of packets written to our trace files. As devel-
oped in subsequent sections, some of these packets are phantoms
that need to be removed before drawing conclusions about the data.

identical ARP packets throughout the traces, and even retransmit-
ted on fairly short timescales (e.g., 1 second). Strictly speaking,
it is impossible from our traces to know whether a given set of
replicated packets reflect phantoms or true, separate end-host trans-
missions. However, given our knowledge of the nature of the net-
work’s operation—in particular, switches should replicate broad-
cast packets, should not necessarily replicate unicast packets, and
when replicating should do so quickly—allow us to proceed with
identifying phantoms with high confidence, as follows.

First, we examine the distribution of the time intervals between
instances of identical packets appearing in a given trace, where
identical means yielding the same MD5 hash over the entire packet.
Figure 2 shows three examples of this distribution. We find that the
particulars of the distribution vary significantly across our traces,
but the overall form always exhibits a strong mode of intervals
≤ 10 µsec (lefthand side of the figure), another broad mode for
values of roughly 1 sec or higher, and sometimes (as in the first two
subfigures, but not in the third one) a third mode in the range of
100 µsec to 1 msec.

An initial, erroneous rule. Upon inspecting such distributions,
it is easy at this point to then presume that the first mode reflects
switch replication, since the very small time intervals correspond
with back-to-back linespeed packets, which is what we would ex-
pect as the result of a switch’s immediate replication of packets
out multiple ports. One can then remove phantoms by eliding any
packets whose contents match those of another packet seen no more
than say 15 µsec in the past. One then interprets the other modes
as representing truly distinct (separately originated) packets.3

Using a 15 µsec rule, however, in fact turns out to be a mistake.
We initially used this definition, and only when further analyzing
the implications of this approach did we discover the problem is
more complex. When we applied the 15 µsec rule for identifying
phantoms, we found that some traces exhibited frequent patterns of
a set of identical packets being split into two parts. For example, if
the replication size was 4 total copies (3 phantoms), then we would
find regions in a trace where each packet was split into a group of
3 identical packets (1 end-host transmission and 2 phantoms) fol-
lowed closely by 1 identical packet that is presumed to be a second
end-host transmission. However, inspecting these incidents then re-
vealed that in fact together the shortfalls arose from a single flight
of 4 copies that had more time between them than 15 µsec.

This indicates that the natural 15 µsec rule is in fact too aggres-
sive. As discussed in § 5 we want to build on the identification of
phantoms for calibrating estimates of measurement loss by compar-
ing the number of phantoms we expect to see with the number we
actually observe. It is, therefore, important that we cull all phan-
toms from the traces before we assess measurement loss, or the
phantoms will suggest more loss than actually occurred. For in-
stance, if we expect to see four replicas for each broadcast packet
and can correctly gather the phantoms together we may find no
loss, whereas erroneously forming two groups with two packets
each will suggest a measurement loss rate of 50%. On the other
hand, the phenomenon of senders retransmitting identical packets
is an interesting one in terms of understanding network dynamics

3It is illuminating to note that on a 100 Mbps Ethernet the closest
possible separation of minimum-sized packets is about 5 µsec, and
for full-sized packets a bit under 125 µsec. However, we have con-
firmed that the timestamp differences for such full-sized packets are
generally well under 10 µsec (below even the minimal full-sized
packet spacing for the Gigabit Ethernet aggregation link). This dis-
crepancy indicates that the timing reflects the monitoring appara-
tus’s kernel timestamping packets that it retrieves (at a rate much
higher than 100 Mbps) in batches out of a buffer, rather than the
fine-grained spacing on the wire.
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Figure 2: Distribution of interval between identical packets seen in three sample traces.

(in particular, load due to redundant traffic), so we do not want to
use an overly conservative rule for identifying phantoms unless we
know it incurs little in the way of “false positives” (misidentifying
truly distinct packets as phantoms).

A more accurate rule. Given that identifying phantoms on the
basis of a separation ≤ 15 µsec misidentifies some phantoms as
reflecting separate source transmissions, we now turn to assessing
whether a higher threshold might yield better results, or will too of-
ten conflate separate transmissions as phantoms. To do so, we rely
on the notion of sole-sourced packets—those which we can infer
with high confidence were transmitted only a single time within a
given trace. We proceed as follows.

First, note that we confine our analysis to Ethernet broadcast
packets, since those should be replicated to create expected phan-
toms, whereas for unicast packets or even for the general group of
Ethernet multicast4 packets that may or may not hold.

Next, we observe that any packet whose contents appears in a
given trace 6 or more times was not sole-sourced, since the repli-
cation process can create at most 4 phantoms for a given end-host
transmission.

If we knew that all 5 ports in a given trace were active, then we
could assume that any packet whose contents appear ≤ 5 times was
sole-sourced. However, applying this approach we find nominally
sole-sourced packets separated by large amounts of time between
the phantom copies (in some cases hours). Surely no switch repli-
cation process introduces such delays. In fact, it is plausible that
no switch process introduces delays exceeding 100 msec. This is
confirmed in Figure 2, which shows identical packets separated by
either significantly less than 100 msec or significantly more than
100 msec. The same holds for the distribution computed for the
other traces. Thus, we deem as sole-sourced broadcast packets for
which (i) we see 5 or fewer total copies, and (ii) the intervals be-
tween the copies all lie below 100 msec. This rule is not ironclad—
it’s possible that with a small enough replication size and rapid
transmissions by a source host that we will misclassify some non-
sole-sourced packets—but it should suffice to find all of the truly
sole-sourced packets, and we presume these will dominate.

Given this definition, we then examined the intervals seen be-
tween the copies of sole-sourced packets. Across all of the traces,
we found a total of 20.4M such intervals. (Note, this number is
much lower than the total number of packets in the traces because
our analysis is limited to broadcast packets.) In 60% of the traces,
the interval never exceeded 1 msec, and across all traces the 99th

4An Ethernet MAC address is defined as multicast (a group ad-
dress) if the least significast bit of the first octet is 1; otherwise, the
packet is unicast [4]. The Ethernet broadcast address is a particular
multicast address with all bits set (ff:ff:ff:ff:ff:ff).

percentile never exceeded 2 msec (other than for a pathological
trace with only one nominally sole-sourced packet in it). 99.998%
of the intervals lie below 5 msec. All intervals lie below 58 msec.

