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Abstract. Previous work has shown that the network dynamics experienced by
both the initial packet and an entire connection carrying anemail can be leveraged
to classify the email as spam or ham. In the case of packet properties, the prior
work has investigated their efficacy based on models of traffic collected from
around the world. In this paper, we first revisit the techniques when only using
information from a single enterprise’s vantage point and find packet properties to
be less useful. We also show that adding flow characteristicsto a model of packet
features adds modest discriminating power, and some flow features’ information
is captured by packet features.

1 Introduction

Spam email is an ever-present irritant in the modern Internet: it uses scarce server and
network resources, costs users’ productivity, spreads malware, scams users and recruits
bots for all manner of malicious purposes. Hence, judging whether a particular email is
spam or ham—i.e., legitimate—is a crucial for operators andusers. Many different ap-
proaches have been investigated and a handful now enjoy regular use. The most useful
techniques to-date have been those that leverage (i) properties of the host sending the
email (e.g., IP address black- or grey-lists, domain keys [3], etc.) or (ii) properties of
the email messages themselves in the form of filtering in mailservers (e.g., SpamAs-
sassin [2]) or users’ mail applications (e.g., Apple Mail).

A new class of techniques has emerged, which attempt to use properties of the
network traffic to determine whether a message is spam. Beverly and Sollins [4] used
transport-level features (e.g., round-trip time, TCP advertised window sizes) as the basis
for predicting whether a particular TCP connection is carrying spam. Hao et al. [10]
used mostly lower-than-transport traffic features and in particular found that properties
of a single SYN packet from an incoming SMTP connection can effectively identify
spam. These “content-blind” techniques are attractive because they leverage properties
that are hard to manipulate and can help discard spam quicklyand at less computational
cost. This previous work raises two sets of pertinent questions:

First, Hao et al. [10] show that single-packet features are effectively detect spam us-
ing models developed via a global email reputation service with about 2,500 subscribing
institutions which provides for a diverse vantage point. However, do these findings hold
for a stand-alone organization that does not subscribe to a global service and hence has
a relatively narrow vantage point? Further, while Hao et al.studied their classifiers as a



replacementfor blacklists, most enterprises will likely use such classifiers in addition
to blacklists. Will packet features still be effective in thiscase?

Second, Beverly and Sollins [4] find that transport-level features are effective in
spam detection while Hao et al. [10] arrive at a similar conclusion regarding single-
packet features. Further, in our prior work [13], we observed that though flow features
are useful in discriminating ham from spam, examination of the resulting classifiers
indicates that in many cases they potentially serve as “proxies” for features that could
be computed from a single packet. Given that packet-level features allow one to discard
spam more quickly, a key question is whether the more expensive “flow features”—
requiring multiple packets—add discriminating power to the packet features. Hao et
al. [10] consider a similar question with regard to their packet and message feature sets
but do not focus on flow features.

In this paper, we evaluate these questions with a seven monthdataset of emails to
users at the International Computer Science Institute (ICSI). We develop three key find-
ings. First, neither single-packet features nor flow features by themselves are effective
classifiers at the enterprise level. In particular, packet features are much less effective
than suggested in [10]. We identify underlying causes, one of which points to funda-
mental limitations of single packet features for spam detection. Second, while we find
that neither single-packet nor flow features are operationally useful by themselves, we
find their effectiveness increases when combined, indicating that flow features capture
relevant discriminating information beyond packet features. However, even the com-
bination is not as accurate in our setting as reported in prior work. Finally, the above
results hold for two methods we used to analyze the data, giving a preliminary indica-
tion that these results are independent of the choice of the analysis method and reflect
the underlying discriminating power of the features in question.

