BBN Technical Report No. 8339

A Swifter Start for TCP

Job No. 12318221

March 22, 2002

Prepared for:

NASA Glenn Research Center
21000 Brookpark Rd. MS 54-5
Cleveland, OH 44135

Prepared by:

BBN Technologies
10 Moulton Street
Cambridge, MA 02138

A Swifter Start For TCP

Craig Partridge, D. Rockwell, Mark Allman, R. Krishnan, James Sterbenz

BBN Technologies

Abstract

While TCP is capable of adapting its data rate to almostcapacity it has long been
known that TCP takes a long time to ack@dull data rates on paths with high capacity
(especially links with long delays, e.gatellite links). In this paper we present avne
way for TCP to estimatevailable network capacity and swiftly scale its transmission rate
at the start of a TCP connectioWhile the method does estimate capacty/pedicted

by prior simulation [12], the limited studies reported in this paper suggest it performs
slightly worse than regular TCR@ a low-delay modest-bandwidth Internet path.

1. Introduction

When a Tansmission Control Protocol
(TCP) [16] connection is opened and data trans-
mission starts, TCP uses an algorithm known as
dow start to probe the network to determine the
available capacity wer the connectiors path [9,

2]. Theslow start algorithm probes the nedwk

by sending between 50% and 100% more data in
each round-trip transfer across the ratw A
consequence of this guth pattern is that it tads
TCP approximately logs x to log, x round-trips

to find the right data rate, whexds the aailable
capacity and is computed as the round-trip time
multiplied by the =ailable bandwidth.

On a common terrestrial link (delay,
modest-bandwidth) the time it ta&k TCP to cor
rectly estimate and begin transmitting data at the
available capacity is only a ‘e round-trips.
However, over links that are long (e.gsatellite
links) or hae hgh bandwidth (seeral hundred
megabits per second), or both, it may ¢éakCP
several seconds to complete the firstvglstart.
Indeed, for transactional applications such as
HTTR the TCP connection may V& tansferred
all the data to be sent before completing thevslo
start, without eer achieving its potential trans-
mission rate. Table 1 illustrates this point by
shawving the amount of data sent and thfeetive
data rate wer terrestrial links with 100 ms of

This work was funded under contract number
NA53-99175 by MSA Glenn Research Center and
NASAs Earth Science dchnology Ofice. Copyright
(c) 2002 BBNT Solutions LLC.

delay (about the round-trip time across North
America) at various rates during the vglatart
phasée:

TCP connections often share a link, and
thus the question of lofast a single connection
can scale up to fill an entire link (which is what
Table 1 shows) is a somat artificial question.
But the lager message from Table 1 is that
TCP’s aility to scale its data rate swiftly at
startup is not as dynamic as we would l&s ve
enter an era of long delay-bandwidth product
paths?

In this paper we seek to mitigate the startup
problem (in particular we limit the start up delay
to no more than ten round-trips in most cases)
using a startup algorithm that combinesotw

1 Amounts of data computed assume a 1024 byte
MTU and 984 byte éctive payload after TCP/IP head-
ers, that the TCP implementations use delayed adkno
edgements, starts with a fourgsgent congestion win-
dow, and increase the windo by one segment per
acknavledgement (e.g., the windogrows by a factor of
1.5 per round-trip). The windosize is assumed to be
arbitrarily lage (note that this is somewhat inconsistent
with the 984 byte ééctive payload as congestion win-
dows larger than 64KB require TCP options that reduce
the efective payload size). The number of bytes sent is
the number at the end of the round-trile in which
slow-start ends (i.e., it will someéhat overestimate the
total).

2We ae entering an era of long delay-bandwidth
paths because the Internet path delays are already close
to the speed of light delay and the bandwidth of links
continues to go upAs a result, wer the coming years,
the delay-bandwidth product of terrestrial links will
come increasingly close to the delay-bandwidth prod-
ucts of satellite links today.

techniques: pak pair [11] (to estimate capac-
ity) and packt pacing (to meter packets to estab-
lish initial self clocking).

