
Back in control — An extensible middle-box on your
phone

James Newman
∗

Abbas Razaghpanah
+

Narseo Vallina-Rodriguez
†‡

Fabián E. Bustamante
∗

Mark Allman
‡

Diego Perino
⋄

Alessandro Finamore
⋄

Northwestern University
∗
Stony Brook University

+
IMDEA Networks Institute

†
ICSI

‡
Telefonica Research

⋄

ABSTRACT
The closed design of mobile devices — with the increased se-

curity and consistent user interfaces— is in large part respon-

sible for their becoming the dominant platform for accessing

the Internet. These benefits, however, are not without a cost.

Their operation of mobile devices and their apps is not easy

to understand by either users or operators.

We argue for recovering transparency and control on mo-

bile devices through an extensible platform that can intercept

and modify traffic before leaving the device or, on arrival,

before it reaches the operating system. Conceptually, this

is the same view of the traffic that a traditional middlebox

would have at the far end of the first link in the network

path. We call this platform “middlebox zero” or MBZ. By being
on-board, MBZ also leverages local context as it processes the
traffic and complement the network wide view of standard

middleboxes. We discuss the challenges of the MBZ approach,
sketch a working design, and illustrate its potential with

some concrete examples.

1 INTRODUCTION
Mobile devices are indispensably handy and fundamentally

enigmatic. In just over ten years, they have become the dom-

inant platform for accessing the Internet. This is at least

partially due to their closed nature, a design decision clearly

stated by one of its main designers — Steve Jobs —“We define

everything that is on the phone” [18].

This closed design, and a policed environment where

the manufacturer has veto power over every application,

is clearly beneficial for security and ensures user-friendly,

consistent interfaces. These benefits are not without costs.

The operation of mobile devices and apps is hard to under-

stand. Noticeable changes in performance are as common-

place as difficult to diagnose and even basic questions, such

as why is this website not loading? or with what other sites is
this website communicating? do not have ready answers.

This challenge has inspired different approaches to return

visibility and control to users and developers. Some tools

arXiv,
.

will let users change the behavior of applications without ac-

cessing the APK [25] or installing a BusyBox-like toolset [3].

Most of them, however, require users to “root” their phones.

A 2014 surveywith over 14k users found that 63% have rooted

their primary Android device [20]. Unfortunately, rooting a

phone comes with its own risks. Beyond the fact that this

may void a device’s warranty or result on the device being

“bricked”, rooting has been linked to mobile malware attacks

and adware [9]. In a 2014 announcement,
1
Gartner predicted

that 75% of mobile security incidents will be due to mobile

application misconfiguration with the biggest threat being

devices altered at an administration level.

VPN APIs on mobile devices offer another option to regain

control over application’s traffic. VPN APIs enable the devel-

opment of mobile apps, mostly for improved security and

privacy, without requiring root access thus being easy for

users to adopt while eliminating/reducing the risk of attacks.

Today, however, all apps relying on it are custom, mutually

exclusive solutions to specific problems.

Choffnes [7] recently proposed creating Personal Virtual

Networks to give users the illusion of a home network no

matter what the network they are actually connected to.

This paradigm, similar to typical VPN use-cases, addresses

the need from users to gain back control over their own

traffic when on untrusted networks. The VPN server, fully

owned and controlled by the end-user, can implement dif-

ferent policies for network traffic. However, user traffic is

still transported to a remote server which lacks access to

potentially valuable end-user and device context.

On the network operator side the approach to control

and optimize mobile traffic involves placing middleboxes in

the network path. Middleboxes are so popular that many

enterprise networks now have as many middleboxes as

routers [30] serving as firewalls, performance enhancing

proxies, NATs, or deep packet inspectors. The advent of Net-

work Function Virtualization (NFV) significantly reduced

middlebox deployment cost and time, while current deploy-

ment of edge computing infrastructures enables the place-

ment of middlebox-like functions very close to the end-user

1
https://www.gartner.com/newsroom/id/2753017

ar
X

iv
:2

01
2.

07
69

5v
1

 [
cs

.N
I]

 1
4

D
ec

 2
02

0

arXiv, J. Newman et al.

device. While clearly powerful and with an unparalleled

network-wide view, middleboxes still show limitations in

terms of scalability, especially in presence of mobile users. In

addition, as in the case of Personal Virtual Networks, these

middleboxes also lack access to potentially relevant context.