2 Data and Features

Our dataset includes all incoming email to ICSI from the11th–18th of each month
over 7 months. We work from packet traces with full packet contents. Some of these
connections are blocked by the DNS blacklists, for which theSMTP transaction is ter-
minated before email content is transmitted to the monitored servers. We exclude these
connections from our analysis, except where noted. We useBro [14] to re-construct
the messages and derive some of the features. We additionally useSpamFlow[4] and
custom tools to derive certain traffic features. The overallcharacteristics of our data are
given in Table 1. A more in-depth description of our methodology is given in [13].
Ground Truth. We cannot manually classify messages in our dataset due to both the
scale and the sensitivity of dealing with real users’ email.Therefore, we developed an
automated procedure to label the messages (as fully developed in [13]). Each message
is processed by four content-based spam filters—SpamAssassin [2], SpamProbe [5],
SpamBayes [12] and CRM-114 [1]. With the exception of SpamAssassin—which is
used in non-learning mode—these tools are trained using the2007 TREC email corpus
[6]. A message is considered spam if any one of the tools flags it as such. Checking
all the ham messages in the corpus involving the fourth author as well a 2% sample of
email marked as spam by at least one of tools reveals this process yields the correct



May Jun Jul Aug Sep Oct Nov

Msgs. 279K 302K 317K 292K 300K 223K 249K
Outbound 41K 38K 49K 54K 46K 37K 43K
DNSBL 165K 185K 174K 165K 172K 116K 105K

Unknown 11K 21K 31K 20K 24K 12K 10K
No Msg. 9K 7K 8K 6K 7K 7K 7K

Other 5K 8K 8K 5K 7K 9K 8K
Spam 30K 26K 30K 26K 27K 25K 55K
Ham 18K 18K 18K 15K 17K 17K 21K

Table 1.Data overview: The first row shows the total number of email messages, rows 2–6 show
messages removed from the analysis and the last two rows givethe number of hams and spams.

classification in 98% of the cases with a false positive rate of 1.23% (standard deviation
0.11%), and a false negative rate of0.55% (standard deviation0.07%). We evaluated a
majority voting scheme as well, but that procedure was foundto be less effective [13].

Packet Features.The upper part of Table 2 lists the single packet features we use. The
geoDistance, senderHour, AS-Spamminess, and NeighborDist features are used in [10]
although we derive the last three differently, as follows. We do not translate sender’s
hour into the ratio of ham to spam that were sent during that hour, because sender’s
hour itself is a numeric feature directly suitable for inclusion in our models. Hao et al.
use the AS number directly as a numeric feature in their work.However, AS numbers
are individual labels which do not lend themselves to meaningful aggregation in models
(e.g., just because ASes 3 and 12 show some common behavior does not mean that
ASes 4–11 share that behavior). Further, if treated as discrete values, the number of
distinct AS values is problematic for classification methods. So we translate sender’s
AS number into a numerical value that reflects the prevalenceof spam originating in
the AS. The value for this feature is derived by using all messages in a training sample
to develop a database of the “spamminess” of an AS. If a test message came from an
AS that did not occur in the training set, we assign the average spamminess over all
ASes as the value of this feature for that message.

To calculate the neighbor distance, NeighborDist, Hao, et al. first split their dataset
into 24-hour bins. The NeighborDist is then the average distance to the 20 nearest IPs
among preceding senders in the same bin, or among all the neighbors if there are fewer
than 20 preceding senders [10, 9]. This procedure is not suitable for our enterprise en-
vironment because a one-day bin does not provide enough email to accumulate enough
history. Further, since the database is smaller, boundary effects due to insufficient num-
ber of neighbors in the beginning of each bin influence the results greatly. This is illus-
trative of our first contribution (discussed in more detail below): a single edge network’s
myopic view thwarts development of accurate models. To mitigate this effect, we build
IP databases using an entire training sample—consisting of9/10 of the data for each
month, given we use 10-fold cross validation. We then use this database to produce
NeighborDist values for the training and test data. Note that because of our proce-
dure, each fold of our experiments uses different databasesfor the AS-Spamminess and
NeighborDist features. We refer to these two features as “database features” below.



Feature Description

geoDistanceH The geographical distance between the sender and ICSI, based
on the MaxMind GeoIP database [11].

senderHourH The hour of packet arrival in sender’s timezone.
AS-SpamminessH Num. of spams from AS divided by total msgs. from AS in the training set.
NeighborDistH Avg. numerical dist. from sender’s IP to the nearest 20 IPs ofother senders.
OS OS of remote host as determined byp0f tool from SYN packet.
ttl IP TTL field from SYN received from remote host.
ws Advertised window size from SYN received from remote host.
3whsB Time between the arrival of the SYN from the remote host and arrival