2. Prior Work

The problem of getting TCP to stadster
has been a pressing issue foerca decade. The
challenge is that we kmoenough about neterk
dynamics to say that alldng a TCP connection
to begin sending at a data rate substantially in
excess of the\ailable capacity is usually harm-
ful: it hurts the other TCP connections along the
path and often leads to crippling loss for thevne
TCP, hindering startup ven more than starting
slowly [9].

So, the first problem is quickly and eor
rectly estimating the capacity so that the TCP
connection can send more data early and still
does not send more data than itsvaié share of
the available capacity.

Simply estimating, heever, the aailable
capacity is not enoughlT CP relies on the awul
of acknowledgements of its data to properly sep-
arate in time, or self-clock, its data transmissions
[9]. If a TCP connection somethocorrectly esti-
mates its fair share of capacitytlthen sends all
its data in one urst, the burst will often \r-
whelm router queues and lead to loss thajrag
harms the connectianthroughput. Save need
some mechanism to pace out segments i@ w
that does not immediatelyerwhelm intermedi-
ate router queues.

This section sumys the work to date on
both problems.

2.1. Slow Start

When a TCP connection is getting started,
it has no estimate of the bottleneck rate nor does
it know when to place its data on the netl
(the self-clocking mechanism noted &Bp So,
TCP uses an algorithm calletslow start” to
both find the bottleneck rate and establish self-
clocking.

The basic idea behind slostart is that,
during the slo start stage, the sending TCP
transmits both the amount of data that is
acknavledged plus an additional, maximum-
sized, TCP sgment on receipt ofvery acknavl-
edgement. Dependingn whether the recdng

-3-

TCP acknwledges eery data segment owery
other data segment, this means that the sending
TCP is transmitting at 1.5 to 2 times the data rate
being acknowledged.

Another feature of sie start is that because
the sending TCP transmits its datagrsents
back-to-back, it is transmitting pasls in a pat-
tern similar to packet pairBecause data paets
get spaced by the bottleneck link, the spacing of
their acknowledgements roughly approximates
the data rate of the bottleneck linK. the TCP
simply transmitted one gment for eery
acknavledgement, it wuld be correctly pacing
(without, unfortunately growing the windaev).
However the sending TCP performing slcstart
is injecting data at 1.5 to 2 times the data rate of
the bottleneck link.A consequence of sending at
twice the bottleneck rate is that the router at the
bottleneck link deelops a queud. This phe-
nomenon is illustrated in Figure In response
to two aknowledgements (bottom) spaced
according to the bottleneck rate, a sender sends
four segments (shown at leftit the bottleneck,
two of these sgments get placed on the wire at
the bottleneck rate, while twere forced to sit in
the queue.

3 For smplicity, through this discussion we will talk
about a single bottleneck link and a single bottleneck
router In fact, there may be a series of relathottle-
necks, where the relink has less capacity than its pre-
decessgrand a series of bottleneck routets. this case,
the analysis still holds, but the extra segments are
buffered at multiple points in the network.

Table 1 - Slow Start Round-Trips and Data Sent
for various datarates
1.5Mb/s 45Mb/s | 155Mb/s 1Gb/s 10Gb/s
Round-Tips 5 14 17 21 27
Bytes 53,136 | 2,414,736| 8,179,008 41,465,760 472,490,232
Data Rate 850Kb/s 14Mb/s 38Mbl/s 158Mbl/s 1,400Mb/s

bottleneck link

acK

Figure 1: Slow Start Sends at Double Capacity

It is useful to mamine the bottleneck queue
over the course of the TCP connectismbund-
trip time. In slav start, over the first part of the
round-trip time, the sending TCP is sending in
excess of the bottleneck rate and the queue is fill-
ing with the excess TCP gments. Atsome
point the sending TCP stops sendingrsents,
as it has ne receved dl the acknavledgements
from the prior round-trig window of data. At
this point the excess segments begin to drain
from the queue, until tyehave all been for
warded. Thequeue then remains empty (of this
connectiors sgments) until the next round-trip
cycle. Seg[12] for extensve dscussion of this
behavior.