Thus, a threshold of a few msec will work for correctly identify-
ing the phantoms associated with virtually all of the sole-sourced
broadcast packets. We can further estimate the corresponding false
positive rate associated with a given threshold by determining how
often we observe the same payload appearing > 5 times within a
given threshold across all broadcast traffic (i.e., not just the sole-
sourced packets). We know that structurally such occurrences must
reflect multiply-sourced packets (or peculiar measurement prob-
lems). We find that a threshold of 60 msec yields 450 such false
positives out of 7.8M unique packet payloads; with 5 msec it drops
to 150; and with 100 µsec it further drops to 46.

In conclusion, we find that a value of 5 msec rather than 15 µsec
gives us significantly more complete coverage of sole-sourced
packets, and with at most a quite modest degree of misidentifica-
tion of multiply-sourced packets. Accordingly, we define phantoms
as identical copies of previous packets that we observed less than
5 msec in the past.

Analysis of the middle mode. In light of this new definition, we
revisit Figure 2. Now we no longer interpret the middle mode from
100 µsec to 1 msec as representing truly distinct (separately orig-
inated) packets, and it behooves us to investigate why we observe
a separate mode here rather than a single mode extending from a
few µsec up to 1 msec.

The evidence indicates that switches exhibit two different repli-
cation mechanisms. Indeed, we find that this is the case. The mid-
dle mode is heavily dominated by a particular type of traffic, the
Cisco Group Management Protocol (CGMP) [1]. These packets
represent control traffic governing how switches forward IP mul-
ticast. We find that CGMP phantoms come with sharp intervals
of time between them, exhibiting narrow spikes at 125 µsec and
multiples thereof. This suggests that the switch uses a timer-driven
mechanism to generate the replicas, and occasionally misses one or
two beats of the timer when doing so.5 We can rule out that these
packets are instead generated by their source as multiple copies,
since we consistently observe the switches replicating the packets
to the same degree that they replicate broadcast packets (i.e., in re-
flection of the number of monitored ports that are currently active).
If the replication occurred at the source, then sometimes these val-

5We note that these packets are quite small, so it is presumably
coincidence that the 125 µsec spacing happens to match that of
maximum-sized Ethernet packets. We also note that intervals seen
at multiples of 125 µsec, such as 250 µsec or 375 µsec, occur much
more frequently than can be due to measurement loss leading to a
failure to record intervening packets that all came 125 µsec apart.
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Figure 3: Distribution of the difference between a packet’s
timestamp on the first monitoring interface and the second
monitoring interface across a sample merged trace.

ues would differ, since the source would have no way of knowing
how many of the ports we were passively monitoring happened to
currently be active.

4. TIMING
For the consideration of timing fidelity, we note that previ-

ous work has established that packet trace timestamps can exhibit
a wide range of errors—many of which require pairs of traces
recorded using different clocks to detect [7]. As sketched in § 2,
our traces were all recorded using a single clock, and thus we can-
not employ many clock-calibration methods. However, we do two
quick calibration tests to ensure that we can in fact use the com-
ponent trace of each pair to examine temporal aspects of the traffic
with confidence that the events recorded in the component traces
do in fact happen contemporaneously. After verifying that time
progressed in monotone-increasing timestamps in all of our traces,
we turned to the problem of comparing the timestamps recorded
in each trace in a pair for the same event. While our setup used
a single tracing host, it executed two separate tracing processes
(tcpdump), leaving the calibration question of how closely the
timestamps recorded by one match those recorded by the other. Our
methodology proceeds as follows.

We first remove phantoms from each trace in our dataset using
the Δt < 5 msec rule developed in § 3. Next, we merge each trace
pair into a single trace—other than one pair of traces we removed,
as discussed below—and collect identical broadcast packets to-
gether based on the MD5 checksum (with an indication of the ori-
gin trace for each packet). We then identify sole-sourced packets—
which appear exactly once in each of two traces after removing
phantoms—and examine the difference in their timestamps. In
principle there are additional opportunities to compare the time-
stamping processes using non-sole-sourced packets. However, con-
sidering only sole-sourced packets side-steps the tricky issue of
teasing apart pairs of packets that correspond to the same packet
transmission, and we note that using only sole-sourced packets pro-
vides ample timestamp samples to solidly compare the two traces.
In particular we find that the number of samples per trace ranges
from 6,000–165,000 across the merged traces (i.e., per ≈23 hours
of time).

For these samples, we examine the absolute value of the differ-
ence in the pairs of timestamps from sole-sourced packets. We find

the median of this value to be 39 µsec, with 99.8% coming less
than 152 µsec apart (maximum just over 5 msec). The largest me-
dian across any of the pairs of traces was 49 µsec. Finally, we note
that the direction of the differences is roughly balanced so neither
timestamping process runs consistently ahead of the other. Figure 3
shows the distribution of differences between packets observed on
the first and second interfaces of our monitoring host for one of the
trace pairs. The plot shows that (i) the differences are small, (ii) the
differences go in both directions with each process ahead and be-
hind almost exactly half of time, and (iii) there is a no-man’s-land
between ±15 µsec that likely corresponds to the monitor’s min-
imum time for switching from servicing (and thus timestamping)
one interface over to the other. Note that this no-man’s-land also
points up an inherent shortcoming of the initial Δt < 15µsec rule
for detecting replicas: a single interrupt switching the timestamping
process from one interface to the other, arriving in the middle of a
replication burst, can lead to an interval for the burst that exceeds
30 µsec (the shortest time until the timestamping can return to the
original interface).

Examining the largest differences between the timestamping
processes led to the discovery that one set of “paired” traces in
fact did not constitute a pair, meaning that while the traces were
recorded concurrently, they tapped different switches. (We con-
firmed this finding using the “layout” techniques discussed in § 6.)
We omit these traces from any analysis we conducted using merged
pairs of traces.

Based on sole-sourced packets we conclude that the timestamps
of concurrently recorded traces are very closely aligned (as ex-
pected, since the same workstation recorded both of them), and
thus we can use a fairly narrow window of time to analyze the
merged pair for further details (either in terms of calibration—as
we leverage the merged traces in § 5—or more generally in terms
of characterizing the network).