of ACK of the SYN/ACK sent by the local host.
fins localB Number of TCP segments with “FIN” bit set sent by the local mail server.
fins remoteB Number of TCP segments with “FIN” bit set received from the remote host.
idleB Maximum time between two successive packet arrivals from remote host.
jvarB The variance of the inter-packet arrival times from the remote host.
pktssent / Ratio of the number of packets sent by the local host to the
pkts recvd number of packets received from the remote host

rsts localB Number of segments with “RST” bit set sent by the local mail server.
rsts remoteB Number of segments with “RST” bit set received from remote host.
rttv Variance of RTT from local mail server to remote host.
rxmt localB Number of retransmissions sent by the local mail server.
rxmt remoteB Approximate number of retransmissions sent by the remote host.
bytecount Number of non-retransmitted) bytes received from the remote host.
throughput bytecountdivided by the connection duration.
Table 2.Message features. Features marked withH andB are from [10] and [4], respectively.

Hao et al. also use a feature that requires port scanning the sending IP. This is opera-
tionally problematic as it is time consuming and may triggersecurity alarms on remote
hosts. Further, while we have historical packet trace data,we do not have historical port
scanning data and mixing current port scans with historicalpacket traces would be a
dubious experimental procedure. While we deleted or modified several single packet
features we also added several features: senders’ OS, IP’s residual TTL, and TCP’s
advertised window (from prior work [4, 13]).

Flow features.The lower part of Table 2 shows the set of flow features we use to
describe messages. This list is not identical to that used inprior work [4] (with common
features tagged with aB)). We added several features we believe may help discriminate
ham from spam. In addition, we removed three features:packets(in each direction),
cwnd0and cwndmin. The number of packets is closely related to thebytecountand
pktssent/pktsrecvd features in our list. A more detailed description of these features
can be found in [13].

3 Empirical Evaluation

We use two algorithms in our experiments: decision trees [16] (from Weka [18]) and
Rulefit [7]. Decision trees use the idea ofrecursive partitioning: at each step, they



Rulefit Decision Trees
Month Acc TPR AROC Acc TPR AROC

May 0.674 0.483 0.944 0.663 0.464 0.783
Jun 0.573 0.280 0.926 0.564 0.266 0.785
Jul 0.555 0.299 0.940 0.563 0.312 0.805
Aug 0.580 0.338 0.940 0.543 0.280 0.773
Sep 0.560 0.279 0.933 0.586 0.322 0.783
Oct 0.609 0.353 0.938 0.640 0.406 0.779
Nov 0.504 0.315 0.904 0.507 0.319 0.660

Table 3.Results for packet features with AS-spamminess. The TPR is reported at 1% FPR.

choose a feature and use it to split the data until a partitiononly has examples from a
single class. Rulefit—used in [10]— constructs a linear classifier that uses the primitive
features as well as Boolean tests on feature values as predictors. We perform 10-fold
stratified cross validation on each month’s data by randomlydividing the trace at the
granularity of SMTP sessions into ten folds such that all folds have the same spam/ham
ratios as the entire dataset. We train our models using everyset of nine folds and test it
on the remaining folds. Throughout the paper, we consider spam as the target class; thus
our true positive rate (TPR) is the fraction of spam classified as spam and false positive
rate (FPR) is the fraction of ham misclassified as spam. We report (averaged over ten
folds) accuracy, the area under ROC (AROC) [15], an alternative quality measure, and
TPR at a given FPR (0.2% unless stated otherwise), obtained from the ROC graph for
the classifier. The ROC, or receiver operating characteristic, graph relates the TPR and
FPR as a threshold is varied over the confidence of the predictions.

3.1 Packet-Level Features at the Enterprise

Prior work [10] reports that properties of the first SYN packet from an incoming SMTP
connection could be sufficient to filter out 70% of spam with 0.44% false positives
(0.2% when adding features beyond single-packet). However, this result was obtained
using models derived from 2,500 organizations, in a pre-blacklist setting. Our first ques-
tion is whether single-packet features could be similarly effective in a stand-alone en-
terprise mail service using only its own vantage point. To study this, we run decision
trees and Rulefit on each month’s data, using only the single packet features (in the
upper part of Table 2) to describe each message.