We argue for recovering transparency and control on mobile
devices through an extensible platform that can intercept and
modify traffic before leaving the device or, on arrival, before
the traffic is pass on to the operating system.
Conceptually, this is the same view of the traffic that a

traditional middlebox would have at the far end of the first

link in the network path and so we call this approach “mid-

dlebox zero” or MBZ. By existing on-board, MBZ can lever-

age local context to process the traffic and complement the

network-wide view and optimization capabilities of tradi-

tional middleboxes. Rather than a dedicated middlebox, MBZ
can be extended with user-specified extensions that manip-

ulate traffic for transparency or control. This approach has

been used before to monitor network performance [31, 34]

and privacy leaks [22], however, MBZ takes the idea a step

further. Instead of having standalone, custom-built solutions

for each problem, the extensible nature of MBZ allows the

user to install multiple, different plugins side-by-side.

MBZ opens up a wide range of opportunities and interest-

ing challenges: from the architecture of an MBZ that could

support dynamic extensibility, with minimum overhead and

without compromising security, to new forms of interactions

between MBZ and traditional middleboxes an MBZ’ed device

can run into as it moves between networks. The MBZ extensi-
bility could also enable a service marketplace, wherein third

parties can advertise new extensions since no single provider

could expect to offer all imaginable needs. This alone brings

a plethora of research questions, from how to declare exten-

sions to the most appropriate model for their management

and control.

2 MOTIVATION AND BACKGROUND
We now motivate the need for MBZ by first examining the

benefits and limitations of existing solutions and related

work to control and optimize mobile traffic. We argue that

full control and optimization can best be achieved via an

extensible middlebox-like platform on the end-user device,

capable of collaborating with in-network middleboxes.

2.1 User Device Solutions
When faced with unanswerable questions regarding device

behavior or network activity, a popular approach is rooting

the device. This returns control to the device’s owner and

allows them to install unlicensed applications or gain access

to the full Linux kernel with command such as tcpdump for

network debugging. To root their device, most users turn to

rooting tools such as KingoRoot [16] or SuperSu[32]. While

these tools streamline the rooting process, they require tech-

nically skilled users, and often the development of custom

commands and applications to control and optimize traf-

fic. More problematically, these tools have been linked to

malware [12] and adware [9] attacks.

Recently, native support of VPN APIs by the main mobile

platforms allowed developers to capture and manipulate traf-

fic generated by applications without root access. This has

led to the development of applications for privacy control,

measurements, and firewalls such as Lumen [22], AntMon-

itor [31], Mopeye [34] or NetGuard [11], that can be easily

installed and effectively achieve their goals without exposing

users to potential attacks.

We see these apps as first steps towards on-board functions

for traffic control and optimization, showing growing users’

interest. Each of them, however, have been developed and

optimized— from scratch— for a specific function and cannot

run concurrently with other similar apps.
2
We argue for an

extensible platform supporting multiple functions in parallel,

each of which can be more easily developed by reusing core

traffic manipulation code (i.e., an on-board middlebox), and

instantiated on demand.

2.2 Network Middleboxes
For companies and ISPs that do not have access to the end de-

vice, the most suitable option to control and optimize mobile

traffic is to deploy a middlebox in the network. This allows

them to gain access to all the traffic generated from any de-

vice connected through the middlebox. Middleboxes provide

several services, from firewalls to protocol accelerators. For

instance, proxies have been used to enable mobile data com-

pression on the fly [1], and previous work focused on how

protocols and middleboxes interact [8, 19], how middleboxes

can be designed to enable innovation [29], and how devices

can establish their own private network [7].

With the advent of NFV and growing popularity of cloud

platforms, middleboxes can be developed in software and

instantiated on-demand using commodity hardware already

installed in the network [6, 13, 15, 17, 21, 30], drastically re-

ducing deployment cost and time. To improve cloud middle-

box deployment, several projects studied how middleboxes

can be consolidated [28], or made extensible [4]. The current

deployment of edge computing infrastructures enables the

placement of middlebox-like functions very close to users’

devices, in Central Offices or even in eNodeBs. This provides

middleboxes a network-wide view and the opportunity to

2
Android only allows one VPN application at the time for security rea-

sons. The right is revoked when another application is granted the VPN

permission [5].

