
Modern Application Layer Transmission Patterns from

a Transport Perspective⋆

Matt Sargent1, Ethan Blanton, and Mark Allman2

1 Case Western Reserve University, Cleveland, OH, United States
2 International Computer Science Institute, Berkeley, CA, United States

Abstract— We aim to broadly study the ways that modern applications use the underly-

ing protocols and networks. Such an understanding is necessary when designing and op-

timizing lower-layer protocols. Traditionally—as prior work shows—applications have

been well represented as bulk transfers, often preceded by application-layer handshak-

ing. Recent suggestions posit that application evolution has eclipsed this simple model,

and a typical pattern is now a series of transactions over a single transport layer connec-

tion. In this initial study we examine application transmission patterns via packet traces

from two networks to better understand the ways that modern applications use TCP.

1 Introduction

In this study we seek to broadly understand the ways that modern applications use the

underlying protocols and networks. In particular, we are interested in the transmission

patterns of applications as viewed at the transport layer. While previous studies have

documented these issues to some degree, we are motivated by the following two points.

– We aim to ensure that our mental models of application-imposed behavior are up-

to-date. For instance, [14] suggests that while application behavior varies, when

simulating Internet traffic a reasonable rule of thumb is to use connection sizes

described by the log-normal distribution. In other words, a TCP connection is es-

tablished, a given number of bytes sent, and then the connection is torn down. This

behavior approximates traditional applications like HTTP/1.0 and FTP. However,

some in the community have stated their belief that applications’ use of TCP has

evolved to a more transaction-oriented nature wherein an application re-uses con-

nections for a number of small transactions (e.g., as part of a web application) [5].

– Second, good network engineering crucially depends on an empirical understand-

ing of the system. For instance, intrusion detection systems must understand the

difference between an abandoned connection and a quiescent application. Another

example is understanding the importance of the so-called “last window” problems

in TCP (e.g., [6]). The amount of justifiable additional complexity in TCP to deal

with such problems depends on whether there is one “last window” in a connection

(e.g., the bulk transfer case) or there are numerous “last windows” (e.g., at the end

of every transaction in a connection with many transactions).

As an initial check on these two points we examine packet traces from the Lawrence

Berkeley National Laboratory (LBNL) and the International Computer Science Institute

⋆ Work supported in part by NSF grants CNS-0831535 and CNS-1213157.



CCZ ICSI

Time 2/11–3/12 9/12–3/13

Length (hrs) 98 1,176

Total Conns. 6.5M 56.9M

Conns. w/o Data 2.6M 27.9M

Port Filtered - 1.4M

Remaining 3.9M 27.6M

Table 1: Data overview.

Location CCZ ICSI

No N 31% 51.2%

Internal-only 14.4% 18.3%

Trailing-only 32.3% 20.7%

Internal & Trailing 22.3% 9.8%

Table 2: Prevalence of N periods at various

positions.

(ICSI). For each connection we compute the maximum duration between data segments.

Bulk transfers would tend to show sub-second gaps, while multiple distinct transactions

would likely show a larger maximum gap driven by application behavior. We find that

in both datasets, the proportion of connections with maximum gaps of more than one

second and the duration of the gaps increases over time. In the LBNL dataset roughly

55% of the connections have a maximum silent period of at most 275 msec in both 2003

and 2013. The distributions then diverge with 4% more connections containing a gap

of at least 1 second in 2013 than in 2003 and 12% more connections having a gap of at

least 10 seconds. Similarly, in the ICSI data, the distribution of the maximum gap per

connection is similar for 2007 and 2013 data up to 1 second—covering about two-thirds

of the connections. However, 13% more connections have a maximum gap of at least

10 seconds in 2013 than in 2007. While this analysis is simple and anecdotal it suggests

an in-depth exploration of modern application behavior is warranted.

We use packet-level traces from two vantage points—a small research laboratory

and a small residential network—as the basis of an initial study into application patterns

from TCP’s perspective. We contribute both an application agnostic methodology and

an initial understanding of modern TCP-based applications.

2 Related Work

There are two general classes of related work. First, there is a vast and long-standing

vein of work that characterizes and models specific application protocols. These studies

span much time and many protocols, from the largely outdated (e.g., [12]) to a rich

understanding of early web traffic (e.g., [3, 4]) to modern applications (e.g., [17]). A

second class of previous work attempts to identify applications based on the behavior

they exhibit on the network (e.g., [8, 9]). We do neither of these things, preferring to

understand the traffic patterns applications impose on the transport protocol.

