
TCP Congestion Signatures

Srikanth Sundaresan
Princeton University

srikanths@princeton.edu

Amogh Dhamdhere
CAIDA/UCSD

amogh@caida.org

Mark Allman
ICSI

allman@icir.org

kc claffy
CAIDA/UCSD

kc@caida.org

ABSTRACT

We develop and validate Internet path measurement techniques to

distinguish congestion experienced when a flow self-induces con-

gestion in the path from when a flow is affected by an already con-

gested path. One application of this technique is for speed tests,

when the user is affected by congestion either in the last mile or

in an interconnect link. This difference is important because in the

latter case, the user is constrained by their service plan (i.e., what

they are paying for), and in the former case, they are constrained by

forces outside of their control. We exploit TCP congestion control

dynamics to distinguish these cases for Internet paths that are pre-

dominantly TCP traffic. In TCP terms, we re-articulate the question:

was a TCP flow bottlenecked by an already congested (possibly in-

terconnect) link, or did it induce congestion in an otherwise idle

(possibly a last-mile) link?

TCP congestion control affects the round-trip time (RTT) of pack-

ets within the flow (i.e., the flow RTT): an endpoint sends pack-

ets at higher throughput, increasing the occupancy of the bottle-

neck buffer, thereby increasing the RTT of packets in the flow. We

show that two simple, statistical metrics derived from the flow RTT

during the slow start period—its coefficient of variation, and the

normalized difference between the maximum and minimum RTT—

can robustly identify which type of congestion the flow encounters.

We use extensive controlled experiments to demonstrate that our

technique works with up to 90% accuracy. We also evaluate our

techniques using two unique real-world datasets of TCP through-

put measurements using Measurement Lab data and the Ark plat-

form. We find up to 99% accuracy in detecting self-induced con-

gestion, and up to 85% accuracy in detecting external congestion.

Our results can benefit regulators of interconnection markets, con-

tent providers trying to improve customer service, and users trying

to understand whether poor performance is something they can fix

by upgrading their service tier.
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• Networks→ Network measurement;
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1 INTRODUCTION

Exploding demand for high-bandwidth content such as video

streaming, combined with growing concentration of content among

a few content distribution networks [8, 13–15, 26, 27, 50] —some

large and sophisticated enough to adjust loading, and therefore

congestion levels on interconnection links [18, 28]—has resulted

in lengthy peering disputes among access ISPs, content providers,

transit providers that center on who should pay for the installation

of new capacity to handle demand. As a result, there is growing

interest in better understanding the extent and scope of congestion

induced by persistently unresolved peering disputes, and its impact

on consumers. But this understanding requires a capability that the

Internet measurement community has not yet provided in a usable

form: the ability to discern interconnection congestion from the

congestion that naturally occurs when a last mile link is filled to

capacity. Implementing such a capability would help a variety of

stakeholders. Users would understand more about what limits the

performance they experience, content providers could design better

solutions to alleviate the effects of congestion, and regulators of the

peering marketplace could rule out consideration of issues where

customers are limited by their own contracted service plan.

Although a large body of work has focused on locating the bot-

tleneck link and characterizing the impact of loss and latency on

TCP performance [23, 30, 32–34, 43, 48, 51, 52], they doesn’t in-

form us about the type of congestion. Recent attempts to use coarse

network tomography to identify interconnect congestion [36], also

have shortcomings [49]. To the best of our knowledge, there is no

technique that can reliably identify whether a flow is bottlenecked

by an initially unconstrained path (that it fills up) or whether it was

bottlenecked by an already congested path, without having a pri-

ori knowledge about the path, i.e., the capacity of its bottleneck

link and the traffic profile of the link. Such a technique would dif-

ferentiate between, for example, a flow that is bottlenecked by the

last-mile access link versus one that is bottlenecked by a congested

interconnect link. In this paper, we identify distinctive signatures in

flow RTT during the TCP slow start period that can reliably distin-

guish these two scenarios.

https://doi.org/https://doi.org/10.1145/3131365.3131381
https://doi.org/https://doi.org/10.1145/3131365.3131381
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Our technique exploits the effect of the bottleneck link buffer

on flow RTT. Flow RTT is the RTT of packets within a TCP flow,

which can be computed using sequence and acknowledgment num-

bers within the packets. When a TCP flow starts on an otherwise

uncongested path, it drives buffering behavior in the bottleneck link

by increasing its occupancy. On the other hand, when the flow starts

in a path that is already congested, flow RTT is dominated by buffer-

ing in the congested link. We identify two parameters based on flow

RTT during TCP slow start that we use to distinguish these two

cases—the coefficient of variation of flow RTT, and the normalized

difference between the maximum and minimum RTT. We use these

two parameters, which can be easily estimated for TCP flows, to

build a simple decision tree-based classifier.

We validate the classifier using both a controlled testbed as well

as real-world data. We build a testbed to conduct extensive con-

trolled experiments emulating various conditions of access and peer-

ing link bottlenecks, and show that classifier achieves a high level

of accuracy, with up to 90% precision and recall. We then apply

our techniques on two real-world datasets. Our first dataset consists

of throughput test data collected by the M-Lab infrastructure [38],

specifically Network Diagnostic Test (NDT) measurements from

January through April of 2014 [3, 4]. This timeframe spanned the

discovery and resolution of an interconnect congestion event be-

tween Cogent (a major transit provider) and large access ISPs in

the US. Data in January and February showed a marked drop in

throughput during peak hours compared to off-peak data in March

and April, after Cogent resolved the issue. We use this episode to

label the dataset—peak hour traffic in January and February as inter-

connect congested and off-peak traffic in March and April as access-

link congested—and find that the decision tree classifier allows us

to classify these flows accurately. Because the flows are coarsely

labeled (we do not have ground truth data about the clients that ran

the throughput test, and therefore resort to blanket labeling based

on month and time-of-day), we conduct a more focused experiment,

running throughput periodic tests between a single host and a single

M-Lab server between February and April 2017. We choose these

hosts based on evidence we found of occasional interconnection

congestion in the path between them using the Time Series Latency

Probing (TSLP) [35] method; we also know the service plan rate of

the client. In this experiment, our decision tree classifier detected in-

terconnect congestion with an accuracy of 75-85% and access-link

congestion with an accuracy of 99%. Our false negatives in this

experiment mostly occur with higher throughput (but not enough

to saturate the access link), and lower interconnect buffer latency,

which suggest a legitimate gray zone when it is not clear what type

of congestion occurred.

Our proposed technique has two important advantages: it pro-

vides per-flow diagnosis, and relies only on the flow itself without

needing out-of-band probing. Out-of-band probing can introduce

confounding factors such as load balancing, and differential servic-

ing of probe packets. Our technique can supplement existing efforts

to understand broadband performance, such as the FCC Measuring

Broadband America, to not just understand what throughput users

get, but also the role of the ISP infrastructure and the interconnect

infrastructure in the throughput they achieve.