After some number of round-tripycles,
the burst of TCP traffic at the start of the round-
trip will exceed the queuing space at the bottle-
neck router and the router will drop one or more
segments. TCHnterprets this ggment loss as
an indication it is werdriving the bottleneck link,
and TCP shifts into its steady-state sending mode
(called congestionvaidance).

In general, this processorks well and
causes TCP to quickly find the bottleneck data
rate and establish self-clockin@low start, hav-
eve, typically fails if the bottleneck is a long
delay high bandwidth, link such as a satellite
channel [15, 12].The reason is that slostart

requires the bottleneck router tovlakuffering
equal to the product of the delay and the band-
width. If the link has both high delay and high
bandwidth, the bottleneck router typically has
too little huffering. Theresult is that the sending
TCP will overwhelm the router queue long
before it reaches the bottleneck data rate, and
mistalenly set its target data rate for congestion
avddance too lar. Over time, this data rate gets
corrected, as TCP repeatedly probes the orbtw
and discuers additional capacity is actually
available.

2.2. Estimating Capacity

So if slov start sometimes does not find the
correct bottleneck bandwidth at the start of the
connection, what alternag ways to estimate a
bottleneck bandwidth are thereld date theres
only one known approach: packet pair [11].

data

I | data |

bottleneck link

Figure 2: Packet Pair Estimation

The idea behind packet pair is illustrated in
Figure 2. A host (in this case, Host A) sendsotw
back-to-back data paets. Atthe bottleneck link
in the path, these paets get separated in time.
As the packets are rewved, they are acknavl-
edged. If the acknwledgements are sent
promptly the spacing of the ackmtedgements
reflects the spacing of the data patsk Thuspy
measuring the time between the \als of the
acknavledgements (and knowing the size of the
data packets being ackmiedged), the sender
can estimate thevailable capacity.

TCP already implicitly uses ackwtedge-
ment spacing to estimate capacitin deady
state, TCP only injects me data when an
acknavledgement is receéd. Sothe transmis-
sions of ne data are implicitly sent at the rate of
the bottleneck link.

2.3. Problemswith Packet Pair

Unfortunately a rumber of problems can
creep into padakt pair bandwidth estimation in
real netvorks. For instance, a phenomenon
called ‘ACK compression’ [17, 14] causes
acknavledgments to tnch up in the netark
path between the data reei and the data
sender When these compressedCKs are used
for packet pairan oserestimate of the bandwidth

is obtained because the sender does not see the

full “spreading efect” of the data paaits. More
generally [3], shars that the ACK stream also
imposes jitter in the other directiofhat is, the
ACKs are further spread out on the path to the
data senderyielding an underestimate of the
bandwidth. Anotherchallenge is the delayed
ACK timer which can add time to the generation
of an ACK (which appears to increase the
spreading of the packetsptbis really a host-

-5-

introduced eent).

Unfortunately the problems of paskpair
estimation cannot wholly bexglained by fluctu-
ations in the ACK stream. Reference [3] wiso
that changes in the spacing of the data etsck
after the bottleneck occuiSo, even the recerer
is not alvays able to accurately estimate the bot-
tleneck bandwidth.

We take ome precautions agnst inaccu-
rate bandwidth estimates in the algorithm we use
for capacity estimation (discussed further in sec-
tion 3).

2.4. Pacing

A steady state TCP uses its ackhedge-
ments to clock out medata at the bottleneck rate
(a mechanism often called self-clockingdnd a
TCP currently uses sho start to establish ack
clocking at the start of the connection. But if we
hare wed packet pair to quickly estimate the
awvailable capacity at the start of the connection,
how does the TCP properly space its transmis-
sions?

One solution to this problem is toveathe
sending TCP pace out its segments so that the
don’t come bunched at the start of the round-trip
cycle. Broadly pacing seeks to space the trans-
mission of segments roughlyeanly over the
entire round-trip time.(With some emphasis on
roughly — issues of clock granularity often reak
precise spacing di€ult). Beyond eliminating
the bunching of packets in slcstart [12], pacing
has also been usedperimentally to woid ack
compression [7], and to impre web perfor
mance [7].