5. DETECTING MEASUREMENT LOSS
We now turn to gauging the degree to which our monitoring

setup incurred measurement losses, i.e., failed to record packets
that traversed the tapped links. Such losses can arise from a variety
of processes: a faulty tap that sometimes fails to physically copy
bits transmitted over the link; buffer exhaustion in the aggregation
switch as it multiplexes 10 streams of 100 Mbps each onto a 1 Gbps
SPAN port; buffer exhaustion in the monitoring workstation, either
in its NICs, its kernel, or the user-level tcpdump process; NIC
PCI bus contention, since one machine was capturing two gigabit
ethernet streams; or bit errors during transmission between these
stages (presumed very rare). We need as best as we can to dis-
tinguish these effects, all of which only affect copies of the actual
traffic, from true loss of actual traffic, since the latter represents an
interesting networking event, while the former is a mundane mea-
surement artifact.

We pursue four separate strategies for estimating measurement
loss, two based on broadcast traffic (with one being generally con-
servative, the other less so), and two using unicast traffic. First,
we can examine pairs of traces for the presence of “orphans”—
broadcast packets that should appear in both traces in a pair but
only show up in one. Second, as suggested previously we can as-
sess variations of the replication size occurring in a trace, inter-
preting short-lived reductions in the number of phantoms observed
that quickly return to the previous baseline level as likely reflect-
ing measurement loss rather than tapped hosts going inactive and
then becoming active again. This second approach is equivalent
to the first where the reduction in replication size goes all the way
to zero—but that event is not discernible when inspecting a single



trace. Third, we exploit the structure and reliable nature of TCP
traffic to infer measurement loss, by looking for instances where a
receiver acknowledges data, but for which we do not see the data
itself previously appearing in the trace. This technique lends itself
to two variants, one based on the rate at which we observe such ac-
knowledgments and the other based on the volume of data we can
tell is missing.

We consider these four approaches in the following subsections.
(Note that we defer a comparison between them until Figure 4,
which presents per-trace estimates based on all four.) However,
before we tackle these assessment strategies we need to address a
peculiar measurement artifact. In the process of analyzing broad-
cast traffic present in one trace but not in its companion, we dis-
covered that for many of the traces at either the beginning (“head”)
or the end (“tail”) a fall-off in replication size occurs, coupled with
a preponderance of orphans (packets missing from the companion
trace). Sometimes, the replication size systematically falls off (5,
4, 3, 2, 1) and then likewise rises again. Based on changes in pre-
dominant MAC and IP addresses at these points, we identified the
cause as reflecting the network operator physically moving the net-
work monitoring taps from one set of ports to another—which in
retrospect we would indeed expect to occur right at the beginning
or end of a trace collection period, as the operator prepares to set
up a new set of monitoring points.

Thus, we discovered that the traces are in fact polluted in the
sense that they do not in their raw form reflect a single set of 5 mon-
itored ports, but instead might each represent up to 10 such ports.
We term this the head/tail effect. We manually determined the ex-
tent of this distortion and found that across all of the traces, the
phenomenon did not manifest beyond the first or last 12 minutes
of a trace.6 Consequently, we trimmed each trace to delete its first
and last 15 minutes (to have a conservative margin), and in addition
aligned the trimming so that the two traces we would then merge
started and ended at the same time. The analysis we discuss in this
paper for pairs of traces uses these trimmed traces rather than the
original raw traces.

5.1 Detecting Orphans
Given two traces comprising a trace pair from the same switch,

we expect each broadcast event to manifest in both traces. Our first,
generally quite conservative method for identifying measurement
loss is therefore to verify this assumption and assess the loss rate
when it does not hold. We used the merged traces described in § 4
to look for orphans. We expect that each broadcast packet transmit-
ted by an end-host should appear in the merged trace exactly twice
(i.e., one copy from each of the component traces).

We first identify all packets in the merged trace with the same
MD5 hash value. We then flag instances where the number of
such packets captured on the first interface differs from the num-
ber captured on the second interface. We record the imbalance as
the number of orphans observed in the trace with fewer instances
of the packet. This scheme is simplistic, and can fail in some cases.
For example, when a roughly equal number of losses for the same
MD5 hash value occurs in each of the component traces, the detec-
tion algorithm will underestimate the degree of measurement loss.
However, it is very likely that the orphans that the process identifies
do reflect measurement issues, and should provide a lower bound
on the trace’s measurement loss rate.7

6Clearly, it could in principle occur anywhere in a trace, but we
would not expect that, given how the operators told us they had
acted. Furthermore, our “layout” analysis in § 6.2 provides strong
evidence that this phenomenon did not occur.
7Note that when only considering broadcast traffic, finding an or-

We note that, along with the head/tail effect and the need to align
trace pairs as discussed above, one other effect apart from measure-
ment loss can also lead to orphans. Above we discussed how our
employment of a 5 msec threshold to eliminate phantoms covers
99.998% of the intervals between known phantoms in the broad-
cast traffic (i.e., sole-sourced packets). Therefore, in about 0.002%
of the cases we miss removing some phantoms. This leaves more
traffic in the “phantom-less” traces than we actually should have,
and we can then in turn misconstrue these extras as orphans because
of the lack of a corresponding packet in the other trace.

Analyzing our dataset with the above described orphan detec-
tion method yields 797 orphans across all traces. In the context of
the entire dataset this reflects a 0.007% measurement loss rate. We
find that nearly 50% of the traces have no orphans. The maximum
measurement loss rate estimated using this (conservative) method
is 0.2% for one particular trace, roughly four times larger than the
next largest. (As discussed above, we defer our look at the individ-
ual per-trace estimates to Figure 4 below.)

5.2 Leveraging Phantoms
Next we examine a second strategy to assess measurement loss

that leverages the fact that we expect multiple copies of each broad-
cast packet—phantoms—to appear in our traces. For instance,
when the full complement of switch ports is active we would ex-
pect to find 5 exact replicas of each broadcast packet in the trace
file. This expected redundancy allows us to consider decreases in
the replication level as possibly reflecting measurement loss.

An immediate issue for this approach is determining the ex-
pected replication level. We know this should be no more than
5 due to the number of ports we tap at once. However, the num-
ber of active switch ports varies across time in our traces (e.g., as
end hosts are powered on and off). We therefore analyze the traces
to delimit intervals across which the replication level remains con-
stant, and then use the size and duration of variations in adjacent
intervals to estimate loss rates.