The rest of the paper is structured as follows. We develop the

intuition behind our technique in § 2, and validate the intuition by

building a model and testing it using controlled experiments in our

testbed in § 3. We describe how we use and label M-Lab data dur-

ing a 2014 peering congestion event, and how we conduct a more

focused experiment using M-Lab in 2017 in § 4, and how we val-

idate our model using these datasets in § 5. We then discuss the

limitations of our model in § 6. We describe related literature in § 7,

and conclude in § 8.

2 TCP CONGESTION SIGNATURES

We are interested in the scenario where we have a view of the flow

from the server, but no knowledge about the path or link capaci-

ties. This scenario is common for speed test providers such as M-

Lab NDT, or Ookla’s Speedtest [40]. These tests inform the user

about the instantaneous capacity of the path between the user and

the speed test server is, but not whether the capacity is limited by

the access link (i.e., the user’s ISP service plan). In this section we

develop the intuition behind our technique to detect the nature of

congestion in TCP flows. We first define the two types of conges-

tion events we are interested in, and then describe how we build a

model based on TCP flow RTT that can distinguish them.

2.1 Self-induced vs External Congestion

We refer to the link with the smallest available capacity on the path

between a server and client as the capacity bottleneck link. Further,

we say a link is “congested” when traffic is being buffered at the

head end of the link (i.e., the traffic load is greater than the available

link capacity).

Self-induced congestion occurs when a TCP flow starts in an oth-

erwise uncongested path, and is able to saturate the capacity bottle-

neck link. In other words, self-induced congestion occurs when a

flow’s throughput is limited by the capacity bottleneck link and the

flow itself drives buffer occupancy at the head of the bottleneck link.

An example of such congestion is when a speed test saturates the

client’s access link.

External congestion occurs when a TCP flow starts in a path with

an already congested link. In this case, the available capacity on the

bottleneck link is essentially zero because the link is congested.1 In

terms of buffer behavior, the new flow has little impact on buffer oc-

cupancy because external traffic was congesting the link before the

new flow started. For example, a speed test that is bottlenecked by

an already congested non-edge link, say an interconnect link, and

which therefore is unable to saturate the client access link, experi-

ences external congestion.

Flows could fail to saturate the path bottleneck link for other

reasons, e.g., high latency, random loss, low application demand, or

small window sizes. Such flows do not experience congestion, and

existing techniques [10, 52] can detect such factors limiting TCP

throughput; we do not consider them in this paper.

1Note: Because Internet traffic is elastic the new flow will ultimately utilize some of
the capacity of the bottleneck link because other flows will backoff.
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(b) Coefficient of variation of RTT of packets during slow start

Figure 1: RTT signatures for self-induced and external congestion events. Self-induced congestion causes a larger difference between

the minimum and maximum RTT, and also larger variation in RTT during the slow start period. For illustrative purposes, we show

data from from one set of experiments using a 20 Mbps emulated access link with a 100 ms buffer, served by a 1 Gbps link with a

50 ms buffer. The access link has zero loss and 20 ms added latency.

2.2 Challenges in Identifying the Type of

Congestion

The server point of view has several advantages, the most important

being that it has direct information about outgoing packets and TCP

state. However, even with a detailed view of the flow, distinguishing

between the two types of congestion that we list above is challeng-

ing. Some techniques include analyzing the flow throughput, TCP

states [52], and/or flow packet arrivals [34, 48] or RTT. Each has its

advantages and drawbacks.

Information about flow throughput is insufficient to determine

the type of congestion unless we also know the actual service plan

of the client. For example, if we see a 9 Mbps flow, the type of con-

gestion event it encountered depends on whether the service plan

was, say, 10 Mbps (likely self-induced), or 20 Mbps (likely exter-

nal). However, typically, only the user and their ISP know the ser-

vice plan rates, and external throughput test services such as M-Lab

or Ookla do not have access to it. Additionally, available service

plans in the U.S. vary across a wide range of throughputs, from less

than 10 Mbps to exceeding 100 Mbps. Therefore achieved through-

put, even with associated parameters such as congestion window

size, is not a useful indicator of type of congestion.

TCP state analysis [52] can help us analyze TCP state transitions

and flow behavior; however it does not help us differentiate between

different kinds of congestion. Transitions to/from the fast retrans-

mit or the retransmission timeout state can potentially tell us about

congestion events. However, in practice, we found it difficult to pa-

rameterize and model these state changes. Simple techniques such

as modeling the total number of fast retransmit and timeout states

per time interval or the time to the first retransmit state have the

same difficulty that it varies according to the path latency, service

plan of the client, loss-rate, and cross-traffic, which are difficult to

systematically account for in controlled settings. Ideally, we would

prefer parameters that are robust across a range of settings.

Previous work has also used packet arrival patterns to uncover a

congested path [34, 48]. Such techniques typically have the require-

ment that they be downstream of the point of congestion to be able

to measure packet arrival rate. That is not possible with the server

point of view, nor from clients unless they have access to network

packets. Though packet spacing can be approximated by analyzing

ACK arrival patterns, ACKs can be noisy, and cannot tell us any

more than that the flow encountered congestion.

Flow RTT, particularly at a per-packet granularity, contains infor-

mation about the condition of the underlying path. In particular, the

RTTs of packets in a flow allow us to distinguish between an empty

bottleneck buffer (increasing RTT as the flow fills up the buffer)

and a busy buffer (RTT is relatively stable as it is dominated by the

added latency due to an already full buffer). We use these properties

of the RTT to build our model, and it relies only on one essential

component of the path, the buffer, and therefore yields robust re-

sults in our controlled testbed that translate well to the real world.

Flow RTTs are useful only during the slow start period, but fortu-

nately this short interval is sufficient for us to be able to distinguish

the two congestion states. We now describe the intuition behind this

technique in more detail.

2.3 Using Flow RTT to Distinguish Congestion

Type

• Self-induced congestion: The buffer at the head of the bottleneck

link is empty when the flow starts. As the flow scales up, this

buffer fills up, causing an increase in the flow RTT—the RTT mea-

sured towards the end of slow start will be significantly higher

than the RTT measured at the beginning. The difference depends

on the size of the buffer. Such a scenario typically happens in last-

mile networks where the capacity of the link between the endpoint

and the provider network is considerably smaller than backbone

or interconnect links.
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• External congestion: In this case the flow starts on a path con-

taining a link that is already congested, meaning that the available

capacity of that link is low and the buffer is already full or close

to full, causing packets to queue. The state of this link reduces the

ability of the flow to scale throughput before it encounters loss.

The existing buffer occupancy increases the baseline latency of

the path, and at the same time reduces variation, because the new

flow’s impact on the state of the buffer is much smaller than in the

case of self-induced congestion.

We run two simple experiments over an emulated 20 Mbps “ac-

cess link” served by a 1 Gbps “interconnect” link to illustrate the

two cases. Figure 1a shows the CDF of the difference between the

maximum and minimum RTT during the slow start phase. We de-

fine slow start as the period up to the first retransmission or fast

retransmission. We see that the difference when the congestion is

self-induced is roughly 100 ms, which is the size of the access link

buffer that we emulate. This is what we expect, because this buffer

fills up when the flow self-induces congestion. In the case of the ex-

ternal congestion, the difference is much smaller, because the flow

encounters congestion at the 1 Gbps link. This congestion becomes

part of the baseline RTT for the flow packets, leaving a smaller dif-

ference between the maximum and the minimum. The coefficient of

variation of the RTT measurements (Figure 1b) also shows a simi-

lar pattern: the variation is smaller for external congestion than it is

for self-induced congestion, because the impact of the buffer on the

RTT is lower for the former case.