Unfortunately the most recent study of
pacing [1] also shaes that TCPs that use pacing

for the entire connection do not perform as well
as rgular, non-paced TCPs. While theact rea-
sons are not clearthe authors of the study
believe tat pacing can suffer synchronization
effects, where multiple fles pacing through a
bottleneck end up synchronizing their beba
Also [1] notes that by pacing out the packets a
sending TCP apparently increases its chance of
suffering congestion loss, vis-a-visguidar TCPs.
Pat of the benefit of TCR' ®lf-clocking is that
the acknavledgements reflect when space will be
awailable in queues in the path, and pacing loses
this information.

The overall message of theavk on pacing
is that pacing can help, but is not a complete
replacement for TCB'=lf-clocking mechanism.

2.5. Increasing the Initial Window Size

One other piece of work is of interest in
this contat. The Internet Engineering ask
Force is considering wsing the TCP specifica-
tion to recommend sending up to four TCl-se
ments in the first round-trip, rather than just one
[4]. The idea is to open the windo faster.
Another consequence is that by sendingley
of four sgments, a TCP can do a packet pair
analysis at the end of the first round-trip.

3. A Swifter Startup Algorithm

The idea we xplore in this paper is to com-
bine paclkt pair to estimateinitial capacity only
with pacing to spread out the initial burst until
self-clocking is established. The idea is toetak
the best of both packet pair and pacing, while
limiting our use of each algorithm toa@d their
limitations.

3.1. TheBasicldea

In this approach, a sending TCPglmes
with the foursegment burst of packets to start the
connection. Hwever, when the acknesledge-
ments of the segments are reedi the sending
TCP performs the packet pair algorithm and esti-
mates the ailable bandwidth in the pathThe

4 Actually the computation is a bit more compldn
general, because most TCP implementations seek to
send one acknowledgement fove two segments,
when we compute the packet-pair value, we should
divide the size of tw segments by the inter-ack time.
However, because an @K may be triggered by onegse

sending TCP then computes the estimated
delay<bandwidth product by multiplying the esti-
mated aailable bandwidth by the measured
round-trip time. A fraction of this estimate (in
our implementation, a configurablealue y
between 1 and 1/8th) is then used as the conges-
tion windov size for the ngt round-trip time.
More formally the computation is:

(tackz - tackl)

SegSize

Capacity = BWx(tack1 ~ tsega)

wheret,ux is the time the ackndedgement of
segment X is receied and tsyx is the time when
segment X was sent.

The reason for taking a fraction of the esti-
mated delaybandwidth product is to protect
against an wer-estimate from the paek pair
algorithm. Notethat because TCP fettively
increases the winao by aout a factor of tw
each RTT during sle start, if the packet pair
estimate is correct TCP will be sending at the
correct rate within three to fvround-trip times.
(Recall that on a typical high debdyandwidth
path, it could ta& TCP fifty or more round-trips
to reach the full data rate). At the same time if
the packt pair estimate is too large, by choosing
a fraction, we hae reduced the chance that TCP
will not overdrive the link.

BW =

ment (or due to a delayed-ack timer expiring between
receptions of segments at the reegi we compute the
available bandwidth by dividing the size of ongsent.

So we would expect to underestimate theaitable
bandwidth by at least a factor of dw For details on
how delayed ackneledgements may be implemented to
reduce acknowledgements see [5, 2].

Table 2 - Swift Start Round-Trips and Data Sent
for various datarates

1.5Mb/s 45Mb/s | 155Mb/s 1Gb/s 10Gb/s
Round-Trips 4 4 4 4 4
y=2
Bytes 47,232 1,337,256 4,603,152 | 29,690,232 296,877,720
Data Rate 945Kb/s 27Mb/s 92Mb/s 594Mb/s 5,938Mb/s
Round-Trips 5 7 7 7 7
y =8
Bytes 53,136 1,469,112 5,040,048 | 32,467,080 324,722,952
Data Rate 850Kb/s 17Mb/s 58Mb/s 371Mb/s 3,711Mb/s