We might reasonably expect to find in each trace a relatively
steady baseline replication level that holds for a long time (min-
utes), pockmarked with brief depressions in the level caused by
measurement loss. However, across all of the traces we find that
the median interval length was just 3.4 seconds, the 75th percentile
32 seconds, and the 95th percentile just over 10 minutes. This in-
dicates that there is not necessarily a solid baseline on which to
base our analysis and measurement loss detection. Further, when
the replication level changes it does not then necessarily simply
change back to the previous value when some anomalous interval
was over. We are largely still attempting to find a way to make
sense of the progression of replication levels.

Given these puzzling dynamics, we instead employed a fairly
simple approach to establish a plausible lower bound on the mea-
surement loss rate. We observe that for 20% of the replication in-
tervals the following properties hold: (i) the interval includes only
a single packet (and its phantoms), (ii) the number of replicas in
the interval is less than in the adjacent intervals, and (iii) the repli-
cation levels in the adjacent intervals are equal. In other words,
these intervals represent a slight depression in an otherwise steady
replication level, which likely reflects measurement loss. We use
the magnitude of the depression as the number of drops.

We find that one-third of the traces exhibit no evidence of mea-
surement loss using this technique; in the remainder, we find mod-
est levels of measurement loss, topping out at 0.08%. After taking
into account the discrepancy in the number of traces with no mea-

phan in the manner we sketch means that we missed all instances
of a particular packet.



surement loss, the distribution of loss rates determined using the
orphan analysis and the replication analysis match fairly closely.
The discrepancy in the number of traces showing no measurement
loss likely arises due to the redundancy provided by broadcast traf-
fic. Orphans indicate the absence of all copies of a packet from a
given trace. Since we know that in general the monitor will capture
for each trace multiple copies of each broadcast packet, orphans
thus indicate a fairly significant loss event. In contrast, losses de-
tected via a slight depression in the replication level do not require
the same high bar for detection, and therefore we observe such loss
in a larger number of traces.

5.3 TCP Sequence Gap Analysis
We can assess measurement loss in subnet traces in a quite differ-

ent fashion by leveraging the structure of TCP transfers. Since TCP
provides a high degree of reliability, in the absence of measurement
loss we should only observe a receiver acknowledging data that a
trace shows was previously transmitted by the sender. Thus, if we
observe an acknowledgment (ACK) for a range of sequence num-
bers for which the trace lacks a copy of the corresponding data
transmission, we can infer with high probability that a measure-
ment loss occurred.8

We note that from a trace we can directly compute the volume
of missing data in terms of TCP payload bytes, but not the num-
ber of lost packets, other than by making assumptions about the
size of the missing packets. We also note that making similar infer-
ences regarding missing TCP ACKs is significantly more difficult,
as these measurement losses manifest by the TCP sender seem-
ingly transmitting too aggressively for correct congestion control.
Due to variations in how senders implement congestion control, ac-
curately identifying these situations requires developing a model of
the sender’s particular algorithms, a problematic undertaking [6].
For our purposes, the simpler estimate based on ACKs that cover
data sequence gaps suffices, since our aim is to develop a cross-
check on the measurement loss estimates formulated earlier in this
section.

We proceed as follows. For each trace, we processed it using the
Bro network intrusion detection system [8], which performs TCP
stream reassembly in its analysis. Bro’s reassembly process already
includes instrumentation for detecting ACKs that span sequence
gaps. We extended this bookkeeping to count not only how often
such ACKs occur, but also the volume of missing data in the gap(s),
as well as how often the system processed a “candidate” ACK that
could have exhibited a sequence gap (i.e., an ACK that includes a
new sequence range not previously processed) and the total volume
of new data covered by such ACKs. We only apply this analysis to
fully established TCP connections, to eliminate ambiguities that
arise for traces that miss the beginning of connections (and thus
it’s not clear just which data sequence numbers might have already
been transmitted prior to the beginning of the trace), and also for
connections for which one side has already closed the connection
(these can lead to sequence number inconsistencies in the presence
of RST packets).

We then compute two estimates of measurement loss: LP , the
number of ACK packets with sequence gaps divided by the total
number of candidate ACK packets; and LB , the volume of data (in
bytes) missing in the sequence-gap ACKs over the total volume of
new data acknowledged by candidate ACKs.

Neither of these values directly measures the loss rate in terms
of fraction of missing packets. LP can be an underestimate if gaps
found for single ACKs cover multiple absent packets. Likewise,

8Malfunctioning TCP receivers can in fact send acknowledgments
for data never sent, but this situation occurs only quite rarely [8].
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Figure 4: Estimated measurement loss rates computed using
different approaches. The X-axis gives rates based on the fre-
quency of observing gaps in the data acknowledged by TCP
receivers. The Y-axis shows rates estimated from the number
of missing bytes in such acknowledgments, as well as for the
analyses developed in § 5.1 and § 5.2.

LP can yield an overestimate if ACKs cover multiple packets of
which only one was missing (for example, ack-every-other could
yield for LP a value of 1.0 if every other packet is missing, rather
than 0.5). LB will emphasize the presence or absence of larger
packets over shorter ones, which again could constitute either an
underestimate or an overestimate.

That said, we would expect in aggregate that both measures
should often get us within say a factor of 2 of the true measurement
loss rate, if we assume that the measurement loss process is inde-
pendent from the particulars of the TCP stream’s packet structure.
If on the other hand we do not have such independence, then most
likely the dependence tends towards correlation of high-rate TCP
streams with measurement loss events. In that case, if the sender
employs full-sized packets then LB should come close to estimat-
ing the true measurement loss rate, while LP will overestimate due
to the common use of ack-every-other for TCP connections with
large receiver windows (and hence few delayed ACKs that cover
only a single packet).

Figure 4 compares LP (X-axis) with LB (Y-axis, circles) for
each trace, with both rates in terms of percentages. The diago-
nal line marks equality between the two, so we see that while LB

estimates tend to run a bit higher than LP , overall the two track
one another fairly closely and do not exhibit a clear-cut skew. We
also plot the estimates derived from mismatches in the number of
broadcast “orphans” (per § 5.1, plotted with squares) and reduc-
tions in the replication level (per § 5.2, plotted with triangles). We
see that the orphan- and replication-level-based approaches consis-
tently give considerably lower measurement loss estimates, which
fits with their more conservative constructions.

