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Abstract. Previous work has shown that the network dynamics expezitby
both the initial packet and an entire connection carryingraail can be leveraged
to classify the email as spam or ham. In the case of packeepieg, the prior
work has investigated their efficacy based on models of ¢raffilected from
around the world. In this paper, we first revisit the teche&when only using
information from a single enterprise’s vantage point and fiacket properties to
be less useful. We also show that adding flow characteristiasnodel of packet
features adds modest discriminating power, and some flowrfes information
is captured by packet features.

1 Introduction

Spam email is an ever-present irritant in the modern Inteineses scarce server and
network resources, costs users’ productivity, spreads/aral scams users and recruits
bots for all manner of malicious purposes. Hence, judgingtivbr a particular email is
spam or ham—i.e., legitimate—is a crucial for operators asets. Many different ap-
proaches have been investigated and a handful now enjojaragge. The most useful
techniques to-date have been those that leverggedperties of the host sending the
email (e.g., IP address black- or grey-lists, domain keysdfe.) or ¢:) properties of
the email messages themselves in the form of filtering in s&ilers (e.g., SpamAs-
sassin [2]) or users’ mail applications (e.g., Apple Mail).

A new class of techniques has emerged, which attempt to wgeegies of the
network traffic to determine whether a message is spam. Besed Sollins [4] used
transport-level features (e.g., round-trip time, TCP atised window sizes) as the basis
for predicting whether a particular TCP connection is dagyspam. Hao et al. [10]
used mostly lower-than-transport traffic features and migaar found that properties
of a single SYN packet from an incoming SMTP connection cdecéfely identify
spam. These “content-blind” techniques are attractivabse they leverage properties
that are hard to manipulate and can help discard spam quickiyat less computational
cost. This previous work raises two sets of pertinent qaesti

First, Hao et al. [10] show that single-packet features Heetively detect spam us-
ing models developed via a global email reputation serviteabout 2,500 subscribing
institutions which provides for a diverse vantage pointwdwer, do these findings hold
for a stand-alone organization that does not subscribe kobabgservice and hence has
a relatively narrow vantage point? Further, while Hao eswidied their classifiers as a



replacementor blacklists, most enterprises will likely use such cifisss in addition
to blacklists. Will packet features still be effective in tligse?

Second, Beverly and Sollins [4] find that transport-levetfges are effective in
spam detection while Hao et al. [10] arrive at a similar casi@n regarding single-
packet features. Further, in our prior work [13], we obsdrtreat though flow features
are useful in discriminating ham from spam, examinationhaf tesulting classifiers
indicates that in many cases they potentially serve as fpstfor features that could
be computed from a single packet. Given that packet-leedlfes allow one to discard
spam more quickly, a key question is whether the more experiow features”—
requiring multiple packets—add discriminating power te thacket features. Hao et
al. [10] consider a similar question with regard to theirg@nd message feature sets
but do not focus on flow features.

In this paper, we evaluate these questions with a seven ndatdiset of emails to
users at the International Computer Science Instituteljl@® develop three key find-
ings. First, neither single-packet features nor flow fezdglby themselves are effective
classifiers at the enterprise level. In particular, packatdres are much less effective
than suggested in [10]. We identify underlying causes, dnghich points to funda-
mental limitations of single packet features for spam daiacSecond, while we find
that neither single-packet nor flow features are operaflipnaeful by themselves, we
find their effectiveness increases when combined, inaigdtiat flow features capture
relevant discriminating information beyond packet feasuHowever, even the com-
bination is not as accurate in our setting as reported irr pravk. Finally, the above
results hold for two methods we used to analyze the datayg#ipreliminary indica-
tion that these results are independent of the choice ofrthlysis method and reflect
the underlying discriminating power of the features in dioes