We use this phenomenon to distinguish the two cases. Our intu-

ition hints at multiple potential metrics that one could use to mea-

sure the evolution of RTT: e.g.we could track the growth of the RTT

to see if it increases monotonically. However, we decide on two sim-

ple metrics that are easy to compute from the flow RTT samples:

(1) Normalized difference between the maximum and minimum

RTT during slow start (NormDiff): We measure the differ-

ence between the maximum and minimum RTT during slow

start and normalize it by the maximum RTT. This metric mea-

sures the effect of the flow on the buffer—it gives us the size

of the buffer that the flow fills—without being affected by

the baseline RTT; a flow that fills up the buffer will have a

higher value than one that encounters a full buffer.

(2) The coefficient of variation of RTT samples during slow start

(CoV): This metric is the standard deviation of RTT sam-

ples during slow start normalized by the average. This metric

measures the smoothing effect of the buffer on RTT while

minimizing the effect of the baseline RTT. A flow that expe-

riences self-induced congestion will see higher values of the

CoV, because the RTT increases as the buffer fills up. The

RTT for externally congested flows will be dominated by an

already full buffer, and so the CoV will be lower.

Together, these metrics are robust to a wide range of buffer sizes.

Although there are corner cases where the model could fail, particu-

larly in case of highly occupied, but not fully congested buffers, we

note that the notion of congestion becomes fuzzy in those cases any-

way. We use these metrics to build a standard, simple decision tree

that can accurately classify the two congestion events. We restrict

our RTT samples to the first slow-start period when TCP’s behavior

is more predictable because it starts from zero—the RTT, and the

path buffer state are at baseline. The path and its congestion char-

acteristics are less likely to change during this period than over the

(longer) course of the entire flow lifetime. Our experiments show

that the throughput achieved during slow start is not always indica-

tive of the throughput achieved during the lifetime of the flow, but

it is indicative of the capacity of the bottleneck link during a self-

induced congestion event. Therefore, our techniques are also useful

as a starting point to estimate the link capacity, particularly in cases

where the flow throughput changes during the course of the flow.

3 CONTROLLED EXPERIMENTS

We describe the custom testbed we use to run controlled experiment

that emulate the type of flows we want to classify. We use these

flows to build our decision tree classifier.

3.1 Experiment Setup

We run throughput tests between a client and a server in a local net-

work connected via two links that we shape to effect the two kinds

of congestion that we discuss in § 2; self-induced, and external. Our

testbed (Figure 2) can emulate a wide range of last-mile and core

network conditions.

Testbed hardware

The testbed consists of two Raspberry Pi 2 devices, two Linksys

WRT1900AC routers, a combination of Gigabit and 100M Ether-

net links, and various servers on the Internet. We use the Raspberry

Pis and the Linksys devices as end- and control- points for test traf-

fic. The Pis have a quad-core 900 MHz ARM7 processor, 1 GByte

RAM, and a 100 Mbit NIC. The routers have a dual-core 1300 MHz

ARM7 processor, 128 Mbytes RAM, and a 1 Gbps NIC. The testbed

is physically located at the San Diego Supercomputing Center in

San Diego, CA.

Emulating core and last-mile network links

In Figure 2, AccessLink emulates representative access-link condi-

tions: we use tc with a token-bucket with a 5 KByte burst filter

to set its bandwidth to 10 Mbps, 20 Mbps, and 50 Mbps, loss to

0.02% and 0.05%, and latencies to 20 ms and 40 ms, with jitter set

to 2 ms. We also utilize three buffer sizes for AccessLink: approx-

imately 20 ms, 50 ms, and 100 ms; the first setting is on the lower

end of buffer size for last-mile networks, while the last setting is

lower than the maximum buffer we have seen. For example, the

buffer sizes in three homes that we tested on were approximately

25 ms, 45 ms, and 180 ms. We use low buffer values to test the lim-

its of our hypothesis: the larger the buffer, the more likely it is that

our hypothesis will work.

InterConnectLink, connecting Router 1 and Router 2 in the fig-

ure, emulates an interdomain link at 950 Mbps with a 50 ms buffer

(we shape it to 950 Mbps, slightly less than its 1 Gbps capacity in

order to ensure that our experiments utilize the buffer). We do not

add latency or loss to this link, though the buffer could naturally

induce latency and loss when it is occupied.
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Figure 2: Experimental testbed. Router 2 connects to Router 1 using InterConnectLink, and Router 1 connects to a university network

using Link 3. Both InterConnectLink and Link 3 have a capacity of 1 Gbps. Pi 1 and Pi 2 connect to Router 2 over a 100 Mbps link,

which is limited by the Pi NIC. We emulate access links using AccessLink and a shaper on Router 2. We emulate an interdomain link

using InterConnectLink and a shaper on Router 1.

We acknowledge the difficulty in getting precise numbers for the

networks we are emulating, but we believe our settings capture a

wide range of real-world access networks.

Emulating cross-traffic and congestion

We use two kinds of cross-traffic generators that we built ourselves

to emulate real networks. The first traffic generator, TGtrans, written

in Go [47] runs on Pi 2 and fetches files over HTTP from Servers 2

and 3 using a random process. These servers are located at the Inter-

national Computer Science Institute in Berkeley, CA, and the Geor-

gia Institute of Technology in Atlanta, GA, 20 ms and 60 ms away

respectively. The generator fetches objects of size 10KB, 100KB,

1MB, 10 MB, and 100 MB, with the fetch frequency for an object in-

versely proportional to its size. Since TGtrans bypasses AccessLink,

and can only generate a maximum demand of 100 Mbps (due to the

Pi NIC limitation), it does not congest InterConnectLink. However,

it provides transient cross-traffic on InterConnectLink which intro-

duces natural variation; we run TGtrans during all our experiments.

The second traffic generator, TGcong, runs on Router 2, and is a

simple bash script that fetches a 100 MB file from Server 4 (which

is less than 2 ms away) repeatedly using 100 concurrent curl pro-

cesses. TGcong emulates interdomain link bottlenecks by saturating

InterConnectLink (capacity 950 Mbps); we run TGcong for experi-

ments that require external congestion.

Throughput experiments

We use netperf to run 10-second downstream throughput tests

from Server 1 to Pi 1. We capture packet traces on Server 1 us-

ing tcpdump for each test, which we use for analysis. We run

two types of experiments. First, we run netperf without congest-

ing InterConnectLink, but with transient cross-traffic using TGtrans.

This yields data for flows with self-induced congestion, because

netperf saturates AccessLink, our emulated access link. We then

run netperf along with both cross-traffic generators. The second

cross-traffic generator, TGcong, saturates InterConnectLink, which

now becomes the the bottleneck link in the path. This scenario emu-

lates a path with external congestion. For each throughput, latency,

and loss combination, we run 50 download throughput tests.

What constitutes access-link congestion?