Back in Control arXiv,

sockets

APP
1

sockets

APP
1

sockets

APP-1
U

se
r

S
p

a
ce

O
S

sockets

state

pl
ug

in
 1

processing data stream

packets
M

O
B

IL
E
 P

H
O

N
E MBZ (VPN-APP)

internal routing

tun

external
routing

A
P
Is

Figure 1: Diagram of MBZ prototype.

jointly optimize aggregate traffic of multiple users, e.g., con-

tent placement, caching, network routing. However, they still

have limitations that can only be solved by pushing some of

middlebox services and features to the end device.

First, despite highly distributed and optimized NFV sys-

tems, scalability issues may arise if all users offload all their

desired functions to the network. Second, middleboxes lack

user context that exists on each end device. Because the mid-

dlebox sits within the network, it is for instance difficult to

understand if traffic generated by a device was initiated by

a given application on that device due to a user action or if

it was generated in the background. Furthermore, private

information still leaves the user device and is transferred and

processed in the network limiting user control. Finally, any

benefit or information gained from the middlebox is only

effective while the device remains connected to that network

or to a particular location of a given network. Once the de-

vice leaves and moves to a different network or location,

it is difficult to re-connect the traffic to the new location,

especially in case of stateful services, where state migration

is required and particularly challenging in presence of large

number of highly mobile users.

3 MBZ ARCHITECTURE
In this section we present a brief description of MBZ design.
We start by discussing how we handle the traffic from apps

on the device before outlining how MBZ balances extensibility
and security.

3.1 Managing Traffic
To operate as a middlebox, MBZmust be able to handle traffic

before it leaves the device after being initiated by an appli-

cation, and before it is passed to the application after being

received off the network.

MBZ uses the VPN interface available as an API on today’s

mobile phones. This approach has been used before to detect

privacy leaks [22] andmonitor network performance [31, 34].

MBZ builds on it with a much broader goal: to capture traffic

and funnel it through a series of user-specified extensions.
3

3
Thus, despite our discussion focused on mobile platforms, any platform al-

lowing the creation of virtual interface APIs could leverage an MBZ approach.

As depicted in Fig. 1 the VPN API reveals a tun interface

that captures any traffic generated by applications on the

device. While a typical VPN application would forward the

traffic to a server or proxy, MBZ handles that on the device.

To accomplish this, the MBZ must extract flow state from

the UDP/TCP and IP packet headers for packets arriving

on the tun interface and map the packet to a regular socket

(creating sockets as needed). The MBZmust also maintain this

state, both for UDP and TCP flows, so that it can marshal

data arriving from remote hosts on the sockets back into

packets for transmission to the app via the tun interface.

In the case of TCP traffic, when the MBZ reads a SYN packet

from the tun interface, it must create a new socket, connect

to the endhost target and instantiate state internally. After

the OS establishes the socket, the MBZ returns a SYN/ACK

via the tun interface to the originating app. Managing state

efficiently is critical, as a user-space MBZ is subject to the stan-
dard UNIX file descriptor limit and, so, must close sockets and

flush state periodically. The explicit connection teardown of

TCP connections provides a clear signal for clean-up. How-

ever, for UDP’s connectionless nature, we leverage inactivity

timeouts as do NATs [24]. One workaround would be to re-

use sockets for UDP traffic, which can significantly reduce

the number of sockets used for DNS resolutions, but does

not solve the problem entirely.

3.2 Plugin Management and Security
A key aspect of MBZ is its extensible nature. This is made pos-

sible by a framework dedicated to installing and organizing

plugins specified by the user. We describe its preliminary

design and workings in this section.

We envision the plugins in MBZ to be similar to applica-

tions installed on the device. There will be an ecosystem of

plugins to be installed and with the user having the ultimate

say in which plugins are installed on in MBZ. In order for

this to work efficiently and safely, MBZ must ensure that the

plugins cooperate to benefit the user without interfering in

or hindering the work of other plugins and the user alike.