After calculating the \&ilable capacity we
employ pacing. Becausthe nev window size is
potentially large (hundreds of gments), we do
not want to inject them as a singlergt. Sucha
burst would likely overwhelm intermediate
queues and disrupt other fiaf Rather we
would like to pace the burst and try to get TCP
to begin self-clocking.So we pace out the ge
ments @er roughly one round-trip time.We
continue pacing (but growing the winganor-
mally, at 15 to 2 times per round-trip) until the
first slow-start ends, after which the sending TCP
behaes acording to the standard TCP algo-
rithms?>

3.2. Commentson theldea

The goal of this scheme is to neake best
possible use of paek pair and pacing to alla
TCP to rapidly open its windoon alink with a
large delaybandwidth product, while fundamen-
tally keeping TCP wrking much as we kmo
(and understand) it today.

The scheme makesfeftive wse of packt
pair by estimating the vailable capacity but
avads much of the imprecision of the patlpair
estimate by taking a fraction of the estimate as
the starting point of the sho start process.
Similarly, the scheme uses pacing to space out
the initial burst, but then alless the more ééc-
tive TCP self-clocking to tak over.

3.3. Theoretical Improvement

Before discussing experience, we can look
at hav this scheme would work in theoryfable
2 (like Table 1) looks at the start udfexts wer a

5 An alternatve would be to do swift start for only
the first round-trip after doing the packet pair estimation.

100ms network path and showswhdong it
would take (in theory) to increase the transmis-
sion rate to full rate using this swifter starting
mechanism, assuming packet paavegus the
correct estimate of thevalable bandwidtt. We
report all results for tev values ofy, namely
y=2ady=8. (=1 isn't interesting in the-
ory, though it is often useful as a test case, as it
says that all connections are running at full rate
after the second RTT).

Comparing Table 2 withable 1 highlights
several useful points. First, the startup time
remains long. While the startup time iswno
bounded to no more thanvea round trips (com-
pared with @er 20 round trips for 1 Gb/s and 10
Gb/s in Table 1), there is still a notable startup
transient. Theamount of data sent during the
startup phase also remainsglar typically about
60% of what would be sent under standardavslo
start. Havever, the arerage data rate during the
startup is higheraround half the link data rate
which suggests we may nwkeasonably good
use of the path.

8 Theres ane minor diference between Table 1 and
2. In Table 1, we alays report the number of round-
trips as being the round-trip in which the vglstart
ended. InTable 2, fory =8, it turns out that sl start
ends a fe packets into the eighth round-tripThat is,
slow start continues for the first 2% of packets sent in
the eighth round-trip.To avoid warping the results, we
chose to treat sho start as ending at the very end of
round-trip segen.

60000—

40000—

20000—

i 50000 100000 150000 ZOAOOO
Figure 3: Slav Start Transition
60000—
40000—
20000—
0

50000 100000

150000 200000

Figure 4: Swift Start Transition

4. Testing an Implementation

We have implemented swift start in
FreeBSD (ersion 4.1) and tested its bela
ove the Internet. In this section, we report on
some of those experiences.

4.1. Experimental Design

All tests were run wer a path between a
system using the swift start algorithms located at
BBN Technologies in Boston, MA, and a
machine running NetBSD (version 1.3.3) at
NASA Glenn Research Center in @G#and, OH.
The path had 19 hops, a minimum round-trip of
just under 32 ms, and a bottleneck bandwidth of

3.5 Mbps. The resulting winde size is approxi-
mately 17KB’ The sgment size was 1472 bytes
(1512 bytes including headers)fhe recerer
offerred a windw size of 32KB.

Note that this test @ironment is relatiely
difficult for swift start. The number of hops is
large, so there are plenty of opportunities for ack
spacing to be distortedThe bandwidth isdirly
modest, so small errors in capacity estimation
may cause paekt pair to sharply \@restimate
capacity and erdrive the link. Finally, theres a
considerable amount ofuffering in the path,
which reduces the chance of loss whemstart

7 Statistics about the path were determined using
tracer out e andpat hchar as discussed belo

sends brsts. Thispath is clearly not the high
delay-bandwidth, v buffering path for which
swift start was designed.

