

On Measuring the Client-Side DNS Infrastructure

Kyle Schomp†, Tom Callahan†, Michael Rabinovich†, Mark Allman†‡

†Case Western Reserve University

‡International Computer Science Institute

10/23/2013 ACM IMC 2013

Motivation

- DNS provides the mapping between human friendly names and machine friendly addresses
 - amazon.com -> 1.2.3.4
- DNS resolution path is both complex and hidden
 - Multiple layers of resolvers
 - Controlled by different organizations
 - No clear attribution if something goes wrong

Our Contribution

- Methodologies for discovering the client-side DNS infrastructure
- Measurement techniques for teasing apart behavior of various actors
- Application of our methodologies and techniques to assess behavior
 - How long are records retained in caches
 - How time-to-live (TTL) values a modified by resolvers

We have also used our methodologies to study security properties of DNS. This is a separate work that is not discussed today.

Discovery Methodology

- We randomly sample IP addresses from the Internet
- To each sampled IP address, we send DNS requests looking for open resolvers
- We also deploy an authoritative DNS server
- Our DNS request probes target our own domain
- We can collect both the ingress and egress servers of the client-side DNS infrastructure

10/23/2013 ACM IMC 2013 4

The Client-Side DNS Infrastructure

RDNS Discovery

- 2/3 of RDNS in our datasets are closed
 - Do not respond to direct probes
 - Must be discovered through FDNS
- Two techniques for RDNS discovery
 - Multiple DNS requests to each FDNS
 - CNAME "chains" from our ADNS

RDNS Discovery (cont.)

10/23/2013

ACM IMC 2013

7

RDNS Discovery (cont.) • CNAME chains from our ADNS **ADNS** 2. ext. dustesearch.us 4. c1.dnsresearch.us = c2.dnsresearch.us $RDNS_1$ $RDNS_2$ RDNS₃

Measurement Principles

- Non-Interference with Normal Operation
 - Probe for our own domain only
 - Limit probing rate
- ODNS Short Lifetime
 - Experiment during discovery
- Random bindings
 - Two requests for the same domain will receive different bindings with high probability

10/23/2013 ACM IMC 2013

Measuring FDNS (Cache Injection)

Records filter through upstream resolvers before arriving at FDNS

• 7-9% of FDNS vulnerable to cache injection

10/23/2013 ACM IMC 2013 10

Measuring RDNS

Probing an RDNS can be blocked by FDNS caching

10/23/2013 ACM IMC 2013 11

Measuring RDNS (Coordinated Probing)

ODNS Population

- There are approximately 32 million ODNS
 - Estimation from sampling
- Agrees with full scans from openresolverproject.org
- Previous 2010 study found 15 million ODNS
 - The number of ODNS has doubled within 3 years

FDNS / RDNS Relationship

RDNS are used by many FDNS

FDNS use "pools" of RDNS resolvers

FDNS / RDNS Relationship (cont.)

MaxMinds GeoIP database

RTT to RDNS - ICMP ping to FDNS

Measuring RDNS RTT

Caching Behavior

- Caching has an important impact on scalability, performance, security
- Example: DNS-based traffic engineering is complicated by caching
 - A single cached DNS record binds an unknown load to the selected server
 - DNS offers a time-to-live (TTL) value to limit the duration of records in cache
 - Many studies have observed that the TTL rule is violated
 - Violations caused by:
 - · Resolvers maintaining records in their cache beyond TTL
 - Resolvers modifying the TTL returned to clients

Measuring RDNS TTL Reporting (Voting)

- Expect authoritative TTL X
- Use coordinated probing
- If A == X
 - All actors on path are honest, so
 - RDNS is honest
- Else, majority rule
 - 1 vote for TTL A
 - 2 votes for TTL B Winner!

TTL Reporting

- In aggregate, small TTLs are sometimes increased while large TTLs are frequently decreased
- In FDNS, both small and large TTLs are frequently substituted with 10,000 seconds
- In RDNS, small TTLs are rarely misreported while large TTLs are frequently decreased

Doboviou	Percentage	of Measur	ements
Behavior	Aggregate	FDNS	RDNS
Honest	19%	60%	36%
Lie on Initial	38%	12%	55%
Lie on Subsequent	9%	30%	5%
Constant TTL	7%	26%	5%
Increment TTL	1%	10%	0%

Cache Retention

- Records have a TTL of 30 seconds
- In aggregate, 30% of records are evicted before TTL while 10% are retained for longer than TTL
- In FDNS, 20% of records are evicted before TTL while 40% are retained for longer than TTL
- In RDNS, nearly all records are held for the TTL

10/23/2013 ACM IMC 2013 20

Dataset Representativeness

Fraction of actors that honestly report TTL

- Aggregate data is representative
- More "popular" RDNS discovered early in the scan are more likely to be honest
- FDNS dataset is not representative of:
 - All FDNS
 - FDNS that allow cache injection

Conclusion

- We expose the complexity of the client-side DNS infrastructure
 - RDNS pools
 - Multiple layers of resolvers
- There are a significant number of FDNS that are far away from RDNS
- TTL is frequently modified but most often it is reduced
- Records are returned past TTL in only 10% of cases