There is no fixed notion of what constitutes acceptable throughput

as a fraction of link capacity; however, we would expect it to be

close to 1. This congestion threshold is important for us to label

our test data as incurring self-induced congestion or external con-

gestion. We therefore do not set the threshold arbitrarily: study the

impact of a range of values of this threshold on our model and the

classification of congestion, and show that our results are robust to

a range of reasonable threshold values.

Labeling the test data

We use the congestion threshold for labeling the test data. We la-

bel the throughput tests that achieve throughput greater than this

threshold during the slow start phase as self-induced congestion.

For example, if we set AccessLink throughput in the testbed to

20 Mbps, and the threshold to 0.8, then we label flows that expe-

rience a slow-start throughput of greater than 16 Mbps as experi-

encing self-induced congestion. We do not use just the cross-traffic

information to label the data, because inherent variability in the

testbed result in some tests not achieving the access link through-

put even if there is no external congestion, and vice-versa (some

tests achieve access link throughput even when we are running both

TGcong and TGtrans; this could be because of transient issues such

as some cross-traffic process threads restarting, and other TCP inter-

actions, particularly when our emulated access link throughputs are

low). However, these form a small fraction of the tests, and we filter

these out, and we label the remaining data as externally congested.

3.2 Analysis and Model

We extract the RTT features from the Server 1 packet traces. We

use tshark to obtain the first instance of a retransmission or a

fast-retransmission, which signals the end of slow start. We then

collect all downstream RTT samples up to this point; an RTT sam-

ple is computed using a downstream data packet and its correspond-

ing ACK at the server. For statistical validity, we discard flows that

have fewer than 10 RTT samples during slow-start. We compute

NormDiff and CoV using these samples.

Building and Tuning the Decision-tree Classifier We use the

python sklearn library implementation [42] to automatically

build the decision tree classifier [46] using the NormDiff and the
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Figure 3: Model performance: we see that precision and recall are high for a wide range of threshold values.
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Figure 4: Raw NormDiff and CoV metrics for our controlled

experiments. We see that both metrics are useful to separate

the two types of congestion events.

CoV RTT parameters for classification. Our classifier has two tune-

able parameters: the depth of the tree, and the threshold we use for

estimating whether the flow experienced access-link congestion.

• Tree-depth The tree depth for any decision tree classifier has to

strike a balance between building a good model and overfitting

for the test data. Since we only have two input parameters to the

decision tree, and two output classes, we keep the tree simple. We

evaluate tree depths between 3 and 5. We get high accuracy and

low false-positives with all three depths. For the rest of the paper,

we use a tree depth of 4.

• Congestion Threshold Since the congestion threshold deter-

mines how we label the test data, it has a direct impact on the

classifier. A threshold that is too high, e.g., close to 1, risks misla-

beling flows that self-induce congestion as externally congested,

because we will label even flows that achieve a large fraction of

capacity as externally congested. Similarly, a threshold that is too

low risks mislabeling flows that are externally congested. We do

not want to build a model that is extremely sensitive to this pa-

rameter either. We therefore test a range of threshold values and

show that our results are robust to these values.

3.3 Controlled Experiments Results

We obtained robust results from our decision-tree classifier on our

test data without having to carefully tune it. Figure 3 shows how

the congestion threshold affects the model, and its impact on pre-

diction precision, and recall, for both classes of congestion. Lower

thresholds, e.g. below 0.3, lead to poor results for predicting exter-

nal congestion, while high thresholds, e.g. greater than 0.95, lead to

poor results for predicting self-induced congestion. The precision

and recall are consistently high for a wide range of values between

0.3 and 0.9, however, indicating that the model is therefore accu-

rate and robust to a choice of threshold in that range. Good results

for thresholds as low as 0.3 is partly because we only have a small

number of data samples in the region between 0.3 and 0.6 (only

about 12% of our sample), due to the difficulty in reliably configur-

ing the testbed for middling throughput. We therefore only consider

the region which have a high number of samples and good results—

between 0.6 and 0.9.

Why do we need both metrics? Both NormDiff and CoV are a

function of the same underlying phenomenon, that is, the behavior

of the buffer at a congested (versus an uncongested) link. Intuitively,

we expect that the NormDiff parameter performs strongly as an in-

dicator of congestion type on paths with relatively large buffers and

relatively low latency and loss. In such cases, the flow can ramp up

quickly and fill up the buffer. The CoV parameter gives more accu-

rate classification across paths with smaller buffers, and higher loss

and latency, because even if NormDiff is lower, the signature of a

buffer that is filling is captured by CoV.



TCP Congestion Signatures IMC ’17, Internet Measurement Conference, November 1–3, 2017, London, United Kingdom

Figure 4 plots the two metrics for our controlled experiments

data: we see that while the two points are largely separated on ei-

ther axis, there is also a significant overlap—therefore we use both

metrics in order to cover a wide range of real-world scenarios.

The impact of multiplexing In our controlled experiments, we use

a clear access link and, for congestion in interdomain links, we in-

troduce cross-traffic with 100 concurrent bulk transfers. However,

either of these settings can be violated in real-world situations; there

can be cross-traffic in the access link, and, congestion in interdo-

main links could potentially be caused by a small number of flows

(particularly as access link speeds get bigger).

We run experiments to see how our classifier works when we re-

lax these assumptions. First, we fix the access link to 50 Mbps, and

reduce the number of cross-traffic processes generated by TGcong

from 100 to 50, 20, and 10. As we reduce the number of processes,

the throughput of our test flow increases, as there is less competition.

This increases the buffer occupancy of our flow, and the technique

can get confounded, concluding that congestion is self-induced. In-

deed, in our experiments, the fraction of flows correctly classified

as externally congested decreases from 93% when there are 100

concurrent flows, to 84% when there are 50, to 74% with 20, and

50% with 10. Similarly, we introduce cross traffic in the access link,

with 1, 2 and 5 concurrent flows. Even with 1 cross-flow, our test

flow does not obtain the full throughput; however it still gets sig-

nificant buffer space; therefore the classifier still classifies 86% of

flows as self-limited. With 5 flows, this number is 70%. In both

cases, due to TCP’s sharing mechanism, our test flow is able to ob-

tain significant buffer occupancy, and therefore can be thought of as

influencing buffer behavior; this is what our technique captures.

4 REAL WORLD VALIDATION USING M-LAB

DATA

We validate our model on two real-world datasets from M-Lab. The

first is a large dataset that spans the timeframe of a well publicized

peering dispute involving Cogent, a major transit provider, and sev-

eral large US ISPs in 2014. We term this dataset the Dispute2014

dataset. The second is a more focused dataset consisting of data we

collect from targeted experiments we conduct in 2017 between a

client in the Comcast access network in Massachusetts and an M-

Lab server hosted by TATA in New York. We choose this particular

client and server combination because the interdomain link between

the two ISPs experienced periods of congestion during our experi-

ments, inferred using the Time Series Latency Probes (TSLP) [35]

methodology. We term this dataset the TSLP2017 dataset.