2 Data and Features

Our dataset includes all incoming email to ICSI from thig"—18'* of each month
over 7 months. We work from packet traces with full packetteats. Some of these
connections are blocked by the DNS blacklists, for whichSMTP transaction is ter-
minated before email content is transmitted to the monitservers. We exclude these
connections from our analysis, except where noted. WeBusg14] to re-construct
the messages and derive some of the features. We addiiasalEpamFlow[4] and
custom tools to derive certain traffic features. The ovetadlracteristics of our data are
given in Table 1. A more in-depth description of our methadglis given in [13].
Ground Truth. We cannot manually classify messages in our dataset duethcathmm
scale and the sensitivity of dealing with real users’ en¥dikrefore, we developed an
automated procedure to label the messages (as fully dexalog13]). Each message
is processed by four content-based spam filters—SpamAgda@}sSpamProbe [5],
SpamBayes [12] and CRM-114 [1]. With the exception of Spasa&sin—which is
used in non-learning mode—these tools are trained usingdf@& TREC email corpus
[6]. A message is considered spam if any one of the tools flags such. Checking
all the ham messages in the corpus involving the fourth awgthavell a 2% sample of
email marked as spam by at least one of tools reveals thigegsogelds the correct



| | May [ Jun | Jul [ Aug | Sep| Oct [ Nov |
Msgs. | 279K | 302K |317K| 292K | 300K | 223K | 249K
Outbound 41K | 38K | 49K | 54K | 46K | 37K | 43K
DNSBL | 165K | 185K |174K| 165K | 172K | 116K | 105K
Unknown| 11K | 21K | 31K | 20K | 24K | 12K | 10K
No Msg.| 9K 7K | 8K | 6K | 7K | 7K | 7K
Other 5K 8K | 8K | BK | 7K | 9K | 8K
Spam | 30K | 26K | 30K | 26K | 27K | 25K | 55K
Ham 18K | 18K | 18K | 15K | 17K | 17K | 21K
Table 1. Data overview: The first row shows the total number of emagsages, rows 2—6 show
messages removed from the analysis and the last two rowstgiveumber of hams and spams.

classification in 98% of the cases with a false positive rate28% (standard deviation
0.11%), and a false negative rate @55% (standard deviatiof.07%). We evaluated a
majority voting scheme as well, but that procedure was fdorzk less effective [13].

Packet FeaturesThe upper part of Table 2 lists the single packet featuressee The
geoDistance, senderHour, AS-Spamminess, and Neighlideatsires are used in [10]
although we derive the last three differently, as follows Wb not translate sender’s
hour into the ratio of ham to spam that were sent during that,Hzecause sender’s
hour itself is a numeric feature directly suitable for irgitbn in our models. Hao et al.
use the AS number directly as a numeric feature in their wddwever, AS numbers
are individual labels which do not lend themselves to megfniraggregation in models
(e.g., just because ASes 3 and 12 show some common behagemdd mean that
ASes 4-11 share that behavior). Further, if treated asatsaalues, the number of
distinct AS values is problematic for classification methoflo we translate sender’s
AS number into a numerical value that reflects the prevalefig@am originating in
the AS. The value for this feature is derived by using all ragss in a training sample
to develop a database of the “spamminess” of an AS. If a tessage came from an
AS that did not occur in the training set, we assign the awwsggamminess over all
ASes as the value of this feature for that message.

To calculate the neighbor distance, NeighborDist, Haol. éirst split their dataset
into 24-hour bins. The NeighborDist is then the averageadist to the 20 nearest IPs
among preceding senders in the same bin, or among all thebwig)if there are fewer
than 20 preceding senders [10, 9]. This procedure is naildeifor our enterprise en-
vironment because a one-day bin does not provide enough naacumulate enough
history. Further, since the database is smaller, boundfagte due to insufficient num-
ber of neighbors in the beginning of each bin influence theltegreatly. This is illus-
trative of our first contribution (discussed in more detaildw): a single edge network’s
myopic view thwarts development of accurate models. Togaié this effect, we build
IP databases using an entire training sample—consistir®g16f of the data for each
month, given we use 10-fold cross validation. We then use dakabase to produce
NeighborDist values for the training and test data. Note Hecause of our proce-
dure, each fold of our experiments uses different datafasése AS-Spamminess and
NeighborDist features. We refer to these two features ambdse features” below.