3 Data

We analyze the two sets of packet traces summarized in Table 1.3 The first dataset is

gathered from the border of a residential fiber-to-the-home network, the Case Connec-

3 Note, the LBNL data we present in § 1 is anecdotal in that each trace covers only a single hour.

We believe it is useful for motivating the problem, it is not sufficient for deeper analysis and

therefore not used in the remainder of the paper.



tion Zone (CCZ) [1]. The CCZ connects roughly 90 residences (200-300 users) with

bi-directional 1 Gbps fiber. While the connection is abnormal for US residential users,

we find in previous work that actual use of the bandwidth is modest—topping out at

roughly 10 Mbps in the typical case—and the application mix is in line with previous

studies of residential network users [15]. Our second dataset is gathered from the bor-

der of the International Computer Science Institute, and covers roughly 100 users. In

both cases we gather data between the 11th–17th of each month. We capture all packets

from our ICSI vantage point. Our measurement capabilities within the CCZ network

are more modest and we collect a one-hour trace from a random time for each day. As

we develop in more detail in [15], the CCZ measurement apparatus does not often drop

packets during the collection process, with no detectable measurement-based loss in

the majority of the traces and the loss rate reaching 0.013% in the worst case. The trac-

ing apparatus at ICSI experiences more measurement-based loss than the CCZ monitor,

with an average loss rate of roughly 2.1%. We account for measurement-based loss in

our analysis by either not considering missing packets or inferring their existence (by

noting progression of TCP’s sequence space for missing packets), as appropriate.

We prune the datasets before use for two reasons. First, we do not consider con-

nections that do not have at least one byte of data flowing form the monitored network

to the remote network. This rule largely removes scanning and backscatter. Further, in

the ICSI dataset we noticed two large traffic anomalies that turned out to be part of

an independent experiment: (i) a large crawl of the whois databases and (ii) a large

backhauling of data to Amazon’s EC2. These activities are sufficiently voluminous to

affect our results. Therefore, since this traffic is also abnormal, we filter it from further

analysis. Table 1 shows the number of connections we remove from further analysis.

4 Dividing Connections

Our general strategy for analyzing application behavior is to take stock of the amount

and temporal location of silence in TCP connections. Under this model, traditional bulk

data transmission would show few instances where a connection was not actively trans-

mitting data in one or both directions except at the beginning and end of a connection.

Of course, our approach is not fool-proof. For instance, streaming may look like bulk

transfer in that there are few silent periods, but may be pushing only as fast as required

for the given media and not as hard as a bulk transfer. While this is also an important

aspect of application behavior to understand, we leave it for future work.

Given our data, we do not have details of the precise application operations. Addi-

tionally, our lack of application payload precludes a study based on application protocol

semantics.4 We approximate application behavior with the following process:

ON/OFF Periods: As a first cut we divide connections into ON and OFF periods with

respect to the transmission behavior of the local host (the host close to our monitor) in

the connection. Each connection begins in an OFF period and transitions to an ON period

when we observe the local host sending a data segment. Transitioning from an ON

period to an OFF period happens when two conditions are met: (i) all outstanding data

4 Additionally, encrypted traffic is not amenable to such analysis.



sent by the local host is acknowledged (ACKed)5, and (ii) either the local host sends an

ACK containing no data or at least 5 msec passes without the local host sending another

data segment. Note that once we are in an ON period we are able to deal with loss from

the local host by advancing the TCP sequence number based on local packets being sent

after the loss or by noticing a gap in the sequence space once rule (i) is met and all of

the outstanding data has been ACKed. Lost packets during an ON period will not change

the length of the ON period that we detect. Rule (ii) ensures that the local TCP does not

have application data waiting to be sent. A bare ACK indicates directly that the TCP

buffer is empty. The 5 msec rule is otherwise necessary to account for TCP’s slow start

behavior [7, 2]. Consider a local host that sends a single segment; when that segment

is ACKed, criteria (i) is met. However, in slow start, we expect the local host to use

the ACK to open the congestion window and transmit additional data. Therefore, data

coming within a short amount of time should be considered part of TCP’s dynamics and

not part of the application’s dynamics. We studied the length of the OFF periods without

criteria (ii) to find a reasonable threshold, and thresholds of 1–10 msec show similar

results. The 5 msec threshold is a somewhat arbitrary choice within that range.