4.1 The Dispute2014 dataset

M-Lab and NDT

The M-Lab infrastructure currently consists of more than 200

servers located in more than 30 hosting networks globally, host-

ing a variety of network performance tests such as NDT [17], Glas-

nost [31] and Mobiperf [2]. Our study focuses on the Network Di-

agnostic Test (NDT) [17]. NDT is a user-initiated Web-based test

which measures a variety of path metrics between the server and

the client, including upstream and downstream throughput. For ev-

ery NDT measurement, the server logs Web100 [7] statistics that
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(a) Diurnal throughput graph for Cogent customers to M-Lab server

in Los Angeles, January 2014. All ISPs except Cox see significant diur-

nal effects. Only Cox had a direct peering agreement with Netflix via

the latter’s OpenConnect program. For other ISPs, the NDT measure-

ments were affected by congestion in Cogent caused by Netflix traffic.

February has a similar pattern. [20]
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(b) Diurnal throughput graph for Level3 customers to M-Lab server in

Atlanta, January 2014. No ISPs see diurnal effects. Level3 did not have

significant congestion issues in this time period, at least in the paths

that NDT measures.
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(c) Diurnal throughput graph for Cogent customers to M-Lab server

in Los Angeles, April 2014. In contrast to January, ISPs do not see

diurnal effect anymore. Cogent relieved congestion on their network,

and Comcast signed an agreement with Netflix [20, 22]. March has a

similar pattern.

Figure 5: Diurnal average throughput of NDT tests. We use the

diurnal effect in Cogent to all ISPs (except Cox) in Jan-Feb

as the basis for our labeling—tests during peak hours in Janu-

ary are externally congested. In contrast, we label off-peak Cox

tests in Jan-Feb through Cogent, and all tests in Mar-Apr as

affected by self-induced congestion.
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provide TCP performance over 5 ms intervals. Web100 statistics

include a number of useful parameters including the flow’s TCP

RTT, counts of bytes/packets sent/received, TCP congestion win-

dow, counts of congestion window reductions, and the time spent

by the flow in “receiver limited”, “sender limited” or “congestion

limited” states. The server also stores raw packet traces for the tests

in pcap format. We obtain both the Web100 logs and the trace files

through Google’s Big Query and Big Store [1, 6] where they are

freely available.

Pre-processing the NDT data

We are interested in flows that experience congestion, so we filter

the M-Lab data accordingly. We choose NDT measurements with

downstream tests that lasted at least 9 seconds—the duration of the

NDT measurement is 10 seconds, so these tests are likely to have

completed—and which spend at least 90% of the test duration in the

congestion limited state. We get this information from the Web100

output. We thereby exclude flows which were sender- or receiver-

limited, or did not experience congestion for other reasons, such as

high loss or latency. We do so because such flows would not have

induced congestion in the path, and were not affected by external

congestion either, and we therefore are not interested in them. These

filters are the same as those used by M-Lab in their 2014 report that

examines interdomain congestion [36]. These are also necessarily

different from our earlier definition of congestion (using thresholds

based on access link capacity) because in the bulk of our dataset,

where we depend on crowdsourced measurements of the NDT data,

we do not know the ground truth access link capacity of the users

that ran these tests.

The peering disputes of 2013/2014.

In late 2013 and early 2014, there were media reports of poor

Netflix performance on several access ISPs that did not peer di-

rectly with Netflix [12]. Netflix traffic to these access ISPs was

delivered by multiple transit ISPs such as Cogent, Level3, and

TATA. Throughput traces from the M-Lab NDT platform during

this time period showed strong diurnal patterns, with significantly

lower throughput during peak traffic hours (evening) as compared

to lightly loaded periods (middle of the night). Such diurnal pat-

terns were evident in throughput tests from Cogent servers to sev-

eral large ISPs such as Comcast, Time Warner, and Verizon. A no-

table exception was Cox, which had already entered into a direct

peering agreement with Netflix. Consequently, Cox’s interconnec-

tions to Cogent were not affected by Netflix traffic and through-

put from Cogent to Cox did not show diurnal patterns. Figure 5a

shows the diurnal throughput performance of AT&T, Comcast, Cox,

TimeWarner, and Verizon customers to NDT servers in Cogent.

We see a substantial drop in throughput during peak hours to all

ISPs except Cox. Other transit ISPs such as Level3, however, did

not show such diurnal throughput patterns in the NDT data (Fig-

ure 5b). M-Lab released an anonymous report that concluded that

the cause of performance degradation was peak-time congestion in

interdomain links connecting the transit ISPs hosting M-Lab servers

to access ISPs [36]. The reasoning was based on coarse network

tomography—since NDT tests between Cox customers and the M-

Lab server in Cogent did not show a diurnal pattern, whereas tests

between other ISPs and the same server did, the report stated that

the source of congestion was most likely the peering between Co-

gent and Comcast, Time Warner, and Verizon. Another independent

study also confirmed the existence of congestion in these paths and

narrowed down the source of congestion to ISP borders [35].

During the last week of February 2014, Cogent began priori-

tizing certain traffic in order to ease congestion within their net-

work [20, 21], and then Comcast signed a peering agreement with

Netflix [22]. These events had the desired effect in terms of eas-

ing congestion; we see in Figure 5c that NDT measurements to the

Cogent server in Los Angeles no longer exhibited diurnal effects.

We observed similar patterns for Cogent servers in New York and

Seattle (not shown).

Collecting and labeling Dispute2014

We do not have service plan information for the Dispute2014data,

and so we cannot use the threshold technique to label it; we instead

use Figure 5 to inform our labeling. We label peak hour (between

4 PM and 12 AM local time) tests in January and February from

affected ISPs (i.e., those that see a sharp drop in performance dur-

ing peak hours; Comcast, Time Warner, and Verizon) as externally

congested. We label off-peak tests in March and April (between

1 AM and 8 AM local time) as self-induced congestion limited.

To minimize noise, we do not consider off-peak tests in January-

February, or peak tests in March-April. Our labeling method as-

sumes that off-peak throughput tests are limited by access-link ca-

pacities; this assumption is based on annual reports from the FCC

Measuring Broadband America (MBA) program, that show that ma-

jor ISPs come close to or exceed their service plans [29]. However,

we do not have ground truth, and therefore our labeling is necessar-

ily broad and imperfect. Nevertheless, the substantial difference in

throughput between peak and off-peak hours, along with the general

agreement in the community about the existence of peering issues

lead us to expect that a large percentage of our labels are correct.

We consider two transit ISPs: Cogent, which was affected by the

peering disputes and Level3, which was not. We study two geo-

graphical locations—Los Angeles (LAX), and New York (LGA)—

for Cogent, and one location—Atlanta (ATL)—for Level3. We

study four access ISPs: Comcast, TimeWarner, Verizon, and Cox.

Of these, Cox is unique because its performance to Cogent was not

affected by the peering disputes, and therefore is useful as a control

to show that our techniques are generally applicable across different

transit and access ISPs.