We first observed that the unmodified algorithms we used had anaverage FPR of
almost 20% across the months (18.74% for decision trees and 19.83% for Rulefit), and
our attempts to reduce FPR by thresholding the confidence degraded the TPR to single-
digit percentages. This is clearly not operationally usable. To remedy this, we produce
cost sensitive classifiers, trained to penalize FP errors more than FN errors. We use a
cost ratio of 175:1 in our experiments for decision trees and20:1 for Rulefit. The results
are shown in Table 3. While the FPR drops significantly compared to the unweighted
case, it does not reach 0.2% for decision trees—even when increasing the cost ratio
significantly. Analysis of the classifiers reveals that the AS-spamminess feature—from
the training data—is chosen as highly predictive in each case. However, it appears to



be less predictive on the test data, possibly because even using 90% of our data from
a month does not result in a comprehensive database. Thus, even though our results
confirm previous findings (e.g., [17]) that AS origin differsfor spam and ham, we find
the utility of this feature in an enterprise environment limited.

Next, we remove AS-spamminess from the analysis, forcing our classifiers to use
other features. The results are shown in the “Rulefit” and “Decision Trees” columns of
Table 4. In this case, we are able to obtain an FPR of 0.2%. We further observe that
though the classifiers produced achieve a low FPR, their TPR is low as well—as low
as 10% and never reaching beyond 36%. This is significantly different from the result
in prior work [10], where a TPR of 70% was achieved at FPR=0.44%, as we discussed
above (while we omit our full results for 0.44% FPR due to space, Rulefit produced
29% TPR in May and at best 16% in other months; without AS-spamminess, the re-
sults improved to 47% in May and 18-31% in other months). Further, the result in [10]
was achieved with unweighted Rulefit by purely thresholdingconfidence [9], while as
mentioned earlier, this did not produce usable results in our setting. Thus it generally
appears that packet features are significantly less useful in our setting. Further we ob-
serve that both decision trees and Rulefit exhibit quite similar results in our experiments.
Thus the lack of utility of the single packet features is (at least to some extent) not a
function of the learning algorithm they are used with, but purely a consequence of the
limited information they convey about the message in this setting.

One might wonder if it is possible to increase the TPR or decrease the FPR further.
However, this is difficult with just packet features to describe each message. It is in-
tuitively plausible that looking at a single packet revealslimited information about the
message, and one can only construct few features from this information (we use seven).
This set of features generally describes the characteristics of a group of hosts sending
email. But unless the granularity is extremely fine, such a group will sometimes send
ham and sometimes spam. We therefore found many instances where messages were
described by identical packet features but had opposing labels, i.e., some were labeled
as spam and some as ham. For example, in the May data, 4K messages out of 48K total
had a counterpart with the identical feature values but opposite label. This clearly is
problematic for any classifier and may increase the FPR and lower the TPR. On the
other hand, if granularity is decreased (e.g., imagine using the IP address—with a range
of 4 billion values—as a feature), then significantly more data will need to be collected
to train a useful classifier. This appears to be a fundamentallimit of single packet fea-
tures for spam detection.

Hao et al.’s work evaluated the utility of packet features ina pre-DNS blacklist
setting. Although using such a blacklist is natural and common in an enterprise set-
ting, we perform a similar analysis on our data to establish adirect comparison. This
experiment follows Hao et. al.’s methodology–using the same classifier (Rulefit) and
reports TPR at the same FPR (0.44%)—except it employs the cost-sensitive classifier
with cost ratio of 100:1, as lower cost ratios degraded FPR tonon-usable levels. In
this case, we include messages that were blocked by ICSI’s operational DNS blacklist
setup (“DNSBL”+“Ham”+“Spam” in Table 1) since their first SYN packet is still avail-
able for analysis. We label all messages blocked by the DNS blacklist as spam. In this
pre-blacklist experiment we train and evaluate on all messages including those blocked



Post-Blacklist(Rulefit) Post-Blacklist(Decision Trees) Pre-Blacklist (Rulefit)
Month Acc TPR AROC Acc TPR AROC Acc TPR AROC

May 0.600 0.359 0.909 0.594 0.348 0.768 0.824 0.808 0.967
Jun 0.492 0.139 0.882 0.454 0.072 0.652 0.346 0.290 0.964
Jul 0.478 0.171 0.906 0.438 0.108 0.666 0.467 0.421 0.962
Aug 0.506 0.216 0.905 0.479 0.172 0.660 0.714 0.691 0.969
Sep 0.509 0.189 0.892 0.497 0.169 0.663 0.644 0.612 0.967
Oct 0.515 0.191 0.901 0.488 0.145 0.683 0.520 0.462 0.957
Nov 0.421 0.197 0.884 0.436 0.218 0.826 0.709 0.670 0.943