|Feature

|Description

geoDistancE  |The geographical distance between the sender and ICSH base

on the MaxMind GeolP database [11].
senderHouf The hour of packet arrival in sender’s timezone.
AS-Spammine89Num. of spams from AS divided by total msgs. from AS in thertirg set.
NeighborDist!  |Avg. numerical dist. from sender’s IP to the nearest 20 IRstloér senders.
os OS of remote host as determined @§f tool from SYN packet.
ttl IP TTL field from SYN received from remote host.
ws Advertised window size from SYN received from remote host.
3wh& Time between the arrival of the SYN from the remote host angair

of ACK of the SYN/ACK sent by the local host.
fins.local? Number of TCP segments with “FIN” bit set sent by the locallreaiver.
finsremoté Number of TCP segments with “FIN” bit set received from themote host.
idle® Maximum time between two successive packet arrivals framote host.
jvar®? The variance of the inter-packet arrival times from the rentost.
pktssent / Ratio of the number of packets sent by the local host to the

pktsrecvd number of packets received from the remote host

rstslocal® Number of segments with “RST"” bit set sent by the local maivee
rsts.remoté® Number of segments with “RST" bit set received from remotstho
rttv Variance of RTT from local mail server to remote host.
rxmtlocal® Number of retransmissions sent by the local mail server.
rxmt remoteé® Approximate number of retransmissions sent by the remate ho
bytecount Number of non-retransmitted) bytes received from the rerhost.
throughput bytecountivided by the connection duration.
Table 2. Message features. Features marked iithnd B are from [10] and [4], respectively.

Hao et al. also use a feature that requires port scanningtitérgy IP. This is opera-
tionally problematic as it is time consuming and may triggeeurity alarms on remote
hosts. Further, while we have historical packet trace adegajo not have historical port
scanning data and mixing current port scans with histopeaket traces would be a
dubious experimental procedure. While we deleted or matgmveral single packet
features we also added several features: senders’ OS,efidunl TTL, and TCP’s
advertised window (from prior work [4, 13]).

Flow features. The lower part of Table 2 shows the set of flow features we use to
describe messages. This list is not identical to that uspdan work [4] (with common
features tagged with B)). We added several features we believe may help discrimina
ham from spam. In addition, we removed three featupaskets(in each direction),
cwndOand cwndmin The number of packets is closely related to bygecountand
pktssent/pktsrecvdfeatures in our list. A more detailed description of thessfees
can be found in [13].

3 Empirical Evaluation

We use two algorithms in our experiments: decision tree$ ([ftém Weka [18]) and
Rulefit [7]. Decision trees use the idea mefcursive partitioning at each step, they



Rulefit Decision Trees
Month | Acc [ TPR] AROC [ Acc | TPR] AROC

May 0.674| 0.483| 0.944 |/ 0.663| 0.464| 0.783
Jun 0.573| 0.280| 0.926 |/ 0.564|0.266| 0.785
Jul 0.555/ 0.299| 0.940 || 0.563]0.312| 0.805
Aug 0.580| 0.338| 0.940 |/ 0.543/0.280| 0.773
Sep 0.560| 0.279| 0.933 |/ 0.586|0.322| 0.783
Oct 0.609] 0.353| 0.938 || 0.640] 0.406| 0.779
Nov 0.504| 0.315| 0.904 |/ 0.507|0.319| 0.660
Table 3. Results for packet features with AS-spamminess. The TP&piwrted at 1% FPR.