There are two main factors that MBZ addresses when han-

dling plugin execution. First, plugins are granted a set of

permissions to manipulate user traffic similarly to browser

extensions. MBZ ensures that every plugin respects those

permissions and no plugin abuses its power over the user’s

traffic. There are several ways MBZ does this, first being that

it limits the actions that plugins are permitted to execute

on packets. For instance, unless specified by the user, MBZ
prevents plugins from collecting user data or routing traffic

to a third-party server.

Second, MBZ guarantees resource isolation and manage-

ment across plugins, similarly to existing NFV platforms.

arXiv, J. Newman et al.

Indeed, a processing/memory intensive plugin could con-

sume all available resources hurting other applications or

plugins performance and potentially impact user experience.

Further, given the open nature of MBZ, it could be abused to

initiate malicious activities. MBZ monitors plugins’ resource

usage and disables them if demands increase beyond a set

of thresholds which could be set based on users’ defined

priorities and resources availability. Identifying and fine-

tuning these thresholds remains future work. Further, we

plan to make our resource management techniques context

aware. For instance, it is critical to adapt resource allocation

to battery levels, or adjust traffic generated by plugins to

connectivity type (e.g., limit data exchange when a device

is connected to cellular network to protect the user’s data

limits).

4 EXAMPLE USE CASES FOR MBZ
The value of an on-board middlebox comes from combining

the view of the traffic that traditional middleboxes enjoy

with the opportunity to leverage the local—user-, device-

and network-specific—context when processing traffic.

We describe several use cases and applications for MBZ.
The list is clearly not exhaustive, but meant to illustrate

some of the functionality that MBZ enables. As we discussed

in § 3, we envision an architecture in which each use case

operates as a separate module or plugin to be installed by the

user or by the app developer. Some of these plugins could be

bundled with MBZ as default plugins, while others could be

acquire from a third-party.

4.1 User-Defined Firewalls
Sending all traffic through MBZ enables much control over

the traffic, including the ability to monitor, block, redirect,

shape and change traffic in different ways. While middle-

boxes within the network have some of the same abilities,

MBZ augments this ability with device context which can

enable more complex rules, especially because it can iden-

tify which application is generating the traffic. For instance,

consider the following firewalling functions that MBZ can

facilitate:

Blacklisting: The MBZ can implement blacklists (or

whitelists) that block (or enable) traffic to/from certain hosts

or domains, as in Fig. 2. This can be done for all traffic or

just for certain apps. For instance, one could configure the

MBZ to only allow the email application to interact with the

user’s known IMAP and SMTP servers to thwart efforts to

conduct email tracking.

Protocol Usage: The MBZ can prohibit certain protocols in

specific instances or adjust protocol settings based on net-

work conditions. For instance, the MBZ can ensure that a

banking app uses only encrypted connections.

Policies

APP-A

APP-B

Firewall

M
O

B
IL

E
 P

H
O

N
E

non http

http https

APP-C
inject response

allow block switch privacy

allow as is

protocol switch

data changed

all traffic
is blocked

Figure 2: An MBZ extension could act as a firewall on
the endhost, enacting user-set rules such as Switch, or
Deny on the traffic.

Enhance Privacy: User tracking is omnipresent in the mo-

bile ecosystem [10, 23, 33]. The MBZ is in a unique position

to give users the ability to wrest back control over their pri-

vacy by allowing them to either replace private information

inside network flows with random values before they leave

the device, or block such flows entirely. These controls can

be precisely tuned using fine-grain details of the commu-

nication, such as app, destination (e.g., disallowing known
third-party trackers), protocol (e.g., blocking unencrypted

protocols), and type of information being leaked.

The MBZ can use a variety of methods to enforce the smart

firewalling policies. The exact method employed depends

on the specific use case and app pattern. For instance, the

MBZ could prevent communication with a blacklisted host by

issuing a TCP reset packet to the app instead of instantiating

a connection. Alternatively, the MBZ could inject a response

to a dubious request letting the user know why their traffic

was blocked. This approach could be taken a step further and

the MBZ could alert users and determine if the user would like

to proceed anyway. Another tool at the MBZ’s disposal is re-
writing certain portions of the content to obscure sensitive

data (e.g., re-writing the IMEI).

4.2 Fine-Grained Traffic Routing
Given that the MBZ intercepts traffic before it leaves the de-

vice, the system can re-direct the traffic based on users’ pref-

erences rather than the current one-size-fits-all model of

traffic forwarding.