Table 4. Results for packet featureswithoutAS-spamminess. The TPR is reported at 0.2% FPR
for the post-blacklist and at 0.44% for the pre-blacklist experiments.

by the DNS blacklist (the results are shown in the “Pre-blacklist” column in Table 4),
while in all other experiments, we train and evaluate on messages that passed through
and have not been filtered out by the DNS blacklist. We observethat the “Pre-blacklist”
results vary significantly across months. For some months, our results are comparable
to, even exceed, the 70% TPR reported by Hao et al. However, for other months, we find
the TPR is far lower (e.g., 29% in June). Such variability reduces the operational utility
of packet features for spam detection. While the reason for the variability is unclear,
one possibility is that it is due to the enterprise’s vantagepoint. Another possibility is
that it is a fundamental property of packet features, and wasnot observed by Hao et al.
since their data was collected over a period of only 14 days.

3.2 Effect of Flow-Level Features

Given the limited accuracy of packet features, we next consider whether adding flow-
level features to the message description adds value by making the classifier more accu-
rate. To check this, we compare two settings. First, we use only the flow features in the
lower half of Table 2 to classify messages. Then we add the flowfeatures to the packet
features (without AS-spamminess) and use the full set in thesame way. For these exper-
iments, we use decision trees as the learning algorithm. This is because our prior results
show that any patterns we see generalize to Rulefit as well, yet Rulefit is significantly
more expensive to run (a cross validation runtime of hours, compared to a few seconds
for trees). Further, trees are easier to interpret. The results are shown in Table 5.

Comparing these results to the results in Table 4, we observethat using the flow fea-
tures by themselves improves TPR at a given FPR as against using the packet features
by themselves. (In other experiments, not shown here, we also found that including
AS-spamminess in the packet features reversed this trend, so that packet features had a
higher TPR at a given FPR; however, as stated above, in that case the comparison was
made at 1% FPR since the packet features with AS-spamminess do not achieve 0.2%
FPR.) Further, we observe that using all of the features generally achieves a higher TPR
at a given FPR as compared to either feature set on their own. This indicates that these
two feature sets capture different kinds of information about packet traces.

Even though our results show that flow features can improve spam detection rates
in conjunction with packet features in our post-blacklist,enterprise setting, the absolute



Flow Features All Features
Month Acc TPR AROC Acc TPR AROC

May 0.583 0.330 0.709 0.632 0.410 0.759
Jun 0.555 0.244 0.689 0.546 0.230 0.686
Jul 0.547 0.281 0.701 0.564 0.308 0.748
Aug 0.538 0.266 0.691 0.576 0.327 0.754
Sep 0.558 0.270 0.681 0.582 0.309 0.711
Oct 0.488 0.145 0.633 0.529 0.215 0.675
Nov 0.417 0.191 0.823 0.449 0.236 0.788

Table 5. Results for decision trees using flow features (left), all features (without AS-
spamminess) (right). TPR is reported at 0.2% FPR.

Use one feature Use all but one feature
Feature Accuracy TPR AROC Accuracy TPR AROC

All single-packet 0.594 0.348 0.768 0.594 0.348 0.768
geoDistance 0.473 0.153 0.667 0.546 0.271 0.746
senderHour 0.378 0(FPR=0) 0.500 0.595 0.35 0.769
NeighborDist 0.378 0(FPR=0) 0.519 0.522 0.233 0.704
OS 0.378 0(FPR=0) 0.500 0.597 0.353 0.770
ws 0.38 0.004 0.622 0.596 0.352 0.768
ttl 0.378 0(FPR=0) 0.500 0.564 0.30 0.721

Table 6. Left: Average accuracy, TPR at 0.2% FPR and AROC when only onesingle-packet
feature is used. Right: Average accuracy, TPR and FPR when one single-packet feature is left
out.

TPRs do not reach the 70% found in the setting of prior work [10]. A question is whether
an effective pre-filter can be constructed using such a classifier, so that only messages
that cannot be classified with high probability are sent to computationally expensive
content filters. We are currently investigating this question.