choose a feature and use it to split the data until a partdidyp has examples from a
single class. Rulefit—used in [10]— constructs a linearsifes that uses the primitive
features as well as Boolean tests on feature values as fmedié/e perform 10-fold
stratified cross validation on each month’s data by randativigling the trace at the
granularity of SMTP sessions into ten folds such that atl$diave the same spam/ham
ratios as the entire dataset. We train our models using eetryf nine folds and test it
on the remaining folds. Throughout the paper, we considensgs the target class; thus
our true positive rate (TPR) is the fraction of spam classifie spam and false positive
rate (FPR) is the fraction of ham misclassified as spam. Wertéaveraged over ten
folds) accuracy, the area under ROC (AROC) [15], an altéraaguality measure, and
TPR at a given FPR (0.2% unless stated otherwise), obtainetdthe ROC graph for
the classifier. The ROC, or receiver operating characterigtaph relates the TPR and
FPR as a threshold is varied over the confidence of the prewct

3.1 Packet-Level Features at the Enterprise

Prior work [10] reports that properties of the first SYN padkem an incoming SMTP
connection could be sufficient to filter out 70% of spam with436 false positives
(0.2% when adding features beyond single-packet). Howéwierresult was obtained
using models derived from 2,500 organizations, in a prekist setting. Our first ques-
tion is whether single-packet features could be similafigative in a stand-alone en-
terprise mail service using only its own vantage point. Talgtthis, we run decision
trees and Rulefit on each month’s data, using only the sinabkgd features (in the
upper part of Table 2) to describe each message.

We first observed that the unmodified algorithms we used healrarage FPR of
almost 20% across the months (18.74% for decision trees @88% for Rulefit), and
our attempts to reduce FPR by thresholding the confidenaaded the TPR to single-
digit percentages. This is clearly not operationally usaibb remedy this, we produce
cost sensitive classifiers, trained to penalize FP errorgi@n FN errors. We use a
cost ratio of 175:1 in our experiments for decision trees2md for Rulefit. The results
are shown in Table 3. While the FPR drops significantly coregdo the unweighted
case, it does not reach 0.2% for decision trees—even wheeasiog the cost ratio
significantly. Analysis of the classifiers reveals that tt&gpamminess feature—from
the training data—is chosen as highly predictive in eacle.cswever, it appears to



be less predictive on the test data, possibly because eimm 23% of our data from
a month does not result in a comprehensive database. Thers tiewugh our results
confirm previous findings (e.g., [17]) that AS origin diffdog spam and ham, we find
the utility of this feature in an enterprise environmentited.

Next, we remove AS-spamminess from the analysis, forcirmgetassifiers to use
other features. The results are shown in the “Rulefit” andciBien Trees” columns of
Table 4. In this case, we are able to obtain an FPR of 0.2%. Wheiuobserve that
though the classifiers produced achieve a low FPR, their BR8W as well—as low
as 10% and never reaching beyond 36%. This is significanffigrdint from the result
in prior work [10], where a TPR of 70% was achieved at FPR=%44ds we discussed
above (while we omit our full results for 0.44% FPR due to spdRulefit produced
29% TPR in May and at best 16% in other months; without AS-gparess, the re-
sults improved to 47% in May and 18-31% in other months).lkartthe result in [10]
was achieved with unweighted Rulefit by purely thresholdiagfidence [9], while as
mentioned earlier, this did not produce usable results imsetting. Thus it generally
appears that packet features are significantly less usefur setting. Further we ob-
serve that both decision trees and Rulefit exhibit quitelaimésults in our experiments.
Thus the lack of utility of the single packet features is @#tdt to some extent) not a
function of the learning algorithm they are used with, butgbyia consequence of the
limited information they convey about the message in thisrge