4.2 The TSLP2017 dataset

The Dispute2014 dataset is large, but it is broad, and our labeling is

coarse. We also do not have ground truth available for that dataset

to accurately label flows as access-link or externally congested. We

therefore run targeted experiments to generate a dataset with more

accurate labels. Our goal was to find an interdomain link that was

periodically congested—and that we could reliably identify as so—

and run throughput tests from a client whose access-link capacity

we know to a server “behind” the congested link. A challenge with

this basic idea is that we must find an M-Lab server such that the

path from our client to the server crosses a congested link. To do so,

we use the dataset resulting from our deployment of the TSLP [35]

tool on the Archipelago (Ark) [19] infrastructure to identify inter-

domain links between several large access ISPs and transit/content
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providers that showed evidence of congestion. The TSLP technique

measures the latency from a vantage point located within a network

to the near and far routers of interdomain links of the host network.

An elevated latency to the far end of the link, with no elevation to

the near end, suggests that the targeted link is congested. Luckie

et al. [35] showed that periodic increase in latency occurring when

the expected load on the link is the highest (during peak hours in the

evening) is a good indicator of congestion on the interdomain link.

The TSLP technique is quite different from what we propose in this

paper; TSLP targets specific links that are identified in advance, and

it requires external probes to measure those links. We ran traceroute

measurements from our Ark node in Comcast’s network located at

Bedford, Massachusetts to each M-Lab server, to find instances of

paths that traversed congested interdomain links identified with the

TSLP technique.

Collecting TSLP2017

We find one case where the path between the Ark node and an M-

Lab server hosted by TATA in New York traverses the interconnect

between Comcast and TATA in New York City that is occasionally

congested as indicated by an increase in the latency across that link

during peak hours. The latency increase we measured went from a

baseline of about 18ms to a peak of above 30ms. This increase of

about 15ms likely reflects the size of the buffer on the link between

the Comcast and TATA routers.

We run periodic, automated NDT measurements between this

Ark node and the TATA server during both peak and off-peak

hours. We establish the baseline service plan for this Comcast user—

25 Mbps downlink—by talking to the Ark host, running indepen-

dent measurements using netperf, and by examining the NDT

throughput achieved during off-peak hours. We run throughput tests

every 1 hour during off-peak hours and every 15 minutes during

peak hours between February 15 and April 30, 2017. Our TSLP

measurements are continuously ongoing.

Indeed, we find a strong negative correlation between the NDT

throughput and the TSLP latency to the far end of the link (Figure 6).

During periods when the latency is low (at the baseline level), the

NDT test almost always obtains a throughput close to the user’s ser-

vice plan rate of 25 Mbps. During the episodes of elevated latency,

throughput is lower. We collect and process this data the same way

we do the data from Dispute2014.

Labeling TSLP2017

We know both the expected downstream throughput of the access

link (25 Mbps), and the baseline latency to the TATA server (18 ms),

which increases to above 30 ms during congested periods. We label

a test as externally limited if the throughput is less than 15 Mbps

and the minimum latency is greater than 30ms; and as access-link

congested otherwise. This allows us to be certain that the tests that

we labeled as externally limited were conducted during the period

of elevated latency detected by TSLP and were affected by conges-

tion on the interdomain link. We collected 2593 NDT tests in the 10

week period, of which we were able to label 20 tests as externally

congested and the rest as self-induced. The relatively low number

of external congestion events speaks to the difficulty of getting real-

world congestion data.
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Figure 6: Sample of the data we use in TSLP2017 showing mea-

surements of latency and throughput between an Ark node in

a Comcast network in Massachusetts and an M-Lab node in

New York City hosted by TATA. There are periodic spikes in la-

tency that indicate congestion in the interdomain link between

Comcast and TATA. These latency spikes correspond to drops

in throughput for the Ark host; we therefore label these periods

as externally congested and the other periods as self-induced.

The service plan for the host is 25 Mbps downstream.

5 RESULTS

In this section, we analyze the M-Lab datasets using our model and

show that it can detect the real-world peering incidents from the

measurements.

5.1 Performance of the classifier on the

Dispute2014 dataset

We test the classifier on the Dispute2014 dataset using labels that

we describe in § 4.1. Given the nature of the peering dispute and its

effect on flow congestion (Figure 5), we would expect that with per-

fect labeling no peak-hour flows between Cogent and three ISPs—

Comcast, TimeWarner, and Verizon—would be classified as experi-

encing self-induced congestion in the January-February timeframe,

while all flows would be classified as self-induced congestion in

March-April. However, due to the number of confounding factors
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Figure 7: Performance of our classifier on Dataset 1. The clas-

sifier detects a higher fraction of self-induced bottlenecks in

March-April than in January-February for paths that had con-

gestion issues during January-February (Comcast, TWC, and

Verizon to Cogent servers), but resolved them by March-April.

Self-induced classification fractions are similar in the two peri-

ods for paths that did not have congestion issues in this time-

frame (Cox to Cogent servers, and all ISPs to Level3).

that make our labeling imperfect, we look for a large difference in

the fraction of flows to those ISPs classified as self-induced con-

gestion in the two timeframes, specifically a significantly larger

fraction of flows classified as self-induced congestion in the March-

April timeframe.

Figure 7 plots, for each combination of transit ISP and access ISP,

the fraction of flows in each time frame that we classify as experi-

encing self-induced congestion (Jan-Feb in red, Mar-Apr in blue).

We separately plot the results we obtain for classification models

built using three thresholds for detecting access link congestion:

0.7, 0.8, and 0.9. The results align with our expectation: we see a

significantly lower fraction of flows for Comcast, TimeWarner, and

Verizon to Cogent classified as self-induced in Jan-Feb compared to

Mar-Apr. For example, in Figure 7b, we see that our classifier clas-

sifies only 40% of flows from Comcast in LAX to Cogent as limited

by self-induced congestion in Jan-Feb, while this number is about

75% in Mar-Apr. The numbers for Verizon are 40% and nearly 90%

for the same combination of ISP and location.

In contrast, we see little difference in the fraction of flows from

Cox to Cogent and from all ISPs to Level3 that we classify as ex-

periencing self-induced congestion in both time frames. For exam-

ple, our classifier classifies about 80-90% of flows in both time

frames as experiencing self-induced congestion and the rest as ex-

ternal(Figure 7b).

For Level3 to all access ISPs and Cogent to Cox, there is a

small difference in the fraction of flows classified as experiencing

self-induced congestion in the two timeframes: for example, in Fig-

ure 7c, we classify about 70% of Cox flows to Level3 as experienc-

ing self-induced congestion in Jan-Feb, but closer to 80% in Mar-

Apr. We expect that this difference is because we use peak-hour

data in Jan-Feb, and off-peak hour data in Mar-Apr to minimize a

potential source of error in our labeling. Even under normal circum-

stances, we expect more variability in throughput tests during peak

hours, and therefore more tests to be affected by external congestion

during those hours than during off-peak hours.

Figure 7 also shows the effect of the congestion threshold we use

for the model. Higher values of the threshold mean that the crite-

rion for estimating self-induced congestion is stricter, and we there-

fore expect to see fewer self-induced congestion events at higher

thresholds. The fraction of flows classified as experiencing self-

induced congestion drops as the threshold goes up; for example,

for the Comcast/LAX/Cogent combination, the fraction during Jan-

Feb goes down from 40% to slightly less than 30% as the threshold

increases from 0.7 to 0.9. Changing the threshold, however, does

not qualitatively alter the trend of the results.