Refinement: Two-Way Traffic: The ON/OFF analysis only accounts for traffic in one

direction (from the local to the remote). This approach does not reveal the applications’

full complexities, but reconstructing the TCP state of hosts distant from a monitor is

known to be difficult [13]. Therefore, we use the following heuristics to glean enough

information about returning data to conduct our analysis without reconstructing the en-

tire state of the remote host. We couple the ON/OFF classification above with informa-

tion about the data flow from the remote host to the local host to refine our classification

into four types: Local-only periods are ON periods where we do not observe data sent

by the remote host, Remote-only periods are OFF periods where we observe data sent

by the remote host, Both periods are ON periods where we also find data sent by the

remote host, and None periods are OFF periods where we find no data sent from the

remote host. N periods are a first approximation of the silent periods we describe at

the beginning of this section. We find that R periods hide silence at times. Consider the

case where a single data segment is sent from the remote just after the start of an OFF

period and then the connection goes silent for a long period of time. In this case, we

classify the entire period as R, when most of the period is in fact silent. We remedy

this by terminating an R period—at the point of the last data segment arrival—if twice

the minimum observed RTT for the connection elapses without another data segment

from the remote host. Twice the minimum RTT provides some robustness to network

and TCP behaviors while ensuring that the model transitions in a timely fashion. An N

period is inserted for the remaining duration of the shortened R period. R periods that

do not trigger this rule may still contain some silence, but the duration of this error is

bounded by twice the minimum RTT. Together, these heuristics provide a conservative

estimate of the silent periods. Any N period in the analysis is a true silent period, but

there may be short application silences hidden in L, R, or B periods.

As a next step, we build a map for each connection that consists of a string corre-

sponding to the order of the various periods in the connection. For instance, a map of

5 Note, this criteria naturally keep original transmissions and their retransmissions in the same

period.



NLR indicates an initial OFF period, then a period of local data transmission and the

connection ending with a period of data transmission from only the remote host. We

find over 155 k and 579 k unique maps within our CCZ and ICSI datasets, respectively.

This shows the that applications display significant variety in their behavior. Over mil-

lions of connections, we find an average of 25 and 50 connections share each map in the

CCZ and ICSI datasets, respectively. Further, we find that there are 12 “popular” maps,

or maps that make up at least 1% of the connections, in the CCZ dataset and 10 popular

maps in the ICSI dataset. Three maps—NBN , NLR and NLRN—are popular in both

datasets. Popular maps account for a total of 63% of the connections in both datasets.

These results underscore the vast heterogeneity in application behavior observed.

Next, we analyze where N periods fall within connections. Since many connections

start with an N period following the three-way handshake due to TCP dynamics, we

ignore initial N periods for this analysis. Table 2 shows the prevalence of N periods in

various locations within the connection. First, we find that about one half to two thirds

of the connections in both datasets contain periods where the application is silent. We

believe this illustrates that the majority of the connections are not simple bulk trans-

fers. Further, we find that of the connections with silent periods a plurality have only

“trailing” silent periods (e.g., persistent HTTP keeping a connection open in case fur-

ther requests are forthcoming, but ultimately closing with no such requests). Finally, we

find that between a quarter and a third of the connections have an internal silent period,

indicating an application pause. We present in-depth analysis in the next two sections.

5 Trailing Silent Periods

We first study trailing silent periods, or connections that transfer data and then go silent

before terminating. Persistent HTTP follows this model, as connections speculatively

persist after the “final” response in case the browser subsequently needs more objects.

This mechanism aids performance by allowing subsequent transactions to avoid the

overhead of starting a new connection [11]. As we note above, 54.6% and 30.5% of

connections from CCZ and ICSI, respectively, end with a silent period. Note that these

connections may not violate the bulk transfer model of TCP behavior, as they may

behave as bulk transfers that simply do not close immediately when activity completes.

The left plot in Figure 1 shows the distribution of the duration of trailing silent

periods. Trailing silence of less than 1 second happens in about 30% and 20% of the

connections for CCZ and ICSI, respectively. These likely represent applications finish-

ing processing tasks before closing the connection. On the other hand, we find that just

under half of the trailing silent periods last longer than 10 seconds in both datasets.

This likely indicates the application speculatively leaving a connection open in case

further work materializes—which never happens in these cases. These trailing silent

periods can be lengthy, with nearly 20–25% of the periods extending beyond 2 minutes.

Further, 10% of the trailing silent periods exceed 4 minutes in each dataset.

We next study the behavior of specific applications 6 with respect to trailing silent

periods. The right plot in Figure 1 shows the characteristics of each port that contributes

6 Our traces include only packet headers and therefore we rely on port numbers to identify

applications—as crude as that can sometimes be.
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Fig. 1: Duration of trailing N periods.

at least 1% of the connections with trailing silent periods. The labels on the x-axis

indicate the dataset—“C” for CCZ, “I” for ICSI—and port number for the applications,

with “other” being a combination of all ports not shown independently. The number just

above the x-axis shows the percentage of connections with trailing silent periods that

the given port is responsible for in the given dataset. For each port, the box shows the

quartiles of the distribution of the duration of the trailing silent periods and the whiskers

show the 1st and 99th percentiles.