Smart Multihoming: Mobile phones often have multiple

connectivity options. While traditionally phones only use

one network at a time, they are often in locales where multi-

ple networks are available (e.g., cell and a WiFi). This opens

several opportunities. For instance, users could identify their

network preference at some locations (such as WiFi at work),

for all or specific apps (WiFi at work, except for Facebook

to skirt a policy block on the WiFi network). Alternatively,

the MBZ could monitor performance—see § 4.3—and try to

choose the “best” network at the given time.

Back in Control arXiv,

Smart Tunneling:Users often have the ability to connect to
myriad different private networks via tunnels. For instance,

companies may force their employees to use VPNs to access

content hosted on their private network. Or, privacy-aware

individuals may use commercial VPN services or anonymiza-

tion networks such as Tor to obfuscate the source of the

traffic. The MBZ can implement all these policies. Further-

more, MBZ can offer precise control such that a user’s work

traffic is sent to their employer’s VPN server while a par-

ticular app’s traffic may be directed to a VPN server hosted

at user’s home to avoid geo-filters while traveling [7]. This

capability of MBZ allows for unprecedented control instead

of the current one-size-fits-all approach.

SmartMultipathing: MBZ can also be used to enable the use
of multiple paths to aid performance. This could be realized,

for instance, by turning normal TCP connections into a series

of MP-TCP subflows (which may or may not be divided

across the device’s network interfaces). Alternatively, the

MBZ could spread requests to multiple instances of some

replicated service (e.g., a DNS resolver pool or among edge

servers in a CDN).

4.3 Network Troubleshooting
MBZ can observe the performance of all network traffic on

the device, and thus can detect performance variations and

trends within a user’s normal interactions, and contextualize

those observations with link-level insights (e.g., SNR).
Allman and Paxson first described a reactive measurement

approach that advocates for considering measurement to be

a process and not an event [2]. While studies have used the

reactive measurement notion—e.g., for broadband character-

ization [27]—MBZ provides a generic platform that enables

reactive measurements by, for instance, triggering active

measurements based on passive observations.

As an example, consider issues caused by the DNS resolu-

tion process. A device could—likely in a sampled fashion—

trigger alternate DNS and resulting TCP transactions from

passively observed traffic. Now the device can monitor mul-

tiple transactions that nominally do the same task. At this

point we can engage in “what if?” analysis. E.g., would per-

formance be better or worse if hostnames were resolved via

a public DNS resolver (e.g., OpenDNS or Google’s Public

DNS)? E.g., is the ISP manipulating the DNS responses in

some fashion (to monetize errors or for censorship)? The

answers to these questions can then lead to configuration

changes (e.g., sending DNS queries through a VPN to circum-

vent censorship).

4.4 Improved Protocol Stacks
Application developers can use a variety of network- (e.g.,
IPv4 or IPv6), transport- (e.g., UDP/QUIC or TCP) and

application-layer (e.g., HTTP(S) or HTTP2) protocols, many

interchangeable, to create mobile applications. However, de-

velopers typically stick to a single combination of application-

and transport-level protocols for all situations, regardless of

network conditions. These limit the adaptability of applica-

tions in today’s evolving network conditions, particularly

when a given protocol or network element may outperform

an equivalent one.

MBZ has the ability to experiment and examine how dif-

ferent combinations of compatible protocols perform over

time for a given device and endhost machine, at a given time

and network. This historical data can be used by the MBZ to

dynamically select a given application’s protocol to optimize

application performance and ultimately the user experience.

Importantly, this is only possible because of MBZ’s place in
the network: the end host. MBZ can implement changes and

solutions that can help improve the last mile of the network.

Middleboxes within the network do not have this ability.

One instance where a dynamic protocol stack could be

beneficial to the user is in scenarios with a high packet-

loss and high latency in the last mile. The MBZ can identify

when a network becomes lossy and adapt the traffic to such

adversary conditions.

For example, MBZ can wrap underperforming TCP packets

within a protocol more tolerant to loss, such as QUIC [14,

26], either directly to the remote server or through a proxy.