For each set of tests, we initiated a long
TCP data transfer (10 MB) to see the startup
behaior and then obseev TCP transition into
steady state behimr. A range of values were
used fory, howeve, for two reasons the imple-
mentation vas unable to pace more thanefiw
seven sgments in the first round-trip, so only a
few values ofy are of interest (see discussion
belonv). Before and after each transfer
tracerout e [10] or pat hchar [8] was run
to confirm that the path did not change iry an
significant vay between runs and to detect major
changes during a runThe path had little loss.
Also, a stock TCP transfer was ruvesy fourth
connection to ensure wenalys had a stock TCP
connection taken close in time toyaswift start
measurement, afn as protection against the
path behavior varyingwer time. Infact, the path
did not change appreciably throughout the runs
and we beliee tat all the test runs presented
here are comparablelests at eacly were run
multiple times. Characteristic plots (i.e. the
results of single runs) are presented here.

4.2. Initial Example

Before making performance comparisons,
it is useful to step through axample to illus-
trate the different belérs of slav start and
swift start.

Figure 3 illustrates a standard wlastart®
The sending implementation uses a fowgnsent
initial congestion winde, 0 we €e an initial
transmission of four ggnents. Therecever
acknavledges each segment as reegj so as
each ackneledgement comes back, we se® tw
sgments transmittedThe result is the typical
slow-start pattern of (vertical) bursts separated by

8 The format of the figures shown here waselle
oped by Jacobson [9]. The vertical lollipop shapes each
represent a packet transmission (the length of éné-v
cal line represents the number of bytes sefie y-axis
is the sequence space in bytes. The x-axis is time (in
ms). Thesolid line along the bottom is the left edge of
the TCP windw and represents the value of the most
recently acknowledged byte of datdhe solid line
along the top is the right edge of the TCP windmd
represents thealue of the highest byte (in the sequence
space) that currently may be sent.

approximately one round-trip time each.

Figure 4 illustrates a typical swift start (in
this case withy =1). Like dow-start, the con-
nection starts with a fotsggment turst. When
the first acknowledgement comes back, the
sender duly transmits twsegments. Wherthe
second acknowledgement comes back, the sender
does the paek pair computation and paces out
the segments.

The estimated capacity should be about 12
sggments. Hwever, the pacing implementation
places some additional limits on what can be
sent. Inparticular it has limits on clock granu-
larity and it sends no more thanassegments per
transmission (toaid bursts). Asa result, with
32ms round-trip, pacing is limited to aroundefiv
to seven segments in the first round-trip.

The most interesting feature of Figure 4 is
that the segments are indeeabrdy spaced wer
the round-trips. The swift-start TCP is well on
its way to self-clocking at a time that thewglo
start TCP is still being bursty.

4.3. Slow Start, Pacing and Swift Start

Having looked at shw start and swift start
behaior at the beginning of a TCP connection,
we can nw move D look at their dects wver the
entire life of a connection.

An initial comment is in ordebefore look-
ing at details. Only about a third (15 of 44) data
transfers we conducted experienced loss. That is,
there was often enoughuffiering in the path to
buffer the full TCP windw size (32KB) &en
though the winda size exceeded thevalable
capacity In no @ase vas the congestion loss
more than one segment -- so T@RBtfretransmit
generally receered after one segment loss. In
one case (illustrated in Figure 5)dadveegment
losses occurred close enough together that TCP
was forced to wait for a timeout.

etransmissions

seq #

paced

swift start

)

Af start

I
>

g

time
Figure 5: Swift-Start, Pacing and Slow-Start

seq #
Figure 6: Sequence Space vs. Losses

Another interesting point is that almost all
the losses were daefed by standard TCP doing
slow start and slw start was &r more likely to
cause losses in the first third of the connecsion’
lifetime. Thatis, as obseed by [12, 15], the
burstiness of sl start was more likely to \aer-
run router biffers. Riced TCPs tend toxperi-
ence loss about two-thirds of the way into the
connectiors lifetime (when slw start also tends
to suffer losses).