Thank you! Questions? Kyle Schomp – kgs7@case.edu

For access to our datasets: http://dns-scans.eecs.cwru.edu/

10/23/2013 ACM IMC 2013 23

Additional Slides

Rediscovery

Since ODNS are short-lived, we may need rediscovery

- Scan IP subset twice; second time 3 months after the first
- IP /24 address blocks that were productive tend to remain productive

Datasets

Scan	Format	Start	Dur. (days)	ODNS	RDNS
S ₁	Random IP	2/29/12	17	1.09M	69.5K
S ₂	Random IP	7/3/12	32	1.98M	72.6K
S ₃	Random /24	8/5/12	17	841K	43.9K
S ₄	Scan on First Hit	10/4/12	25	17.6M	72.1K
S ₅	Rescan of S ₃	11/16/12	9	892K	29.9K
S_6	Scan on First Hit	2/26/13	31	11M	65.8K

Residential Network Device Criteria

Criterion	No. ODNSes	% ODNSes
RomPager	258K	24%
Basic auth realm	265K	24%
PBL Listed by SpamHaus	566K	51%
PBL Listed by ISP	180K	17%
Wrong port	529K	48%
Total	849K	78%

TTL Behavior Revisited

Funcated (acc)	% <	0/ >	M	ode Lie
Expected (sec)	% <	% >	Value	% of All Lies
1	0%	11%	10000	35%
10-120	<1%	<8%	10000	>37%
1000	1%	3%	10000	62%
3600	2%	2%	10000	51%
10000	5%	0%	3600	40%
10800	8%	0%	3600	27%
86400	16%	0%	21600	36%
100000	22%	0%	21600	27%
604800	22%	0%	21600	26%
1000000	64%	0%	604800	67%

Function (and)	0/ 4	0/ 5	Mode Lie			
Expected (sec)	% <	% >	Value	% of All Lies		
1	0%	31%	10000	88%		
10-3600	<1%	19%	10000	>95%		
10000	1%	0%	60	92%		
10800	19%	0%	10000	97%		
86400	19%	0%	10000	97%		
100000	19%	0%	10000	97%		
604800	19%	0%	10000	97%		
1000000	25%	0%	10000	75%		

FDNS TTL behavior above and Aggregate TTL behavior on the left

RDNS TTL Behavior

RDNS _i TTL Behavior

RDNS _{di} TTL Behavior	RDNS _{di}	TTL	Behavior
---------------------------------	---------------------------	-----	-----------------

Expected (sec)	% <	% > ı	M	ode Lie	Fun a stad (a s a)	0/ 4	0/ > .	M	ode Lie
Expected (sec)	/0 <	/0 /	Value	% of All Lies	Expected (sec)	% <	% >	Value	% of All Lies
1-120	<1%	<1%	300	>34%	1-120	0%	22%	3600	>52%
1000	1%	0%	900	29%	1000	3%	19%	3600	53%
3600	1%	0%	80	19%	3600	3%	7%	86400	69%
10000	2%	0%	3600	35%	10000	16%	7%	3600	53%
10800	2%	0%	7200	20%	10800	16%	7%	3600	52%
86400	5%	0%	21600	32%	86400	16%	0%	3600	72%
100000	11%	0%	86400	55%	100000	40%	0%	86400	59%
604800	11%	0%	86400	53%	604800	40%	0%	86400	59%
1000000	49%	0%	604800	71%	1000000	88%	0%	604800	54%

RDNS_d Evaluation

- Both ODNS and RDNS
- Some are not used by any FDNS in the dataset
- What are they? We don't really know
- Since there behavior is different from other RDNS, we opt to remove them from study

Measuring FDNS

- 1. Send DNS request to FDNS
- 2. Immediately send DNS response directly to FDNS binding name to X
- 3. ADNS response binds name to Y
- 4. Later, send repeat DNS request to FDNS
- 5. If response is X, came from FDNS cache

- DNS response from a typical FDNS may come from:
 - FDNS cache
 - HDNS or RDNS cache
 - The ADNS
- 7-9% of FDNS are vulnerable to crude cache poisoning
- They can be measured in isolation

Measuring RDNS

 After a single DNS request, FDNS cache becomes "contaminated" If X == Y, then the response came from the RDNS

Aggregate Cache Behavior

- Small TTLs are sometimes increased
- Large TTLs are frequently decreased

Behavior	Percentage of Measurements
Honest	19%
Lie on Initial	38%
Lie on Subsequent	9%
Constant TTL	7%
Increment TTL	1%

FDNS Cache Behavior

- Both small and large TTLs are frequently substituted with 10,000 seconds
- Not representative of all FDNS

Behavior	Percentage of Measurements
Honest	60%
Lie on Initial	12%
Lie on Subsequent	30%
Constant TTL	26%
Increment TTL	10%

RDNS Cache Behavior

- Small TTLs are rarely misreported
- Large TTLs are frequently decreased

Behavior	Percentage of Measurements
Honest	36%
Lie on Initial	55%
Lie on Subsequent	5%
Constant TTL	5%
Increment TTL	0%

ODNS Discovery

Extrapolation from a random sample of /24 IP address blocks

RDNS Discovery

- A single FDNS may use many RDNS
 - Send multiple DNS requests to each ODNS
 - CNAME "chain" responses from the ADNS
- New Methodologies
 - Random Block scan full /24 IP address block
 - Aborted Random Block stop after discovering first ODNS

Simulation from a random sample of /24 IP address blocks