One might wonder if it is possible to increase the TPR or deseéhe FPR further.
However, this is difficult with just packet features to délsereach message. It is in-
tuitively plausible that looking at a single packet revdatsted information about the
message, and one can only construct few features from foisniation (we use seven).
This set of features generally describes the charactevisfia group of hosts sending
email. But unless the granularity is extremely fine, suchaugrwill sometimes send
ham and sometimes spam. We therefore found many instanca® wiessages were
described by identical packet features but had opposirgldabe., some were labeled
as spam and some as ham. For example, in the May data, 4K raessagf 48K total
had a counterpart with the identical feature values but sippdabel. This clearly is
problematic for any classifier and may increase the FPR amdrithe TPR. On the
other hand, if granularity is decreased (e.g., imagineguia IP address—with a range
of 4 billion values—as a feature), then significantly moreadaill need to be collected
to train a useful classifier. This appears to be a fundamémntilof single packet fea-
tures for spam detection.

Hao et al's work evaluated the utility of packet featuresaipre-DNS blacklist
setting. Although using such a blacklist is natural and camrnm an enterprise set-
ting, we perform a similar analysis on our data to establislirect comparison. This
experiment follows Hao et. al.'s methodology-using the satassifier (Rulefit) and
reports TPR at the same FPR (0.44%)—except it employs theseositive classifier
with cost ratio of 100:1, as lower cost ratios degraded FPRow-usable levels. In
this case, we include messages that were blocked by ICS#satipnal DNS blacklist
setup (“DNSBL"+*Ham”+“Spam” in Table 1) since their first $¥packet is still avail-
able for analysis. We label all messages blocked by the DE&kb$t as spam. In this
pre-blacklist experiment we train and evaluate on all mgssancluding those blocked



Post-Blacklist(Rulefit) || Post-Blacklist(Decision Trees]] Pre-Blacklist (Rulefit)
Month | Acc [ TPR] AROC || Acc | TPR] AROC Acc | TPR] AROC
May 0.600| 0.359| 0.909 |[0.594|0.348 0.768 0.824| 0.808| 0.967
Jun 0.492| 0.139| 0.882 |/ 0.454|0.072 0.652 0.346| 0.290| 0.964
Jul 0.478/0.171| 0.906 || 0.438]0.108 0.666 0.467| 0.421| 0.962
Aug 0.506| 0.216| 0.905 |[0.479|0.172 0.660 0.714) 0.691| 0.969
Sep 0.509| 0.189| 0.892 |[0.497|0.169 0.663 0.644| 0.612| 0.967
Oct 0.515/0.191| 0.901 || 0.488|0.145 0.683 0.520] 0.462| 0.957
Nov 0.421) 0.197| 0.884 |/ 0.436|0.218 0.826 0.709| 0.670| 0.943
Table 4. Results for packet featuregthout AS-spamminess. The TPR is reported at 0.2% FPR

for the post-blacklist and at 0.44% for the pre-blackligpements.

by the DNS blacklist (the results are shown in the “Pre-Hiatkcolumn in Table 4),
while in all other experiments, we train and evaluate on gss that passed through
and have not been filtered out by the DNS blacklist. We obghiatghe “Pre-blacklist”
results vary significantly across months. For some monthstesults are comparable
to, even exceed, the 70% TPR reported by Hao et al. HowevatHer months, we find
the TPRis far lower (e.g., 29% in June). Such variabilityuees the operational utility
of packet features for spam detection. While the reasonhi@wariability is unclear,
one possibility is that it is due to the enterprise’s vantagimt. Another possibility is
that it is a fundamental property of packet features, andneasbserved by Hao et al.
since their data was collected over a period of only 14 days.

3.2 Effect of Flow-Level Features

Given the limited accuracy of packet features, we next atmrsivhether adding flow-
level features to the message description adds value byng#ie classifier more accu-
rate. To check this, we compare two settings. First, we ugetba flow features in the
lower half of Table 2 to classify messages. Then we add theffatures to the packet
features (without AS-spamminess) and use the full set isahge way. For these exper-
iments, we use decision trees as the learning algorithns.igiecause our prior results
show that any patterns we see generalize to Rulefit as welRykefit is significantly
more expensive to run (a cross validation runtime of hownsmared to a few seconds
for trees). Further, trees are easier to interpret. Thdtseate shown in Table 5.