The figure shows that at least three-quarters of the connections with trailing silent

periods across datasets are likely web traffic (ports 80 and 443) and web traffic gener-

ally shows the longest trailing silent periods. Additionally, we find three times as much

“other” traffic in the CCZ data as in the ICSI data. This is natural in that CCZ traf-

fic contains more peer-to-peer traffic that is widely distributed across the port range

and therefore confounds such simple port-based classification (see [15] for details). We

find that CCZ traffic using port 83327 has short and highly uniform trailing silent pe-

riods. The “other” traffic generally has the largest spread of trailing silent periods, as

one might expect, given that it is an amalgamation of different applications. The ICSI

dataset includes many SMTP connections with trailing silent periods; while half of

these are at least 10 seconds, the 99th percentile is only 19 seconds, which suggests that

a fairly tight timeout is in play. Finally, we find that TCP-based DNS traffic in the ICSI

dataset is responsible for roughly 1% of the trailing silent periods. Two ICSI hosts are

responsible for most of this DNS traffic, and the general pattern of their connections is

consistent with a single, short DNS lookup followed by a 2 minute timeout—which is

consistent with the behavior specified in RFC 1035 [10].

6 Internal Silent Periods

Our next analysis is of silent periods that happen between periods of activity within con-

nections. These periods indicate an application imposing a non-bulk transfer structure

on their activity. There could still be periods in which the application—and therefore

7 As discussed in [15], we have not been able to fully disambiguate this traffic between Bitcoin

and an experimental security camera application known to be in use within the CCZ.
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Fig. 2: Number of internal N periods per connection.

TCP—tries to move data as fast as possible in bulk transfer fashion, but these silent

periods indicate that is not the applications’ exclusive goal.

Silent Periods Per Connection: Recall from Table 2 that 36.7% and 28.1% of the

connections in the CCZ and ICSI datasets, respectively, contain at least one internal

silent period. From this we understand that a non-trivial fraction of the connections are

not solely concerned with bulk transfer. The left plot in Figure 2 shows the distribution

of the number of internal silent periods per connection in our two datasets. We find

general agreement between the datasets with roughly half the connections having only

one internal silent period, and over 90% of the connections having no more than ten

internal silent periods. Therefore, while we find that internal silent periods are not rare,

we also find that they are in general not numerous on a per-connection basis.

The right plot in Figure 2 breaks down the number of silent periods per connec-

tion by port for ports that contribute at least 1% of the connections with internal silent

periods. Again, the overall fraction of connections is given just above the x-axis, the

bars represent quartiles and the whiskers show the 1st and 99th percentiles. We find that

over 60% of the connections with internal silent periods in both datasets are web traffic

(ports 80 and 443). Further, most of the popular ports have a median of one internal

silent period per connection and the 75th percentile is under 10 periods across ports.

This is consistent with the overall distribution given in the left figure and shows that

popular ports do not drastically depart from the overall distribution. We do find that

IMAP connections at ICSI (port 993) show a large 99th percentile—604 silent periods.

This is expected for email clients that leave connections open for pushed email.

Silent Period Duration: We next assess the duration of internal silent periods, as we

show in Figure 3. This plot shows that most such periods are short—with at least 30%

lasting at most 100 msec and two thirds lasting at most 1 second. These durations are

consistent with the “active off” periods previously identified in web traffic [4]. However,

more than 10% of the internal silent periods across connections last at least 10 seconds.

These periods likely represent applications that run out of networking tasks.

The duration of internal silent periods is not as uniform across applications as their

number, as shown in Figure 3. For example, SMTP (port 25) is largely rapid exchanges,

with 75% of silent periods lasting less than about 100 msec and no silent period lasting

more than a few seconds. On the other hand, web traffic (ports 80 and 443) show sig-
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Fig. 3: Duration of internal N periods.

nificantly longer internal silent periods in both the ICSI and CCZ traces. Interestingly,

we note that port 443 has longer internal silent periods than port 80 in both datasets—

but more exaggerated in the ICSI dataset. We speculate that this may be due to more

aggressive caching of HTTPS connections to avoid the higher setup cost of SSL/TLS.