Note, for all four estimates, we plot not the direct estimate but
upper bounds computed in terms of observing one more measure-
ment loss than what actually appeared in the trace. For example,
for LP we show the rate we would have observed if simply one
more candidate ACK had spanned a content gap, and for LB if we
had seen 1460 more missing data bytes. We aim with using these
bounds to control for the granularity of each loss-rate estimate; for
traces with few candidate ACKs / orphans / depressions in replica-



tion level, we would like to err on the side of overestimating mea-
surement loss rather than underestimating it.

The fundamental conclusion we take from these measurement
loss-rate estimates is that (i) often measurement loss is quite low
(with the upper bound below 0.1% for the majority of traces), and
(ii) it very rarely exceeds 1%.

6. MAPPING THE MONITORED SUBNET
The final class of calibration issues we address concern those

we framed previously as relating to layout: identifying key topo-
logical aspects of each trace. These include determining which
traffic reflects intra-subnet vs. inter-subnet communication, iden-
tifying which end systems the tapping directly monitored, and de-
tecting instances of hidden switches/hubs, i.e., instances where in
fact a tapped link does not lead directly to a single end system,
but rather to another network element that provides connectivity to
multiple additional systems. All of these characteristics have po-
tentially significant import for measurement analysis, particularly
for studies that emphasize traffic locality or that require compre-
hensive end-system tracing (i.e., capturing all of an end system’s
network activity).

We note that for traditional measurement vantage points, layout
issues are often very simple to resolve. For example, when mon-
itoring a site’s access link one immediately can distinguish inter-
nal from external end systems, and when recording traffic directly
on an endpoint there is no question of confusion regarding hidden
network elements. However, enterprise switch measurements in-
troduce significant complications for understanding layout due to
the nature of the vantage point they reflect.

One might think that the way to deal with questions of layout is
proactively: ensure that operators accurately record such informa-
tion as they capture the traces. However, this solution is deficient in
two regards. First, due to human error such records may in fact not
match the reality of what the traces captured. Second, the opera-
tors might simply not know all of the layout particulars—especially
a possibility with regard to hidden switches, which users can poten-
tially deploy without ever informing the operator of their presence
(unless the operators enforce that switch ports only accept traffic
from registered MAC addresses).

Thus, while meta-information from operators is a highly use-
ful resource, as is generally the case when pursuing sound
measurement-based analysis, it behooves us to consider alternative
or additional ways of calibrating traces with respect to layout is-
sues. It turns out that elements of such calibration are quite sub-
tle and take considerable care to develop and apply. Furthermore,
some elements of determining layout characteristics rely upon oth-
ers, so we need to proceed in a deliberative fashion. We do so
by first considering the problem of distinguishing between intra-
subnet and inter-subnet traffic § 6.1. We then employ information
gained from that analysis to determine with high confidence which
MAC addresses correspond to systems on the other end of moni-
tored switch links § 6.2. Finally, we combine both forms of infor-
mation to assess whether the links monitored in the traces include
multiple hosts behind hidden switches § 6.3.

6.1 Intra- vs. Inter-Subnet Traffic
Our first task is to reliably determine which traffic flows reflect

traffic that stays inside the Ethernet subnet (broadcast domain) or
involves a remote endpoint outside the subnet. We will primarily
analyze IP traffic (which dominates our traces), with brief com-
ments about non-IP traffic.

For clarity of discussion, we adopt the following notation. Let A
and B reflect two hosts involved in communication. Unless other-

wise stated, we will assume that we are analyzing a unicast, unidi-
rectional flow of packets sent from A to B. For these packets, let
MA and MB stand for the corresponding MAC addresses as seen
in the traces, and IA and IB the corresponding IP addresses.

We bootstrap our understanding of whether A or B lies exter-
nal to the subnet as follows. We assume we can readily identify
IP addresses corresponding to hosts external to the entire enter-
prise. If IA is such an address,9 then MA must correspond to a
router’s MAC address. For each trace, we gather up all such MA’s.
Inspecting these, we observe across our entire dataset just three dis-
tinct MAC addresses. Thus, with high confidence we conclude that
those three addresses correspond to IP routers, and traffic involving
them either is communication directly with the router (presumed
rare) or leaves the subnet. In the latter case, it is either inter-subnet
traffic if sent to an IP address internal to the enterprise, or WAN
traffic if not.

We are not yet done, however, because the enterprise’s topol-
ogy might include both WAN routers and internal routers used
only for inter-subnet communication. The above approach will not
have found those, since we seed it with MA’s that reflect WAN
addresses. So we next remove any traffic involving these identi-
fied routers. The remaining traffic is either entirely intra-subnet (if
there are no other routers) or potentially involves other subnets at
the site. For this traffic subset we compute the range of IP addresses
seen in the flows (again taking care to remove nonsensical values
that arise from configuration failures). We then widen this range
to the nearest accommodating CIDR prefix. In our case, we know
that the enterprise employs subnet blocks in the range of /24 to /22.
If the addresses in the possibly-entirely-intra-subnet traffic fall into
such a prefix, then we have good confidence that it indeed reflects
only intra-subnet traffic.

For our traces, that is in fact what we found—for each trace, the
possibly-internal traffic always fell within a CIDR prefix at most
/22 in width. We then asked the operators whether the prefixes
correctly described the enterprise’s subnets. In all cases they did,
except sometimes the inferred prefix was narrower than the actual
prefix, due to our traces not happening to include the full range of
intra-subnet IP addresses.

We could in principle apply a similar process for non-IP traffic,
too. However, doing so is complicated by the need to understand
the specific inter-subnet forwarding/routing employed by what are
sometimes fairly obscure link-layer protocols. Instead, we simply
confirmed with the operators that indeed the enterprise does not
route any non-IP traffic between Ethernet subnets.

6.2 Determining Monitored Hosts
The next part of developing a network map is to figure out which

nodes were directly monitored in our switch-level traces. The issue
arises due to a basic ambiguity: if we see communication from MA

to MB , then it could be that the directly monitored hosts were A, B,
both, or neither. Our efforts at such identification were significantly
complicated by the fact that a number of simple approaches we
tried yielded quite unlikely results, finding more often than not that

9Note, a complication here arises when an internal host uses an
erroneous IP address. Simple such instances we observed in our
traces are private or self-assigned addresses, arising from dynamic
configuration failures. More subtle cases use legitimate external ad-
dresses, even though the host employing them is operating inside
the enterprise. These appear to come about due to mobile hosts
that dynamically configured an address when at a location external
to the enterprise, and now attempt to continue to use it rather than
dynamically configuring another address. We can identify such in-
stances by their quite low prevalence, and also by their failure to
engage in productive two-way communication.



the traffic patterns appeared explainable only in terms of H directly
monitored hosts for H > 5. Such a situation should not arise unless
one of the monitored ports in fact leads to a hidden switch, and we
believed that such switches would not be particularly common.