Likewise, the MBZ can also prefetch DNS responses for the

domains most relevant for the set of applications running

on the device, hence reducing the time required to open a

new connection by avoiding unnecessary DNS lookups.

This last example also points to venues in which MBZ could
work in collaboration with middleboxes. This will allow as

well MBZ to obtain information about the performance at

the core of the network (e.g., congestion), data otherwise

unavailable to endhosts.

5 INFORMATION AND PERFORMANCE
VALIDATION

In this section we present a proof of concept validation of

MBZ. First, we show MBZ can provide additional control and

transparency to the user with a sample snitch plugin. Second,
we show the limited overhead MBZ adds to the traffic. This is

a simple demonstration of the potential applications of MBZ
and we leave a rigorous evaluation as future work.

5.1 What Third-parties are contacted by the
website?

We show how MBZ provides users access to information that

would otherwise only be available by rooting the phone or

in a network middlebox. In this experiment, we set out to

answer the question: what third-parties are contacted by the
website? We use an instantiation of MBZ in the form of an

arXiv, J. Newman et al.

0 5 10 15 20 25 30 35 40 45
Domains

0

10

20

30

40

50

60

70

80

R
e
q
u
e
st

s

Requests per Third-Party Domain

requests

Figure 3: Number of requests per third-party organiza-
tion from real users running the Snapchat application.
Data collected via snitch MZB plugin in the wild.

Android application that has been deployed in the wild [22].

A basic snitch plugin is installed through MBZ to investigate

the traffic. The plugin passively monitors the connections

made by applications and tracks the destination IP address,

port, and protocol. This information is then displayed to

the user in the MBZ application. For lack of space, we report

results for one popular application only: Snapchat.
Figure 3 reports the number of requests generated towards

different third-party domains. We observe that there are

over 40 different organizations (i.e., third parties) contacted

and, while most have only 1 request, about 5 organizations

account for more than 10 requests each. Additionally, MBZ
can identify the protocols used by different applications and

share this information with the user. In the Snapchat case,

we count a total of 372 third-party flows. The large majority

of them are TCP flows (91.7%) while only 8.3% are UDP.

Interestingly, some of the UDP flows are leveraged to run

the QUIC protocol, indicating that third-party organizations

are adopting Google’s new protocol.

5.2 Performance Evaluation
While it is possible to build MBZ using the Android VPN inter-

face, it is critical to ensure that it does not negatively affect

the performance of other applications. In this section we

present a simple feasibility analysis of MBZ. To this purpose

we use a rooted Android phone running tcpdump 4
which

would allow us to compare the end-to-end latency experi-

enced by a sample application with and without running our

MBZ prototype. While working with a non-optimized proto-

type, our analysis shows that there is minimal overhead on

the end-to-end latency of running applications.

In our experiment, we use a test application that makes

successive requests to each of the top 100 Alexa websites

while measuring the connection time. We compare the time

from when the Java Socket API indicates a successful TCP

connection with the TCP connection time on the network

interface according to tcpdump, i.e., the time between the first

4
www.tcpdump.org

Figure 4: Difference in TCP connection time between
tcpdump and application level measurement.

SYN and SYN/ACK. We first measure the TCP connection

time without an MBZ running on the phone (no vpn) as a
baseline, so the extra latency is introduced by the Java Virtual

Machine (JVM). This allows us to conclude that the JVM adds

77 microseconds (median) for every TCP connection.

To eliminate JVM’s inherent latency, we implement a MBZ
prototype in C++ (MBZ). Figure 4 shows the difference be-

tween the time reported in tcpdump and that on MBZ in mi-

croseconds. As the figure shows, the MBZ curve closely over-

laps that of the baseline (no vpn), mainly due to C++’s ability

to treat the tun interface as a socket, making it possible to

poll the tun interface along with the remote sockets, which

significantly reduces latency compared to alternating be-

tween polling the tun and the remote sockets.

6 CONCLUSION
Users and researchers lack dynamic access and control over

the networking stack on modern end devices. We advocate

locating an extensible virtual middlebox on the end devices

themselves. We call this approach “middlebox zero” or MBZ.
By being on-board, a MBZ also leverages local context as it

processes the traffic and complement the network wide view

of standard middleboxes. We discussed the challenges of the

MBZ approach, sketch a working design, and illustrate its

potential with some concrete examples that, as we argued,

would be either cumbersome or not possible to realize using

current solutions. We emphasize here that we are merely

staking out a position in this paper. While we have developed

a proof-of-concept implementation, many questions are left

to resolve. Our goal with this paper is to share our ideas with

the community in the hopes of gathering early feedback on

the MBZ approach.