We now turn from focusing on individual internal silent periods to the amount of

aggregate silence we find across an entire connection. We calculate the total fraction of

each connection with least one internal silent period that is spent in silence. We find that

two thirds of the connections are fairly uniformly distributed between nearly no silence

and roughly 90% silence across the connection. However, in the other one-third of the

connections across datasets over 90% of the connection is silent—with roughly 20%

of the connections in both datasets showing near total silence. The distribution of the

number of silent periods for connections that are at least 90% silent shows that these

connections have more silent periods than the overall distribution (which is shown in

Figure 2)—indicating that a single silent period is not driving the overall behavior.

The Last Window Problem: TCP’s loss recovery depends on the acknowledgment of

packets received. The information in returning ACKs is used to drive retransmission

decisions, by assuming that multiple incoming ACKs that do not acknowledge out-

standing data indicate that the data was lost. However, ACKs are sent only when data

is received, and there is no data after the last window to generate new ACKs. Hence,

it is comparatively more difficult for TCP to determine that the final packets of a win-

dow have been lost; in many algorithms, this situation is detected only by a relatively

long retransmission timeout (RTO). TCP also uses ACKs to trigger the transmission of

new data. However, after a period of silence there are no incoming ACKs, and thus this

“ACK clock” cannot be used to immediately pace out new data. This can lead to either

a large burst of segments [7, 16] or the need to wait a full RTT for ACKs for the new

data to return [16]. In other words, events that happen in a routine and timely fashion

most of the time can be problematic at the “end” of a connection. A silent period within

a connection can manifest the same behaviors.

Various proposals exist to deal with TCP’s “last window” (e.g., [6]). However, un-

derstanding the frequency of this phenomenon is crucial to determining how much com-

plexity should be added to TCP to deal with the issue. Our approach to assess this is

to treat the window before a silent period as a “last window” as long as the silent pe-
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Class Med. Mean StdDev # Cnns

CCZ Active 2 2.80 1.13 139k

CCZ Simple 3 3.45 1.34 2.5M

CCZ Complex 8 20.0 199 1.4M

ICSI Active 2 2.66 5.15 4.3M

ICSI Simple 4 4.79 3.88 19.8M

ICSI Complex 8 27.2 714 7.8M

Table 3: Length and diversity of con-

nection maps.

riod is relatively long, which we define as roughly the length of an RTO. We use this

approximation because of the recommendation that TCP collapse its congestion win-

dow after an RTO worth of idle time [2]. Since the specifics of the RTO vary across

implementations we use 4×minRTT as an approximation.

We find that 65–71% of the connections have internal silent periods that last at least

4×minRTT—which represents at least a doubling of last windows (i.e., one internal

and one actual last window). Figure 4 shows the distribution of the number of silent

periods that exceed 4 × minRTT per connection. We find that 32% and 24% of the

connections that have internal silent periods for CCZ and ICSI, respectively, have 2–10

silent periods of at least 4×minRTT . These results show that a non-trivial number of

connections would benefit from techniques that mitigate last window issues.

7 Application Complexity

We next assess the diversity of patterns of activity within connections. For this analysis,

we classify connections into three types: (i) “active” connections consist only of L,

R, and B periods, with no N period, (ii) “simple” connections may have initial and/or

trailing N periods, but all other periods must be L, R, or B (note that active connections

are a subset of simple connections) and (iii) “complex” connections which may have

any combination of periods. Table 3 shows a summary of our analysis. The data suggests

that active and simple connections are much more likely to consist of a small number

of exchanges followed by termination, whereas complex connections—those with at

least one internal N period—display a large diversity of internal structure, involving a

comparatively larger number of exchanges and period transitions.

The tendency of simple connections to be classic bulk transfers is strong. Out of the

CCZ simple connections, 90% of the maps (2.2M connections) consist of no more than

two periods containing data—with 60% being LR, with or without initial and trailing

N periods—suggesting a simple request-response bulk transfer. The ICSI data is some-

what more diverse, with the corresponding maps accounting for 47% of the simple con-

nections. Further, 40% of the connections are either LR or RL with or without initial

and trailing N periods. This suggests that the simple connections in the ICSI dataset are



somewhat more complicated than in the CCZ dataset, but the overall diversity remains

markedly lower than for complex connections.

8 Conclusions

This paper makes several initial contributions: (i) we provide an application agnostic

methodology for studying application patterns from the transport’s perspective, (ii) we

confirm that TCP is non-trivially used for non-bulk transfer applications, which breaks

our often-employed mental model, (iii) while silent periods within connections exist,

they are mostly short, (iv) we find that TCP’s “last window” problem is exacerbated

by the transactional nature of some connections and (v) we find that connections with

internal silent periods have more complicated interactions than those without such pe-

riods. We stress that this is an initial investigation and the results in some sense offer

more questions than answers—which we are grappling with as future work.
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