5.2 Comparing throughput of flows in the two

classes

We validate our classification using another insight. In the general

case, when there is no sustained congestion affecting all the mea-

sured flows (i.e., when episodes that cause externally limited flows

do occur, they are isolated and do not affect all flows uniformly),

we expect that externally limited flows would see lower through-

put than self-limited flows; by definition, externally limited flows

do not attain access link capacity. However, when there is sustained

congestion that affects all measured flows (such as congestion at
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Figure 8: Comparing the performance of classified flows before

and after Dispute2014 resolution. We see that there is no differ-

ence between the throughput of the two classes during a conges-

tion event (Cogent in LAX and LGA, for all ISPs except Cox),

and a significant difference when there is no congestion event

(Cogent/Cox, and all ISPs in Level3).

an interconnection point), we expect that the throughput of flows

experiencing both self-induced and external congestion would be

similar. This is because all flows traverse the congested intercon-

nect. Flows through low capacity access links can still self-induce

congestion, while flows through larger access links will not, how-

ever the throughputs of flows in either class will be roughly similar.

We illustrate this with a simple example. Consider that a flow

traversing a congested interconnect can achieve X Mbps. For an ac-

cess link with capacity Y > X, the flow will be externally limited

with throughput X. For an access link with capacity Z < X or Z ≈

X, the flow can be access limited with a throughput of Z which is

less than or equal to X. So if there is a congested interconnect that

many flows traverse, then the throughput those flows achieve will be

close irrespective of whether they experience self-induced or exter-

nal congestion. If on the other hand there is no sustained congestion

at interconnects, the distribution of self-limited throughputs should

follow the distribution of access link capacities. Assuming that the

self-limited and externally-limited flows sample the same popula-

tion at random, the distribution of externally-limited throughputs

should have a lower mean.

Figure 8 shows the median throughput of flows classified as self-

induced and externally congested in both the January-February and

the March-April time frames for Cogent and Level3. In January-

February in Cogent, both sets of flows have very similar through-

puts for Comcast, Time Warner and Verizon (Figure 8a). On the

other hand, Comcast, Time Warner, and Verizon flows in March-

April that were classified as self-limited exhibit higher throughput

than flows constrained by external congestion. As expected, Cox

does not show such a difference between Jan-Feb and March-April.

Flows classified as experiencing self-induced congestion had higher

throughput than externally limited flows in both timeframes. Fig-

ure 8b shows that in Level3 in Atlanta, which did not experience a

congestion event in that time frame, there is a consistent difference

between the two classes of flows.

5.3 How good is our testbed training data?

Since we built our classification model using testbed data, a natural

question to ask is how sensitive is our classifier is to the testbed

data? To answer this question, we rebuild the model using data from

the Dispute2014 dataset, and test it on itself. More precisely, we

split the Dispute2014 dataset into two, use one portion to rebuild the

decision tree model, and test the model against the second portion.

If our classifier is robust and not sensitive to the testbed data, we we

would expect similar classification of the congestion events using

either the model from the controlled experiments, or the new model

built using the Dispute2014 dataset.

Our new model uses 20% of the samples of Dispute2014 data

except the location and ISP that we are testing. For example, to

test Comcast users to Cogent servers in LAX, we build the model

using 20% of Dispute2014, except that particular combination. Fig-

ure 9 shows the result of the classifier using this model. That the

classification of congestion—the percentage of flows classified as

self-induced congestion—follows the same trend as the classifica-

tion that uses the testbed data to build the model (Figure 7). For

example, for the Comcast/LAX/Cogent combination, the fraction

of self-induced congestion is about 15% and 55% in Jan-Feb and

Mar-Apr in Figure 9 while it is about 30% and 60% in Figure 7c.

In general, the new model is more conservative in classifying self-

limited flows than the testbed model, but is qualitatively consistent

with the testbed model. This consistency shows that our model is

robust to the data used to build it, and also that the testbed data also

provides data approximating to the real-world.

5.4 How well does our model perform on the

TSLP2017 dataset?

The TSLP2017 dataset(§ 4.2) contains data from tests conducted

between a Comcast access network in Massachusetts and a TATA

server in New York. We recap our labeling criteria: since the user

has a service plan rate of 25 Mbps and a base latency to the M-Lab

server of about 18 ms we label NDT tests that have a throughput

of less than 15 Mbps and a minimum latency of 30 ms or higher

as limited by external congestion. We mark tests with throughput
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Figure 9: Detection on M-Lab data using a model built using

the Dispute2014 dataset. The results are similar to the results in

Figure 7c, which uses a model built using the testbed data.

exceeding 20 Mbps and minimum latency less than 20 ms as self-

induced. Using our labeling criteria, we were able to obtain 2573

cases of access link congestion and 20 cases of external congestion

over the course of our measurement period. Of these, our testbed

model accurately classified more than 99% of self-induced conges-

tion events and between 75% and 85% of external congestion events

depending on the parameters used to build the classification model.

The lower accuracy corresponds to using lower congestion thresh-

olds to build the the model (i.e., using a congestion threshold of

0.7 and 0.8 in the testbed data corresponded to an accuracy of 75%,

while 0.9 corresponded to an accuracy of 85%). We also tested the

TSLP2017 dataset using the model built using the M-Lab data de-

scribed in Section 5.3. Our results were very similar for detecting

self-induced congestion—more than 90%, while we were able to

get 100% accuracy for external congestion.

The buffering that we observed in this experiment—both in the

access link and the peering link—are small; about 15-20ms. Even

with such a small buffer, which is essentially the worst case for our

model due to its reliance on the shaping properties of buffers, our

model performs accurately, furthering our confidence in the princi-

ples underlying the model.

6 LIMITATIONS

Our proposed method has limitations, both in the model, and the

verification.

• Reliance on TCP. Our technique only works on protocols that

have congestion control, and so will also potentially work with

UDP-based protocols such as QUIC, though not for other UDP

flows. However, the technique will work on paths that are con-

gested by UDP flows, as long as buffering is the same for TCP

and UDP.

• Reliance on buffering for measuring the self-loading effect.

Our technique identifies flows that start on a path that has suf-

ficient bandwidth to allow the flow to ramp up to a point that

it significantly impacts the flow’s RTT due to a self-loading ef-

fect. This has three consequences: (i) we rely on a sufficient sized

buffer close to the user (at the DSLAM or CMTS) to create RTT

variability. It is impractical to test all combinations of real-world

buffers; however, we build and test our model using a wide variety

of buffer sizes, both in our testbed and in real life, with excellent

results. (ii) our classifier only classifies flows as externally lim-

ited or self-limited. We could potentially have cases where the

buffer occupancy is high to the point that it affects throughput,

but also is pushed to maximum occupancy by the flow we are in-

terested in, or when multiple flows start up at the same time and

congest a link; scenarios like this raise legitimate questions about

whether or not the flow is self-limiting or not. We do not have

a way of confirming how frequently (if at all) this occurs in the

wild. Such scenarios are also difficult to recreate in the testbed.