REFERENCES
[1] Agababov, V., Buettner, M., Chudnovsky, V., Cogan, M., Green-

stein, B., McDaniel, S., Piatek, M., Scott, C., Welsh, M., and Yin,

B. Flywheel: Google’s data compression proxy for the mobile web. In

Proc. USENIX NSDI (2015).
[2] Allman, M., and Paxson, V. A reactive measurement framework. In

Proc. PAM (2008).

www.tcpdump.org

Back in Control arXiv,

[3] Anderson, E. BusyBox. http://busybox.net, 2018.

[4] Anderson, J. W., Braud, R., Kapoor, R., Porter, G., and Vahdat,

A. xomb: extensible open middleboxes with commodity servers. In

Proceedings of the eighth ACM/IEEE symposium on Architectures for
networking and communications systems (2012), ACM, pp. 49–60.

[5] Android Developers. VpnService. https://developer.android.com/

reference/android/net/VpnService.html.

[6] Chen, P. F., and Kodirov, N. Virtual middlebox management for

cloud.

[7] Choffnes, D. A case for personal virtual networks. In Proc. HotNets
(2016).

[8] Craven, R., Beverly, R., and Allman, M. A middlebox-cooperative

tcp for a non end-to-end internet. In ACM SIGCOMM Computer Com-
munication Review (2014), vol. 44, ACM, pp. 151–162.

[9] Developers, F. X. KingRoot Malware/Adware root.

https://www.forum.xda-developers.com/android/general/

kingroot-malware-adware-root-t35603090, 2017.

[10] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P.,

and Sheth, A. N. Taintdroid: An information-flow tracking system

for realtime privacy monitoring on smartphones. In Proc. USENIX
OSDI (2010).

[11] FairCode. Netguard - no-root firewall, 2017.

[12] Lab, K. Rooting your Android: Advantages, disadvantages, and snags.

https://www.kaspersky.com/blog/android-root-faq/17135/, 2017.

[13] Lan, C., Sherry, J., Popa, R. A., Ratnasamy, S., and Liu, Z. Embark:

Securely outsourcing middleboxes to the cloud. In NSDI (2016), vol. 16,
pp. 255–273.

[14] Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang,

D., Yang, F., Kouranov, F., Swett, I., Iyengar, J., et al. The quic

transport protocol: Design and internet-scale deployment. In Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication (2017), ACM, pp. 183–196.

[15] Ledjiar, A., Sampin, E., Talhi, C., and Cheriet, M. Network function

virtualization as a service for multi-tenant software defined networks.

In Software Defined Systems (SDS), 2017 Fourth International Conference
on (2017), IEEE, pp. 168–173.

[16] Ltd., F. D. T. Kingoroot - the best one click android root apk for free.

https://www.kingoapp.com, 2017.

[17] Lu, H., Srivastava, A., Saltaformaggio, B., and Xu, D. Storm: En-

abling tenant-defined cloud storagemiddle-box services. InDependable
Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP International
Conference on (2016), IEEE, pp. 73–84.

[18] Markoff, J. Steve jobs walks teh tightrope again. New York Times
(January 12 2007).

[19] Medina, A., Allman, M., and Floyd, S. Measuring interactions be-

tween transport protocols and middleboxes. In Proceedings of the
4th ACM SIGCOMM conference on Internet measurement (2004), ACM,

pp. 336–341.

[20] Police, A. [Weekend Poll] Is Your Phone Rooted. https://www.

androidpolice.com/2016/06/12/weekend-poll-is-your-phone-rooted/,

2016.

[21] Qazi, Z. A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., and Yu, M.

Simple-fying middlebox policy enforcement using sdn. In ACM SIG-
COMM computer communication review (2013), vol. 43, ACM, pp. 27–38.