The approach we eventually developed—a generalization of the
initial simple approaches—works as follows. First, we locate all
flows of the form A communicating with B for which (i) the large
majority of packets (90%) were not replicated, (ii) we similarly
saw mostly non-replicated traffic from B to A, and (iii) at least
5% of the traffic (constituting at least 5 packets) flowed in each
direction.

The goal behind these constraints is to find flows for which we
can state with confidence that either A or B must be a monitored
host, but not both. The reasoning proceeds as follows. If A and B
are both non-monitored, then the switch(es) that mediate their traf-
fic should learn forwarding paths between the two, and those paths
by definition do not include our monitored ports. We should only
see packets for their flows in those instances where the switches
lack a forwarding entry for the destination; thus, any instances of
their packets that appear in our traces should be replicated, violat-
ing (i).

In addition, we know that it is not the case that both A and B
are monitored hosts (assuming no hidden hubs, a point we return to
below) because if they were then the strong majority of the pack-
ets between the two would appear twice in the trace, once for each
monitored port. Indeed, we locate such “doubly-monitored” flows
by finding those for which a replication level of 2 copies predomi-
nates (≥ 75% of packets). These are present in 34% of our traces.

Finally, we employ a simple form of graph coloring employing
two colors, red and green, as follows. We construct a graph G
where for each bidirectional flow between an A and B that satis-
fies (i), (ii) and (iii) above, we place an edge between nodes that
represent the two systems. We first color red the nodes correspond-
ing to the routers we identified in § 6.1, and green any nodes to
which they have edges. (All traces had at least one router present
in them.) We then recursively continue coloring in this fashion,
alternating between red and green every time we traverse an edge.

If we arrive via an edge at a node that we need to color red, but
the node is already green, or vice versa, then we have detected an
inference inconsistency, and we abort. When done, we also check
to ensure that any nodes corresponding to doubly-monitored flows
were both colored green.

At the end of this process, we have a collection of nodes col-
ored red, which reflect non-monitored nodes (since they reside in
an equivalence class with a router, and we have high confidence
that the monitoring didn’t include a link to the router); green, re-
flecting monitored nodes; and uncolored, reflecting nodes that were
unreachable from the original set seeded by the router’s flow ac-
tivity (i.e., G has disconnected components). We could in prin-
ciple color these disconnected components too, though we would
not know in that case which color corresponds to monitored hosts
vs. non-monitored ones. However, these occur in only 6 traces,
in each case for very small components. We discuss treatment of
these uncolored nodes below.

In none of the traces did this approach produce a coloring in-
consistency. This gives us additional confidence that the approach
does indeed uncover a basic facet of the monitoring layout; i.e., the
green hosts very likely do correspond to monitored hosts.

A final confirmation in this regard, albeit an unexpected one, was
our discovery that the deduction process often flagged the same
MAC addresses in consecutive traces recorded by the same aggre-
gation interface on the monitor device. This behavior manifested
primarily on traces captured over a weekend, and has a natural ex-
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Figure 5: Deduced monitored hosts per trace: number seen
concurrently (grey), total (black), observed replication level
(circles).

planation that for the second trace, the operators did not in fact
move the taps to a new set of ports.

Having done this work to deduce the number of monitored hosts
per trace, we now face a conundrum, as illustrated in Figure 5. Here
we plot for each trace the total number of monitored (green) nodes.
For those traces with uncolored nodes, we add half (rounded down)
of their total number, since the disconnected component represents
at least that many monitored nodes. (For example, if the component
shows hosts A and B both communicating with C, then either A
and B are monitored, or C is.) Doing so only adds one deduced
node to each of 3 traces.

The bars on the left of the plot reflect traces from 2005, which
each tapped 4 ports. The righthand group, from 2006, tapped
5 ports per trace. The plot includes horizontal lines showing these
cutoffs. Finally the circles in the plot reflect the largest replication
level seen for each trace.

The conundrum arises from the fact that for the majority (55%)
of the traces, we deduce more monitored hosts than tapped ports.
This number further rises to 67% if we consider instances where we
deduced more monitored hosts than the largest observed replication
level.

This mismatch perturbed us. It implies either (a) we somehow
are seeing unreplicated packets for ongoing communication be-
tween two non-monitored hosts, indicating that our understanding
of switch operation is incorrect; (b) end systems employ multiple
MAC addresses when using a single network link; (c) at differ-
ent times, different end systems are plugged into the same network
link; (d) the network operator performing the monitoring moved
the taps to different switch ports during the middle of tracing; or
(e) our links did not connect to end systems but instead to net-
work segments shared among multiple hosts via hidden switches
or hubs. We cannot directly assess the likelihood of (a). We find
(b) quite unlikely to occur often enough to affect the majority of
traces. Similarly, while (c) will likely sometimes occur, it struck
us as implausible that it would do so frequently enough to cause
the observed overrun of monitored hosts, particularly for the larger
counts, and similarly for (d). While it would not be surprising to
find (e) occurring, the impression we had formed was that for the
LBL network it too would be an occasional, rather than dominant,
effect.



We set out to test (c) by splitting each trace into 15-minute in-
tervals and counting for each interval the number of deduced moni-
tored hosts that appeared active in both that interval and the one im-
mediately following it. We consider such hosts as simultaneously
active, and therefore unable to reflect different systems plugged
into the same link at different times. We then looked for the 15-
minute interval in the trace that had the maximum number of such
concurrent host activity.

Figure 5 shows these maximum values in grey, drawn over the
total number of deduced monitored hosts, which we show in black.
The fact that the plot appears virtually entirely as grey bars thus
indicates that for almost all traces, all of the deduced monitored
hosts appeared together. This finding conclusively rules out (c).