3.3 Utility of Individual Features

Next, we examine which packet and flow features are most useful in discriminating
between ham and spam. We consider three situations. First, we look at the accuracy of
our classifiers when only a single packet feature is used, andwhen we leave a single
packet feature out from all the packet features (results in Table 6). Next, we start with
the full set of packet features and add flow features one at a time to determine the value
added by each flow feature. Finally, we look at what happens ifwe start with the full
feature set and leave one flow feature out (results in Table 7).

Table 6 showsgeoDistanceto be the most useful packet feature. The other packet
features, when used in isolation, result in zero or near zeroTPR. This is because they
produce an empty (or nearly empty in the case ofws) tree that always predicts “ham” in
order to minimize the cost with a high FP cost. Further, onlygeoDistanceandNeighbor-
Dist result in large drops in TPR when they are left out of the feature set. This indicates
that thoughNeighborDistis not useful by itself, it has some discriminating power when



Use one feature Use All but one features
Feature Accuracy TPR AROC Accuracy TPR AROC

All packet and flow features 0.632 0.410 0.759 0.632 0.410 0.759
All single-packet features 0.594 0.348 0.768 0.594 0.348 0.768
3whs 0.586 0.336 0.720 0.643 0.427 0.784
fins local 0.611 0.376 0.772 0.615 0.382 0.729
fins remote 0.598 0.354 0.770 0.628 0.403 0.759
idle 0.597 0.353 0.770 0.633 0.411 0.759
jvar 0.594 0.348 0.771 0.632 0.410 0.759
pktssent/pktsreceived 0.599 0.356 0.770 0.618 0.386 0.759
rsts local 0.595 0.349 0.768 0.632 0.410 0.759
rsts remote 0.595 0.349 0.770 0.623 0.395 0.788
rttv 0.606 0.367 0.770 0.618 0.386 0.751
rxmt local 0.596 0.351 0.768 0.629 0.404 0.759
rxmt remote 0.595 0.350 0.769 0.624 0.396 0.751
bytecount 0.598 0.354 0.768 0.632 0.409 0.759
throughput 0.607 0.369 0.793 0.625 0.398 0.729

Table 7. Left: Average accuracy, TPR at 0.2% FPR and AROC when all single-packet features
and only one flow feature are used. Right: Results when one flowfeature is left out, and all other
flow and single-packet features are used.

used in conjunction with other packet features. For the other packet features, the TPR
stays the same or increases slightly when they are dropped, indicating that they do not
provide much added value beyond the remaining features. In particular, our results do
not showsenderHourto be useful for spam detection despite previous findings that
spammers and non-spammers display different timing properties [8].

From the results in Table 7, we observe that adding any one flowfeature to the
set of single packet features improves the performance of the classifier, though by a
small margin. In particular,fins local, rttv and throughputprovide the greatest addi-
tional discriminating power beyond the single packet features. Further,fins local, rttv
and pkts local/pktsremoteresult in the largest drops in performance when they are
dropped, indicating that they are also useful in conjunction with the other features (i.e.
no other feature captures their information). Some flow features such asrsts local and
3whseither do not change the TPR or increase it when they are dropped, indicating that
they do not provide much added value beyond the remaining features. This contradicts
prior results [4, 13] that found that3whswas the most useful in discriminating ham from
spam, ifonlyflow features were used. However, it appears that the information in 3whs
is subsumed by the other features, perhaps by packet features such asgeoDistance.

4 Summary

This paper addresses two questions: whether an organizational mail server can detect a
sizable amount of spam based on the first packet of an incomingconnection, and the rel-
ative effectiveness of single-packet and flow features in detection. Our primary finding
indicates that from an organizational perspective, single-packet features are much less



effective than was observed in prior work. “Database” features such as AS-spamminess
and sender’s neighborhood density are less effective in this situation, and the limited
information conveyed by packet features leads ambiguity and hence non-useful mod-
els. Also, adding flow features to packet features improves accuracy, but the net effect
is still modest.

Some questions still remain. While we find that network features may not be use-
ful in the enterprise setting, it would be useful to study other such organizations to
strengthen our findings. Finally, though network features only filter 20-40% of post-
blacklist spam, avoiding content-based processing of these messages may still be a net
win for mail servers, which we are quantifying in ongoing work.
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