Comparing these results to the results in Table 4, we obsleatesing the flow fea-
tures by themselves improves TPR at a given FPR as againgt th& packet features
by themselves. (In other experiments, not shown here, wefalnd that including
AS-spamminess in the packet features reversed this treridaspacket features had a
higher TPR at a given FPR; however, as stated above, in thattha comparison was
made at 1% FPR since the packet features with AS-spammiasstdichieve 0.2%
FPR.) Further, we observe that using all of the featuresrgéip@chieves a higher TPR
at a given FPR as compared to either feature set on their owaifdicates that these
two feature sets capture different kinds of informationwathgacket traces.

Even though our results show that flow features can improaensgetection rates
in conjunction with packet features in our post-blackkstierprise setting, the absolute



Flow Features All Features
Month | Acc [ TPR] AROC || Acc | TPR] AROC

May 0.583/0.330| 0.709 |[0.632] 0.410| 0.759
Jun 0.555| 0.244| 0.689 |/ 0.546|0.230| 0.686
Jul 0.5470.281| 0.701 || 0.564|0.308| 0.748
Aug 0.538/ 0.266| 0.691 ||0.576|0.327| 0.754
Sep 0.558/ 0.270| 0.681 |[0.5820.309| 0.711
Oct 0.488] 0.145| 0.633 || 0.529|0.215| 0.675
Nov 0.417/0.191| 0.823 |/ 0.449|0.236| 0.788
Table 5. Results for decision trees using flow features (left), akitdees (without AS-
spamminess) (right). TPR is reported at 0.2% FPR.

Use one feature Use all but one feature
Feature Accuracy [ TPR | AROC || Accuracy | TPR | AROC
All single-packet  0.594 0.348 | 0.768 0.594 0.348| 0.768
geoDistance 0.473 0.153 0.667 0.546 0.271| 0.746
senderHour 0.378 |0(FPR=0) 0.500 0.595 0.35 | 0.769
NeighborDist 0.378 |0(FPR=0) 0.519 0.522 0.233| 0.704
0oS 0.378 |0(FPR=0) 0.500 0.597 0.353| 0.770
ws 0.38 0.004 | 0.622 0.596 | 0.352| 0.768
ttl 0.378 |0(FPR=0) 0.500 0.564 0.30 | 0.721

Table 6. Left: Average accuracy, TPR at 0.2% FPR and AROC when onlysimgle-packet
feature is used. Right: Average accuracy, TPR and FPR whersiogle-packet feature is left
out.

TPRs do not reach the 70% found in the setting of prior work.JA@Question is whether
an effective pre-filter can be constructed using such aifilErsso that only messages
that cannot be classified with high probability are sent tmgotationally expensive
content filters. We are currently investigating this quasti

3.3 Utility of Individual Features

Next, we examine which packet and flow features are most Lisefliscriminating
between ham and spam. We consider three situations. Fedtak at the accuracy of
our classifiers when only a single packet feature is usedwdmah we leave a single
packet feature out from all the packet features (resultaalel6). Next, we start with
the full set of packet features and add flow features one atetth determine the value
added by each flow feature. Finally, we look at what happen®ittart with the full
feature set and leave one flow feature out (results in Table 7)

Table 6 showgeoDistancdo be the most useful packet feature. The other packet
features, when used in isolation, result in zero or near Z&fR. This is because they
produce an empty (or nearly empty in the caswgftree that always predicts “ham” in
order to minimize the cost with a high FP cost. Further, g@gDistancendNeighbor-
Distresult in large drops in TPR when they are left out of the feaset. This indicates
that thoughNeighborDists not useful by itself, it has some discriminating power whe