In the process of examining 15-minute epochs, we also com-
puted over what proportion of all of a trace’s 15 minute intervals
did each monitored host appear active. We found that in all but 5 of
the traces, there was at least one monitored host that appeared ac-
tive during every 15-minute interval, and in only two traces (both
very lightly loaded) did the most active monitored host appear in
less than 75% of the intervals. Thus, we also can conclusively rule
out (d).

This then leads us to the problem of considering whether (e)
(widespread use of hidden switches/hubs) indeed explains the dis-
crepancies in Figure 5, or if we must consider the seemingly very
unlikely explanations of (a) or (b).

6.3 Detecting Hidden Switches and Hubs
We now turn to the problem of determining whether our mon-

itored ports in fact frequently (more than half the time) included
links that run not directly to individual end systems, but instead
to “hidden” switches or hubs that provide connectivity to multiple
end systems. If we cannot establish the frequent presence of such
hidden elements, then we are forced to consider alternative, seem-
ingly quite implausible, explanations for the excessive number of
apparently monitored hosts in Figure 5.

This is a difficult problem, since we lack the ability to associate
a given MAC address directly with a given switch port. However,
we eventually devised the following methodology for detecting the
presence of some (not all) instances of hidden elements. Our key
observation is that if our traces often include hidden elements, then
during the recording of at least some our traces communication
probably occurred between hosts A and B, both of which com-
municate directly using the hidden element.

If the hidden element is a hub, then due to its broadcast nature
we will see a copy of the traffic between A and B on the monitored
link. This in turn will lead us to create an edge between the nodes
corresponding to A and B in the graph G we devised in § 6.2, and
thus we would discover a graph-coloring inconsistency (either A
or B could be colored green, but not both). However, we did not
discover any such inconsistencies, which gives us confidence that
our traces do not include numerous hidden hubs.10

Detecting hidden switches, however, presents a more difficult
problem. If A and B connected to the hidden switch communi-
cate directly, then the switch might not replicate any of their traffic,
or at best only their initial packets, so we will have little opportu-
nity to observe the activity on the tapped port. However, we can
infer such communication as follows. Whenever two hosts begin
communicating via IP for the first time—or after a lengthy lull or
a reboot—each will generate an ARP request for the other. These

10It is possible for a given trace that A and B both reside in an
unconnected component of G, and hence were not colored at all.
However, we know that very few traces had such components, and
therefore there are at most just a few hidden hubs.

requests are normally broadcast, since the whole point of needing
to use ARP is that neither A nor B know what MAC address to
associate with the other. However, replies to ARP requests come
back to the requester via unicast. In addition, normally the initial
ARP request will have provided the switches between A and B
with awareness of MA (A’s MAC address), and thus the switches
will not replicate the ARP reply.

These dynamics then lead to the observation that if A and B
connect to a hidden switch, then when they communicate with one
another we will sometimes see A sending ARP requests for B, and
likewise B sending ARP requests for A—but we will not see ARP
replies in either case. We see the requests due to their broadcast
nature; the hidden switch replicates the request onto the monitored
link. But the replies will proceed directly back through the switch,
without replication onto the link.

We can therefore sometimes detect hidden switches in the pres-
ence of such intra-switch communication by identifying instances
where a host A sends an ARP request for a host B, for which we
do not see a reply; and host B likewise sends an apparently unan-
swered request for A. If from graph coloring we have that both A
and B are green, then we can say with high confidence that both
reside behind a hidden switch: we know that both are located on
a monitored port due to their (separate) communication with exter-
nal hosts, and thus were they not behind a hidden switch we should
have seen the corresponding ARP replies. If both A and B are red
then we know they both reside externally (this will be a common
case when we see only the broadcasted ARP requests, but not the
unicasted ARP replies). Finally, if one is green and the other red,
then we have discovered an inconsistency. (This last did not in fact
occur.)

This procedure presents one difficulty, however. We do not di-
rectly observe “host A” sending an ARP request for “host B”.
Rather, we observe MA sending an ARP request for IB . Since
we do not see the reply, we do not directly obtain the pairing of
IB with MB , and therefore cannot immediately match the ARP
request from MB for IA as the other half of the communication
setup between A and B. We address this consideration by gener-
ating for each trace a mapping of all MAC/IP address pairs seen in
any IP packets (whether as source or destination). We then look for
any instance where MA makes an unanswered ARP request for IB ,
for which a MAC address M ′

B seen associated with IB also sent an
unanswered ARP request for I ′

A, an IP address seen associated with
MA.

Applying this approach, we find that 14 traces manifest such
communication setup between a pair of green hosts, with half of
those including more than one pair of intercommunicating hosts.
We accordingly conclude that hidden switches are not that uncom-
mon in our traces.

Furthermore, our finding of 14 instances is an underestimate, be-
cause it requires that a pair of the hosts connected to the hidden
switch not only happened to communicate with one another dur-
ing the tracing period, but also had to refresh their ARP caches
for each other. Above in § 6.2 we found that 34% of traces in-
cluded doubly-monitored flows between pairs of monitored hosts.
(These hosts are not behind hidden switches, as we see two copies
of the packets of the flow, indicating that the hosts reside on sepa-
rate monitored ports.) We might then roughly estimate that among
a group of hosts connected to a switch, during a day-long period
only about a third of the time does one of the hosts attached to
the switch communicate with another host attached to the switch.
If that rate happens to hold for hosts connected to hidden switches
too, then the 14 instances we observe might be only about a third of
the total (less, in fact, due to our need for the hosts to ARP for one



another). We would then extrapolate that all-in-all, at least ≈ 42 of
our traces—and possibly significantly more—might include hidden
switches. This figure is fairly consistent with the 55–67% of traces
exhibiting aberrant levels of monitored hosts as seen in Figure 5.

Thus we argue that we have good evidence that hidden switches
are widely prevalent in our dataset.

7. TRAFFIC LOCALITY
After the arduous process of calibrating our datasets, we can now

briefly turn our attention to developing high-level characterizations.
We view the results in this section as motivating the work presented
above, because the analyses show that subnet-level traffic patterns
manifest quite differently from both wide-area traffic and internal
traffic that leaves the subnet. Therefore, while the above calibration
efforts may seem like mundane logistical issues, they indeed form
the key foundation for then obtaining sound insights into a rather
unexplored area of networking.

The first step in characterizing enterprise traffic is to attribute
each packet to a particular locality. In our analysis we distinguish
three such forms: (i) subnet specifies traffic that stays strictly in-
side a given broadcast domain, (ii) LBL contains traffic that leaves
the subnet, but remains confined inside the LBL enterprise, and
(iii) WAN denotes traffic that involves communication with hosts
external to LBL.