[22] Razaghpanah, A., Vallina-Rodriguez, N., Sundaresan, S., Kreibich,

C., Gill, P., Allman, M., and Paxson, V. Haystack: In situ mobile

traffic analysis in user space. CoRR abs/1510.01419 (2015).
[23] Ren, J., Rao, A., Lindorfer, M., Legout, A., and Choffnes, D. Recon:

Revealing and controlling pii leaks in mobile network traffic. In Proc.
of ACM MobiSys (2016).

[24] Richter, P.,Wohlfart, F., Vallina-Rodriguez, N., Allman,M., Bush,

R., Feldmann, A., Kreibich, C., Weaver, N., and Paxson, V. A multi-

perspective analysis of carrier-grade nat deployment. In Proc. ACM
IMC (2016).

[25] rovo89. Xposed Module Repository. http://repo.xposed.info/, 2018.

[26] Rula, J. P., Newman, J., Bustamante, F. E., Kakhki, A. M., and

Choffnes, D. Mile high wifi: A first look at in-flight internet connec-

tivity. In Proceedings of the 2018 World Wide Web Conference on World
Wide Web (2018), International World Wide Web Conferences Steering

Committee, pp. 1449–1458.

[27] Sánchez, M. A., Otto, J. S., Bischof, Z. S., Choffnes, D. R., Busta-

mante, F. E., Krishnamurthy, B., and Willinger, W. Dasu: Pushing

experiments to the internet’s edge. In Proc. USENIX NSDI (2013).
[28] Sekar, V., Egi, N., Ratnasamy, S., Reiter, M. K., and Shi, G. Design

and implementation of a consolidated middlebox architecture. In

Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation (2012), USENIX Association, pp. 24–24.

[29] Sekar, V., Ratnasamy, S., Reiter, M. K., Egi, N., and Shi, G. The

middlebox manifesto: enabling innovation in middlebox deployment.

In Proceedings of the 10th ACM Workshop on Hot Topics in Networks
(2011), ACM, p. 21.

[30] Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S.,

and Sekar, V. Making middleboxes someone else’s problem: network

processing as a cloud service. ACM SIGCOMM Computer Communica-
tion Review 42, 4 (2012), 13–24.

[31] Shuba, A., Le, A., Gjoka, M., Varmarken, J., Langhoff, S., and

Markopoulou, A. Antmonitor: Network traffic monitoring and real-

time prevention of privacy leaks inmobile devices. In Proc. S3Workshop
(2015).

[32] Technology, C. C. M. Supersu. http://www.supersu.com/, 2016.

[33] Vallina-Rodriguez, N., Sundaresan, S., Razaghpanah, A.,

Nithyanand, R., Allman, M., Kreibich, C., and Gill, P. Tracking

the Trackers: Towards Understanding the Mobile Advertising and

Tracking Ecosystem. In Proc. of the Workshop on Data and Algorithmic
Transparency (DAT) (2016).

[34] Wu, D., Chang, R. K. C., Li, W., Cheng, E. K. T., and Gao, D. Mopeye:

Opportunistic monitoring of per-app mobile network performance. In

Proc. USENIX ATC (2017).

http://busybox.net
https://developer.android.com/reference/android/net/VpnService.html
https://developer.android.com/reference/android/net/VpnService.html
https://www.forum.xda-developers.com/android/general/kingroot-malware-adware-root-t35603090
https://www.forum.xda-developers.com/android/general/kingroot-malware-adware-root-t35603090
https://www.kaspersky.com/blog/android-root-faq/17135/
https://www.kingoapp.com
https://www.androidpolice.com/2016/06/12/weekend-poll-is-your-phone-rooted/
https://www.androidpolice.com/2016/06/12/weekend-poll-is-your-phone-rooted/
http://repo.xposed.info/
http://www.supersu.com/

	Abstract
	1 Introduction
	2 Motivation and background
	2.1 User Device Solutions
	2.2 Network Middleboxes

	3 MBZ architecture
	3.1 Managing Traffic
	3.2 Plugin Management and Security

	4 Example Use Cases for MBZ
	4.1 User-Defined Firewalls
	4.2 Fine-Grained Traffic Routing
	4.3 Network Troubleshooting
	4.4 Improved Protocol Stacks

	5 Information and Performance Validation
	5.1 What Third-parties are contacted by the website?
	5.2 Performance Evaluation

	6 Conclusion
	References