Figures 5 and 6 illustrate these poinksg-
ure 5 plots the entire connection lifetime for four
TCP connections: the twdow-start connections
that suffered the most loss, one of the swift-start
connections K = 1) that suflered the most loss
and, for comparison, a TCP that paces but does
not do capacity estimation (i.e., just follows the

-10-

slow start algorithm of doubling the congestion
window every round-trip time). The points that
retransmissions occur are marked.

Figure 6 plots (across all tests) the number
of losses that occur at particular spots in the
sequence space Note that while Figures 5 and
6 havedifferent x-axs (Figure 5 is time, Figure
6 is squence number), the dwae closely
related and so the loss pattern in Figure 6 is
reflected in the retransmissions in Figure 5.

% Theres a wint on the swift-start graph (about 70%
through the connection) where a gap suggests a loss.
The rav data, hovever, shows that no retransmission
occurred — there was simply an anomalous pause of
nearly two round-trip times in receing the acknwl-
edgement.

10| osses are binned into 250K bytes intervals.

Another obseration from Figure 5 is that
even though it suffered three more losses, one of
the two dow-start connections finished the data
transfer before either the paced or swift-start
TCPR Indeed, despite defing eight losses and a
two round-trip pause, the slowest slow-start con-
nection only finished about awound-trips after
the other TCPs. Those results are indieatf a
broader trend we obsesd. Inalmost all cases, a
slow start TCP completes the transfer before a
swift start TCP - typically taking between 2%
and 10% less timeFigure 7 illustrates this point
by graphing tw connections, one slostart, one
swift start, neither of which sufferred los@\ote
the differing slopes of the wonnections).

5. Discussion

The goal of the project that funded this
report vas to implement a swift start TClBased
on the promising simulation results of [12[his
work was not intended to be a thorough study of
how swift start works in the real Internet. Such a
test would require morexgensie testing oer a
more dverse range of paths (in particuldigh-
delay bandwidth paths and more heavily con-
gested paths).With those points having been
said, havever, the limited tests of the primus
section raise seral interesting questions.

First, there is eery reason to belie that
swift start does indeed get the benefit of pacing:
namely router queues are natedoaded during
the initial phase of the TCP connection.
Whereas around two-thirds of slostart TCP
connections experience a loss (signalling an
overloaded router queue) in the first third of their
connection lifetimes, less than a quarter of the
swift start TCP connections suffer a losshe
overall loss rates of the twtypes of connections
are also different (12 losses in totako22 mn-
nections for swift start vs. 14 losses in 12 con-
nections for sle start).

Swift start, havever, consistently underper
forms slav start over a connection lifetime. This
result is contrary to what weowld expect from
our prior work [12], but is consistent with the
work of Aggarwalet al [1]. However, Aggarwal
et al. were unable to explain whpacing did not
perform as well.

-11-

Before seeking insight, we should recog-
nize that there are probablyds in our imple-
mentation. Theimplementation is fairly ne
and probably has some misfeaturddowever,
the implementation is doing pacing, andere
though it caps the data that can be sent in the first
paced round-trip too g, it sends as much data
as slov start during that time. An implementa-
tion problem is, therefore, an urdilly explana-
tion for the performance gap.

A more convincing explanation is clock
granularity The pacing implementation is lim-
ited in hav it schedules bursts by the one ms
granularity of the clock it uses to schedule paced
bursts. Soa sgment that should be transmitted
at 0.5 ms may be transmitted at 1 rgfectively
the implementation isery slightly increasing the
round-trip time during the swift start phase. It is
not cleay howeve, why this increase should con-
tinue to affect the connection after the swift start
phase is wer.

Overall the testing experience is yet another
testament to the remarkable versatility and tenac-
ity of slow start. Itis not easy to do better than
slow start over a general range of Internet condi-
tions.

6. Future Work

Having an implementation of swift start
enables a wide range okperiments wer the
Internet. Inthis section we skch some of the
interesting problems.

First and foremost, it auld valuable to test
swift start over the long delay-bandwidth paths
for which it is was designed. Does it actethe
higher transfer rates that simulation predicts?
And if it does not, wi not?