Use one feature Use All but one features
Feature Accuracy| TPR |AROC]|Accuracy| TPR [AROC
All packet and flow features 0.632 | 0.410| 0.759| 0.632 | 0.410]| 0.759
All single-packet features| 0.594 | 0.348| 0.768| 0.594 | 0.348| 0.768
3whs 0.586 | 0.336| 0.720|| 0.643 | 0.427| 0.784
finslocal 0.611 | 0.376| 0.772|| 0.615 | 0.382| 0.729
fins.remote 0.598 | 0.354| 0.770|| 0.628 | 0.403| 0.759
idle 0.597 | 0.353| 0.770|| 0.633 | 0.411| 0.759
jvar 0.594 | 0.348| 0.771|| 0.632 | 0.410| 0.759
pktssent/pktsreceived 0.599 | 0.356| 0.770|| 0.618 | 0.386| 0.759
rstslocal 0.595 | 0.349| 0.768|| 0.632 | 0.410| 0.759
rsts.remote 0.595 | 0.349| 0.770|| 0.623 | 0.395]| 0.788
rttv 0.606 | 0.367|0.770|| 0.618 | 0.386| 0.751
rxmtlocal 0.596 | 0.351| 0.768|| 0.629 | 0.404| 0.759
rxmt.remote 0.595 | 0.350| 0.769|| 0.624 | 0.396| 0.751
bytecount 0.598 | 0.354| 0.768|| 0.632 | 0.409| 0.759
throughput 0.607 | 0.369| 0.793|| 0.625 | 0.398| 0.729

Table 7. Left: Average accuracy, TPR at 0.2% FPR and AROC when allesipgcket features
and only one flow feature are used. Right: Results when onefflature is left out, and all other
flow and single-packet features are used.

used in conjunction with other packet features. For thergtheket features, the TPR
stays the same or increases slightly when they are droppeidating that they do not
provide much added value beyond the remaining featuresarticplar, our results do
not showsenderHourto be useful for spam detection despite previous findings tha
spammers and non-spammers display different timing ptigsdB].

From the results in Table 7, we observe that adding any onefBature to the
set of single packet features improves the performanceethfssifier, though by a
small margin. In particularfinslocal, rttv and throughputprovide the greatest addi-
tional discriminating power beyond the single packet fesguFurtherfinslocal, rttv
and pktslocal/pktsremoteresult in the largest drops in performance when they are
dropped, indicating that they are also useful in conjumctiith the other features (i.e.
no other feature captures their information). Some flomfest such assts local and
3whseither do not change the TPR or increase it when they are dhppdicating that
they do not provide much added value beyond the remainirtgres This contradicts
prior results [4, 13] that found th8twhswas the most useful in discriminating ham from
spam, ifonly flow features were used. However, it appears that the infooman 3whs
is subsumed by the other features, perhaps by packet featuch agieoDistance

4 Summary

This paper addresses two questions: whether an orgamabtiail server can detect a
sizable amount of spam based on the first packet of an incornimgection, and the rel-
ative effectiveness of single-packet and flow features teat®n. Our primary finding
indicates that from an organizational perspective, sipgleket features are much less



effective than was observed in prior work. “Database” feggisuch as AS-spamminess
and sender’s neighborhood density are less effective indihuiation, and the limited
information conveyed by packet features leads ambiguitiyteence non-useful mod-
els. Also, adding flow features to packet features improeesracy, but the net effect
is still modest.

Some questions still remain. While we find that network fezgunay not be use-
ful in the enterprise setting, it would be useful to studyestBuch organizations to
strengthen our findings. Finally, though network featurely dilter 20-40% of post-
blacklist spam, avoiding content-based processing okthesssages may still be a net
win for mail servers, which we are quantifying in ongoing wor
Acknowledgments: Robert Beverly provided his SpamFlow tool. Shuang Hao and
Nick Feamster clarified the methodology used in [10]. Thiskneas funded in part
by NSF grants CNS-0916407, CNS-0831821 and CNS-0433702.
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