For mapping packets into locality bins, we leverage an observa-
tion made in § 6.1: for the LBL and WAN bins, one of the MAC ad-
dresses must belong to a router. Thus, for each packet we apply the
following rules: (i) if none of the MAC addresses corresponds to a
router, we put the packet in the subnet bin; (ii) if one of the MAC
addresses is a router, and the corresponding IP address belongs to
LBL, the packet falls into the LBL bin; and (iii) if a MAC address
is a router, and the corresponding IP address is outside LBL, then
the packet belongs to the WAN bin.

We find three types of packets that do not fall into any of these
locality bins. For all three, we observe the router’s MAC address
as the source, but instead of IP, the packets are: DECnet, CGMP,
or ARP. The operators informed us that LBL did not route non-
IP traffic at the time we captured the traces, and therefore these
packets must have originated from the router itself. Indeed, CGMP
packets are sent by routers to populate Catalyst 5000 switches with
multicast-aware entries, and ARP to resolve unknown MAC to IP
mappings. The number of DECnet packets is very low (no more
than 200 packets per trace),11 while CGMP appears in fairly high
numbers in less than half of our traces. Both of these protocols, un-
like ARP, sent packets exclusively to Ethernet multicast addresses.
Since all three protocols operate inside a subnet, we deem it plau-
sible to designate all of them as subnet, i.e., local to the LAN.

Figure 6 plots the relative traffic locality mix across all traces.
We first note the wide variety of bin size proportions in our
dataset—illustrating that it is impossible to devise a single rule-
of-thumb regarding locality patterns in an enterprise. Additionally
the plot suggests that in half of the traces subnet traffic dominates,
and thus previous studies of traffic captured from a router’s van-
tage point have missed much of the activity taking place in an
enterprise—again underlining the importance of obtaining enter-
prise switch measurements.

11We have not yet formulated a plausible reason for DECnet pack-
ets to originate at the router, and there are some indications that
the enterprise’s routers may have actually routed DECnet traffic in
some cases. However, in the amounts we observed the traffic will
not skew our results, and therefore we did not further analyze these
packets for this initial study.
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Figure 6: Traffic locality mix. The X-axis is sorted by the subnet
bin share in descending order.

In addition to variability in locality, we see variety in network
and transport protocol usage across locality as well. While by
definition LBL and WAN traffic solely involves IP, the WAN traf-
fic is furthermore mainly TCP—with a median share across traces
of 97%—while in the LBL traffic, UDP dominates, with a median
share of 58% across traces. In the subnet IP traffic, the proportions
of TCP and UDP range from 1% to 99% (!), with medians of 36%
and 60% respectively. IP traffic prevails over non-IP at subnet lo-
cality, with a median of 72% vs. 29%. The dominant non-IP traffic
is ARP (54%), LLC (34%) and IPX (6%). Ethernet multicast traffic
comprises 37% of the packets in the subnet bin and mainly consists
of non-IP traffic (97%)

Finally, we turn to a high-level view of dominant network, trans-
port and application protocols. We plot the most dominant proto-
cols in each locality in Figure 7, with circle radii corresponding to
the relative volume in number of packets. To ensure readability, we
include only the 15 most frequent protocols in each locality.12

We found only two protocols that appear for each category of
locality: HTTP (80/tcp), and SSH (22/tcp). Three more protocols
(see the top of the plots) appear common both to LBL and subnet.
Finally, NetBIOS (139/tcp), Dantz (497/tcp), NFS (2049/udp) and
ARP prevail in intra-subnet traffic. In the LBL category we also find
svrloc (427/udp) in large proportions in majority of traces. This set
of plots clearly shows massive heterogeneity of traffic across both
type of locality and set of monitored ports.

An illuminating way to underline the importance of calibration
is to present a showcase that directly compares some properties of
calibrated and non-calibrated traces. For this purpose, out of the
four calibration aspects discussed in this paper we choose “gain,”
as it offers an intuitively expected and easily visualizable contrast.
By analogy with Figure 7 we calculated relative protocol shares in
non-calibrated traces.13 We plot the difference in shares between
original and final traces in Figure 8. We present subnet local-
ity, which exhibits the most striking contrast. In interpreting the
plot, the reader should bear in mind that it shows changes in rela-
tive prevalence among the different protocols, rather than absolute

12The plots are not meant to capture a comprehensive picture, but to
illustrate the dominant protocols.

13We used the raw traces, for which none of the calibration tech-
niques were applied.
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changes. Thus, a protocol like HTTP, which itself does not change
in attributes much between the uncalibrated and calibrated traces,
can exhibit significant change in its overall share of the traffic. In
general, the plot highlights how correct calibration can have a dra-
matic effect on the accuracy of determining traffic mix.

8. SUMMARY
In this paper we have presented a number of techniques for cal-

ibrating packet traces captured at switches connecting end hosts in
terms of: gain, loss, timing, and layout. While we have developed
concrete strategies that we successfully employed with our dataset,
we view the main contribution of this paper to be the reasoning
about how to go about calibrating such traces in a sound fashion. In
particular, we identified the following key notions: (i) using sole-
sourced packets as unambiguous “stakes in the ground” to hunt for
thresholds and compare clocks, (ii) employing expected replica-
tion of broadcast packets to point to missing events from traces and
aid in mapping networks, (iii) leveraging TCP semantics to iden-
tify measurement loss, particularly in terms of seemingly erroneous
acknowledgments for date we never observed in transmission, and
(iv) leveraging multiple, simultaneous data collections to further
illuminate unrecorded events and bolster confidence in the time-
stamping process. These general principles apply to similar collec-
tions, and we encourage others working with enterprise traces to
calibrate their analyses using strategies in this paper, though not
necessarily with the same fine-grained details (e.g., the 5 msec
threshold for removing phantoms). These fine-grained constants
and thresholds may well not hold with different switches and mon-
itoring gear. Further, when collecting new datasets we encourage
researchers to do so in a way that they can leverage the general con-
cepts we have outlined in this paper to calibrate their final dataset.
Finally, we have illustrated the importance of collecting switch-
level measurements, as observations from other vantage points will
manifest clear differences at the various locality scopes present in
our data.
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