(iii) TCP flows can be limited due to a variety of other reasons

such as latency, send/receive window, or loss, or even transient

flash-crowding effects. We leave it for future work to develop a

more comprehensive TCP diagnostic system that uses our tech-

niques and others as building blocks. We test our techniques on a

simple token bucket queue, but it will still work on other queuing

mechanisms such as RED as long as there is an increase in RTT

due to buffering. TCP variants such as BBR [39] that base their

congestion control on latency might also confound our technique.

BBR controls the amount of latency, and hence buffering that the

flow induces. While testing our techniques across all TCP vari-

ants is beyond of the scope of our paper, we note that we have

tested it with buffer sizes of 1–5 times the BDP: as long as the

flow induces some consistent measurable buffering in the path,

our technique will still identify the type of congestion accurately.

• Reliance on the slow start time period. We rely on TCP be-

havior during slow-start. The technique could therefore be con-

founded by a flow that performs poorly during slow-start, but then

improves later on, and vice-versa. However, the classification that

we obtain for the slow start period is still valid. If our model says

that a flow was externally limited during slow start, but the overall

throughput was higher than what the flow obtained during slow-

start, we cannot tell whether the later segments were limited as

well. The technique therefore gives us some understanding of the

path capacity; we could use our understanding of performance

during slow-start in order to extrapolate the expected behavior of

the flow. We leave this for future work. However, in the reverse

case, if the model says the flow was self-limited during slow-start,

but overall throughput is significantly lower than what the flow

obtained during slow-start, we can safely say that the throughput

was affected by other factors.

• The need for good training data for building a model. The

model fundamentally relies on a reliable corpus of training data

in order to build the training model. We used training data from a

diverse set of controlled experiments to build our model, and val-

idate it against a diverse set of real-world data. Additionally, we

also show that we get comparable results by building the model

using real-world data. However, we do not claim that our model

will work well in any setting. This problem requires a solid set

of ground-truth data in the form of TCP connections correctly la-

beled with the type of bottleneck they experienced.

• Reliance on coarse labeling for M-Lab data. Due to the lack

of ground truth regarding access link capacities, we label the M-

Lab data coarsely (§ 4.1). However, all flows in January-February

need not have been externally limited, and all flows in March-

April need not have been self-limited. Variability in access link
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capacities could result in low capacity links that self-induce con-

gestion even when there is external congestion. Home network

effects such as wireless and cross-traffic interference might also

impede throughput, introducing noise into the labeling. However,

given the severity of the congestion experienced in that time

period as is evident from our analysis in § 4.1, published re-

ports [36], and the general adherence of U.S. ISPs to offered ser-

vice plans as evident from the FCC reports [5], we have reason-

able confidence that our labeling is likely largely accurate.

• Use of packet captures for computing metrics. Our technique

computes the two RTT-based metrics by analyzing packet cap-

tures. Packet captures are storage and computationally expensive.

However, we note that the metrics are simple; indeed, Web100

makes current RTT values available light-weight manner. We

leave it to future work to study how we can sample RTT values

from Web100 to compute our metrics and how it compares to our

current technique that uses packet captures.

7 RELATED WORK

There have been several diagnosis techniques proposed for TCP. T-

RAT, proposed by Zhang et al. [52] estimates TCP parameters such

as maximum segment size, round-trip time, and loss to analyze

TCP performance and flow behavior. Dapper [30] is a technique

for real-time diagnosis of TCP performance near the end-hosts to

determine whether a connection is limited by the sender, the net-

work, or the receiver. Pathdiag [37] uses TCP performance model-

ing to detect local host and network problems and estimate their

impact on application performance. However, these techniques do

not differentiate among types of congestion in the network. There

have been several proposals for locating bottleneck links. Multiple

techniques use packet inter-arrival times for localization: Katabi et

al. [34], to locate shared bottlenecks across flows, Sundaresan et

al., to distinguish between a WAN bottleneck and a wireless bottle-

neck [48], and Biaz et al. [11] to understand loss behavior. A num-

ber of packet probe techniques in the literature use external probes

to identify buffering in paths [35] or to measure available bandwidth

or path capacity [23, 32, 33, 43, 51]. Sting [45] and Sprobe [44] are

tools to measure packet loss and available bandwidth, respectively,

using the TCP protocol. Antoniades et al. proposed abget [9], a

tool for measuring available bandwidth using the statistics of TCP

flows. While external probing techniques can be useful in locating

the bottleneck link, such techniques are out-of-band and could be

confounded by load balancing or AQM, and in the best case can

only be indirectly used to deduce type of congestion (a congested

link between two transit ISPs likely causes external congestion for

all flows that traverse the link). Network tomography has also been

proposed for localizing congestion [36, 41], or for discovering in-

ternal network characteristics such as latencies and loss rates using

end-to-end probes [16, 24, 25]. Such techniques, however, are typ-

ically coarse in nature, can be confounded by factors such as load-

balancing and multiple links comprising a single peering point, and

require a large corpus of end-to-end measurement data to apply the

tomography algorithm. Tomography cannot be applied on a single

flow to infer the type of congestion that the flow experienced or the

location of the bottleneck. Our goal in this work was to characterize

the nature of congestion experienced by a given TCP flow based on

flow statistics that are available at the server-side.

8 DISCUSSION/CONCLUSION

Till recently, last mile access links were most likely to be the bottle-

neck on an end-to-end path. The rise of high-bandwidth streaming

video combined with perpetually fractious relationships between

major players in the ecosystem has expanded the set of potential

throughput bottlenecks to include core peering interconnections.

Understanding whether TCP flows are bottlenecked by congested

peering links or by access links is therefore of interest to all stake-

holders – users, service providers, and regulators. We took some

steps toward this goal by developing a technique to differentiate

TCP flows that fill an initially unconstrained path from flows bottle-

necked by an already congested link.

The intuition behind our technique is that TCP behavior (partic-

ularly in terms of flow RTTs during the slow-start phase) is qual-

itatively different when the flow starts on an already congested

path as opposed to a path with sufficient available capacity. These

path states correspond to peering-congested and access-link-limited

flows, respectively. We show that the RTT variance metrics (both

the normalized difference between the maximum and minimum

RTTs, and the coefficient of variation in the RTT samples) are

higher when a TCP flow is limited by a non-congested link, and

therefore the TCP flow itself drives queuing (and hence RTT) be-

havior. We use this intuition to build a simple decision tree clas-

sifier that can distinguish between the two scenarios, and test the

model both on data from the controlled experiments and real-world

TCP traces from M-Lab. We tested our model against data from our

controlled testbed as well as a labeled real-world dataset from M-

Lab and show that our technique distinguishes the two congestion

states accurately, and is robust to a variety of classifier and network

settings.

We emphasize two strengths of our technique. First, it operates

on single flows, and uses statistics of on-going TCP flows rather

than requiring out-of-band probing. Second, it requires TCP con-

nection logs or packet captures at the server-side only and does not

require control or instrumentation of the client-side. This approach

differs from techniques for available bandwidth estimation or other

bottleneck detection tools that generally require out-of-band prob-

ing and/or control over both endpoints of the connection. Our work

also opens up avenues for future work, particularly in developing

more accurate TCP signatures that can further help us understand

network performance.
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