It would also be aluable to obtain more
traces wer a variety of paths to understand wh
swift start performed less well than siatart on
the path we used for testingpur tests reealed
some interesting questiong:or instance, gien
that swift start siéred fewer losswents on aer-
age than sl start and that loss is a signal to a
connection to sy down, why is it that slav start
completes its data transfers firsthlow serious
are the clock granularity issues, anaviao they
affect performance?

Finally, there are questions of Wwoswift
start interacts with other TCP mechanisnksr

instance, we hypothesize that in cases where

multiple segments are discarded, pacing will
spread out the lossesep the entire windar. We
contrast this loss pattern with slostart where
losses tend to come in contiguousgrsents.
How will this spreading affect TCB'recovery
from loss?

7. Code Availability

The code used for these testsvailable at
http://ww.ir.bbn. com

8. Acknowledgements

We would like to gatefully acknevledge
help from Stee Rolit and Will Ivancic.

References

1. Agagarwal, A., S. Saage, and TAnderson,
“Understanding the Performance of TCP
Pacing,” Proc. 2000 |EEE INFOCOM Con-
ference, Tel-Aviv, Israel (March 2000).

2. Allman, M., V. Paxson, and W Stevens,
“TCP Congestion Control; RFC-2581,
Internet Reguests for Comments, 2581 (
April 1999).

3. Allman,M., and V Paxson, “On Estimating
End-to-End Netwrk Path Properti€s,
Proc. ACM S GCOMM '99 (September

1999).
4. Allman, M., S. Floyd, and C. Rrtridge,
“Increasing TCRs Initial Window;

RFC-2414 Internet Requests for Com-
ments, 2414 (September 1998).

5. Braden,R.T., “Requirements for Internet
Hosts -- Communication Layers;
RFC-1122." Internet Requests for Com-
ments, 1122 (October 1989).

6. Aron,M., and PDruschel, TCP: Improving
Sartup Dynamics by Adaptive Timers and
Congestion Control (Rice TR98-318), Rice
University Computer Science (1998).

7. BalakrishnanH., V. N. Padmanabhan, and
R. H. Katz, “The Hects of Asymmetry on
TCP Performance ACM Mobile Networks
and Applications (MONET), 4, 3, pp.
219-241 (1999).

-12-

8.

©

10.

11.

12.

13.

14.

15.

16.

17.

Downey, A.B., “Using pathchar to estimate
Internet link characteristi¢s,Proc. ACM
S GCOMM 99 (August 1999).

Jacobsony., “Congestion #&oidance and
Control,” Proc. ACM SGCOMM °’88, pp.
314-329, Stanford, CA (August 1988).

Jacobsony., Presentation at MSRI (April
1997).

Kesha, S, “A Control-Theoretic Approach
to Flov Control,” Proc. ACM SSGCOMM
91, pp. 3-16, Zurich, Switzerland (August
1991).

Kulik, J., R. CoulterD. Rockwell, and C.
Patridge, “Paced TCP for High Delay-
Bandwidth Networks,” IEEE Workshop on
Satellite Based Information Systems, Rio de
Janeiro (December 1999).

Lai, K., and M. Baler, “Nettimer: A tool
for Measuring Bottleneck Link Band-
width,” Proc. 3rd USENIX Symposium on
Internet Technologies and Systems (March
2001).

Mogul,J.C., “Observing TCP Dynamics in
Real Netvworks,” Proc. ACM S GCOMM
'92, pp. 305-317, Baltimore, MD (August
1992).

Rartridge, C., and . Tshepard, “TCP/IP Per
formance Over Satellite LinKs|EEE Net-
work Magazine, 11, 5, pp. 44-49 (Septem-
ber 1997).

PostelJ., “Transmission Control Protocol;
RFC 793, Internet Requests for Com-
ments, 793 (September 1981).

Zhang,L., S. Shenkr, and D.D. Clark,
“Obsenations on the Dynamics of a Con-
gestion Control Algorithm: The Effects of
Two-Way Traffic,” Proc. ACM SGCOMM
'91, pp. 133-148, Zurich, Switzerland
(August 1991).

seq #

swift start

slow start

time

Figure 7: Swift Start and ShoStart without Loss

13-

